用户名: 密码: 验证码:
复杂发电机系统的智能控制理论方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力工业的不断发展,对于电能的需求越来越大,对供电可靠性与电能质量的要求也越来越高。发电机组是电力系统中提供电能的关键设备,对于电力系统的安全经济稳定运行有着至关重要的作用。大容量发电机组的增多并向超临界化方向发展,使得发电机控制越来越复杂、也越来越重要。
     论文首先介绍了电力系统控制和稳定性的一般描述以及发电机控制的重要性,并说明了发电机系统是一个复杂的非线性对象,控制难度较大。接着,从国内外发电机系统控制的研究现状出发,提炼出其中有待进一步解决的关键问题并进行深入的研究,从而形成比较系统的发电机系统智能控制理论和方法,为发电机组的高效节能与经济运行提供理论基础。针对复杂发电机系统控制中的一些科学问题,本论文结合国家"十五"重大技术装备国产化创新研制项目—“交流励磁水轮发电机及其控制系统研制”,重点开展了以下几个方面的研究工作:
     1、提出了基于混沌模式搜索法的同步发电机参数辨识方法,将模式搜索法与混沌优化算法相融合,给出了一种新型的混沌模式搜索法,提高了混沌优化算法的搜索效率和搜索精度。将同步发电机参数辨识问题看作参数矢量的组合优化问题,建立对应的目标函数,以优化算法来搜索最佳参数值。该参数辨识方法具有不受对象非线性特征影响、对扰动信号限制少、搜索速度快等优点。
     2、提出了励磁系统的一种逼近模型控制方法。首先介绍了励磁系统的一般原理和数学模型,随后提出了一种逼近模型控制器,采用基于Taylor扩展的线性化方法来得到近似的逼近模型控制律,利用径向基神经网络建模来具体实现控制律。论文分析了该逼近模型控制律的鲁棒性特征,并给出了其仿真实验结果。
     3、提出了一种励磁系统的逼近内模控制器。该逼近内模控制器包括逼近模型控制器和反馈补偿二个部分,采用基于Taylor扩展的线性化方法得到逼近模型控制器,并由递归神经网络建模来具体实现,再选取一个鲁棒性滤波器作为反馈环节,并分析了逼近内模控制器的鲁棒性特征,仿真实验也验证了其有效控制性能。
     4、水轮机调节系统是一个水、机、电的综合调节系统,针对该调节系统的非线性模型,研究了一种刚性水锤效应时的水轮机调速器的逆模型控制方法。首先介绍了水轮机的调速系统的原理,分析了其可逆性,采用支持向量机来建立逆模型,并对比研究了二种不同的逆模型控制器:直接逆模型控制和带PI控制补偿的逆模型控制。直接逆模型控制易于实现,然而鲁棒性和抗干扰性性能明显不如带PI控制补偿的逆模型控制。
     5、针对汽轮发电机调速系统,设计了一种汽门系统的自适应逆模型控制。首先介绍了汽轮机调速系统的调速原理和数学模型,分析了该系统的可逆性,采用最小二乘支持向量机来辨识汽门系统的模型和逆模型,在此基础上,提出了一种基于自适应学习率的逆模型控制系统,分析了该学习算法的收敛性特征。
     6、研究了汽轮发电机系统的综合控制,将发电机组的励磁和汽门系统相结合,设计了一种多模型控制系统。该多模型控制系统以发电机组的典型工况为依据,设计了不同工况时的子模型控制器,并提出了一种自学习算法在线调整优化控制器的控制规则。同时,建立子模型库,依据运行工况与子模型的匹配程度来决定子模型控制器的加权系数。
     7、介绍了用于多机组发电机系统综合控制的等效模型,并建立了三机组发电机系统综合控制的状态空间模型;随后,采用线性二次最优控制方法来设计综合优化控制器。本论文将权矩阵的选取看作一个多变量优化问题,提出一种并行混沌优化融合单纯形的优化算法,采用该优化算法来搜索最佳的权矩阵,从而为线性二次最优控制提供了一种有效方法。仿真实验也验证了该优化控制器的有效性能。
     论文最后总结了全文的主要创新性研究成果,对下一步研究工作进行了展望。
With the development of power system industrial, the requirement of power energy is more and more, at the same time, the quality requirement of energy supplying and power stablity is higher and higher. Generators are the key equipments for energy supplying, and their performances are very crucial in power system operation. It is a tendency that the generators have higher capacity, this also means that the effective control of generators is more difficult and more important.
     Firstly, this dissertation introduces the outline of power system control and stability, then presents the importance of generators system control. The control of generators is complex and defficult since they are complex nonlinear plants. Subsequently, this dissertation shows the recent research development in generators control, and selcets several key problems of generators as research objectives to constitute systemic intelligent control theory and methodes. Focusing on these scientific problems, this dissertation is partially supported with the“10th Five Year Plan”Key Technology and Equipment Project-“AC excited hydrogenerator and control system development”, and has carried out the following research works:
     1. A novel parameters identification method for synchronous generators based on Chaotic pattern search algorithms (CPSA) is proposed. The CPSA is a combination of Chaotic optimization algorithms and pattern search algorithms, and it has good search ability and its searching is fast. Parameters identification for generators is treated as a combined optimization of parameters vectors, and an objective function is constructed for this optimization problem. The CPSA method can search the optimal parameters vectors fast, while it is not affected by the nonlinear character and restrictions for disturbance signals are less.
     2. An approximate model control method for excitation control is presented. Firstly, the outline and mathematic model for excitation system are shown, then an approximate model controller is presented using a direct linearization approach via Taylor expansion, and the control law is realized using RBF neural networks modeling. The robustness of the proposed excitation controller is given.
     3. An approximate internal model control method for excitation control is studied. Approximate internal model control inclueds approximate model control and feedback compsentation. The approximate model contrller is presented using a direct linearization approach via Taylor expansion, while the feedback compsentation is realized using a rubustness filter. The robustness of the proposed controller is given.
     4. Turbine governor system is a water, mechanical, electricity integrated plant. An inverse model control method for a rigid water hammer turbine governor is studied for the regulation of non-linear model. First, the principle of the turbine speed regulation system is introduced, and its reversibility is also shown. Secondly, support vector machines is used to identify its inverse model, and two kinds of different inverse model controller are compared: direct inverse model control, inverse model control with PI control Compensation. Direct inverse model control, its design is simple, yet its robustness and interference performance are not as good as inverse model control with PI control compensation.
     5. A new adaptive inverse model controller for the steam valve is shown in this dissertation. Firstly, the principle and the mathematical model of steam turbine governor is introduced. Secodnly, the irreversibility of the system is shown. Then least-squares supprot vector machines is used to identify the model and the inverse model, and an adaptive learning rate is used for this inverse model control systems. The convergence characteristics of the learning algorithm is analysed.
     6. A multiple models control system (MMCS) is proposed for excitation and turbine control of synchronous generator. Firstly sub-model control rules for synchronous generator at variable operation points are derived from different operation samples. Then a self-learning algorithms is presented for the online learning of sub-model control rules. In the same time, the sub-model is constructed and the weighting factors for sub-controller are decided by the matching degree between the operation point and the sub-model.
     7. The integrated control of multi-unit generating system is also presented, and three generating units integrated control system with state-space model is established. The linear quadratic optimal control method is used to design the integrated controller. This dissertation regareds the selection of the weighting matrix of linear quadratic optimal controller as a multi-variable optimization problem, and proposes a parallel chaos optimization algorithms integration with the simplex method to search the best weighting matrix. It is an effective way to reach linear quadratic optimal controller. The simulation results also show the performance of the proposed controller.
     In the end, the main innovations of the dissertation are summarized, and the fields for further investigation are expected.
引文
[1] Ibraheem, Kumar P, Khatoon S. Overview of power system operational and control philosophies. International Journal of Power and Energy Systems, 2006, 26(1): 1-11
    [2] Adapa R. FACTS system studies. IEEE Power Engineering Review, 2002, 22(12):17-22
    [3] Jiang Shan, Annakkage U D, Gole A M. A platform for validation of FACTS models. IEEE Transactions on Power Delivery, 2006, 21(1): 484-491
    [4] Isidori A, Ruberti A. Relation between different approaches to input-output linearization via feedback. Journal of the Franklin Institute, 1985, 320(6):345-350
    [5]孙元章,焦晓红,申铁龙.电力系统非线性鲁棒控制.北京:清华大学出版社, 2007, 21-27
    [6] Prabha K, John P, Venkat A, et al. Definition and classification of power system stability. IEEE Transactions on Power Systems, 2004, 19(2): 1387-1401
    [7]周双喜,朱凌志,郭锡玖,王小海.电力系统电压稳定性及其控制,北京:中国电力出版社, 2004, 7-14
    [8] Jalili M, Yazdanpanah M J. Transient stability enhancement of power systems via optimal nonlinear state feedback control. Electrical Engineering, 2006, 89(2):149-156
    [9] Wang M H, Chen H C. Transient stability control of multimachine power systems using flywheel energy injection. IEE Proceedings: Generation, Transmission and Distribution, 2005, 152(5): 589-596
    [10] Glavic M, Ernst D, Wehenkel L. A reinforcement learning based discrete supplementary control for power system transient stability enhancement. Engineering Intelligent Systems, 2005, 13(2): 81-88
    [11] Wen J Y, Wu Q H, Turner D R, Cheng S J, Fitch J. Optimal coordinated voltage control for power system voltage stability. IEEE Transactions on Power Systems, 2004, 19(2): 1115-1122
    [12] Vournas C D, Potamianakis E G, Moors C, Van Cutsem T. An educational simulation tool for power system control and stability. IEEE Transactions on Power Systems, 2004, 19(1): 48-55
    [13]朱桂萍,王树民.电能质量控制技术综述.电力系统自动化, 2002,26(19):28-31
    [14]陆继明,毛承雄,范澍,王丹.同步发电机微机励磁控制.北京:中国电力出版社, 2006, 1-14
    [15] Ling Daijian, Tao Yang. An analysis of the Hopf bifurcation in a hydroturbine governing system with saturation. IEEE Transactions on Energy Conversion, 2006, 21(2): 512-515
    [16] Rock Patrick, Bauman Terry, Granzin Bill. PLC-based turbine governor system. In: IEEE Conference Record of Annual Pulp and Paper Industry Technical Conference, Appleton, United States, 2006, 1-3
    [17]周双喜,李丹.同步发电机数字式励磁调节器.北京:中国电力出版社, 1998, 15-39
    [18] Kim Kiyong, Schaefer Richard C. Tuning a PID controller for a digital excitation control system. IEEE Transactions on Industry Applications, 2005, 41(2): 485-492
    [19] Alvarez R J, Cervantes I, Escarela P R, Espinosa P G. A two-loop excitation control system for synchronous generators. International Journal of Electrical Power and Energy Systems, 2005, 27(8): 556-566
    [20] Lu Q, Zheng S M, Mei S W et al. NR-PSS (Nonlinear Robust Power System Stabilizer) for large synchronous generators and its large disturbance experiments on real time digital simulator. Science in China-Series E, 2008, 51(4): 337-352
    [21] Dudgeon Graham J W, Leithead William E, Dysko Adam, et al. The effective role of AVR and PSS in power systems: Frequency response analysis. IEEE Transactions on Power Systems, 2007, 22(4):1986-1994
    [22]常鲜戎,播云江,万军,杨以涵.基于Lyapunov稳定性理论的发电机非线性励磁控制研究.电力系统自动化, 1994, 18(10):25-29
    [23] Cai H, Qu Z, Dorsey J F. Robust decentralized excitation control for large-scale power systems. Control and Intelligent Systems, 2001, 29(1): 8-17
    [24] Masahiko N, Yasuharu O. Development of an advanced power system stabilizer using a strict linearization approach. IEEE Transactions on Power Systems, 1996, 11(2):813-818
    [25] Gan D Q, Qu Z H, Cai H Z. Multi machine power system excitation control design via theories of feedback linearization control and nonlinear robust control. International Journal of Systems Science, 2000, 31(4): 519-527
    [26] Paul M O, Gerardo E P. Output feedback excitation control of synchronousgenerators. International Journal of Robust and Nonlinear Control, 2004, 14(9-10): 879-890
    [27] Wang Y, Hill D J. Robust decentralized control for multimachine power systems. IEEE Transactions on Circuits and Systems, 2000, 47(1):46-53
    [28] Guo G, Wang Y, Lim K Y, Gao L. Robust nonlinear controller for power system transient stability enhancement with voltage regulation. IEE Proceedings Generation, Transmission and Distribution, 1996, 143(5):407-412
    [29] Yuan X F,Wang Y N. SVM based adaptive inverse controller for excitation control. Lecture Notes in Computer Science, 2007, 4493(1): 469-478
    [30] Yuan X F,Wang Y N, Wu L H. Adaptive inverse control of excitation system with actuator uncertainty. Neural Processing Letters, 2008, 27(2): 125-136
    [31] Lu Q, Mei S, Shen T, Hu W. Recursive design of nonlinear H infinity excitation controller. Science in China- Series E, 2000, 43(1): 23-31
    [32] Sun C, Zhao Z, Sun Y, Lu Q. Design of nonlinear robust excitation control for multimachine power systems. IEE Proceedings Generation, Transmission and Distribution, 1996, 143(3): 253-257
    [33] Li G H, Lie T T, Soh C B, Yang G H. Decentralised nonlinear H∞control for enhancement in power systems. IEE Proceedings Generation, Transmission and Distribution, 1999, 146(1):19-24
    [34] Samarasing V G D C, Pahalawaththa N C. Design of a robust variable structure controller for improving power system dynamic stability. International Journal of Electrical Power& Energy Systems, 1996,18(8):519-525
    [35] Kothari M L, Nanda J, Bhattacharya K. Design of variable structure power system stabilisers with desired eigenvalues in the sliding mode. IEE Proceedings Generation, Transmission and Distribution, 1993, 140(4):263-268
    [36] Mei S W, Jin M J, Shen T L. Adaptive excitation control with L2 disturbance attenuation for multi-machine power systems. Tsinghua Science and Technology, 2004, 9(2): 197-201
    [37] Psillakis H E, Alexandridis A T. A new excitation control for multimachine power systems I: decentralized nonlinear adaptive control design and stability analysis, International Journal of Control, Automation and Systems, 2005, 3(2): 278-287
    [38] Abdelazim Tamer, Malik O P. Power system stabilizer based on model reference adaptive fuzzy control. Electric Power Components and Systems, 2005, 33(9): 985-998
    [39] Young M P,Wang K,Lee Y. A self-organizing power system stabilizer using fuzzy auto-regressive moving average (FARMA) model. IEEE Transaction on Energy Conversion, 1996, 11(2):442-448
    [40] Filip I, Prostean O, Szeidert I, Balas V, Prostean G. Comparative study regarding an adaptive fuzzy controller and a self-tuning controller with application to the excitation control of a synchronous generator. WSEAS Transactions on Systems, 2006, 5(7): 1587-1594
    [41] Fan S, Mao C X, Lu J M. Real-time excitation controller using neural networks. Engineering Intelligent Systems, 2003, 11(3): 151-156
    [42] El-Zahab E A, Salem M M, Malik O P, Zaki A M, Mahgoub O A. Experimental studies with simple neuro-controller based excitation controller. IEE Proceedings: Generation, Transmission and Distribution, 2002, 149(1): 108-113
    [43] Liu W X, Sarangapani J, Venayagamoorthy G K, et al. Decentralized neural network-based excitation control of large-scale power systems. International Journal of Control, Automation and Systems, 2007, 5(5):526-538
    [44] Liu Q J, Sun Y Z, Shen T L, Song Y H. Adaptive nonlinear coordinated excitation and STATCOM controller based on Hamiltonian structure for multimachine-power-system stability enhancement. IEE Proceedings: Control Theory and Applications, 2003, 150(3): 285-294
    [45] Tan Y L, Wang Y. A robust nonlinear excitation and SMES controller for transient stabilization. International Journal of Electrical Power and Energy Systems, 2004, 26(5): 325-332
    [46] Wang Y, Tan Y L, Guo G. Robust nonlinear coordinated excitation and TCSC control for power systems. IEE Proceedings: Generation, Transmission and Distribution, 2002, 149(3): 367-372
    [47] Wang Y, Hashmani A A, Lie T T. Nonlinear coordinated excitation and TCPS controller for multimachine power system transient stability enhancement. IEE Proceedings: Generation, Transmission and Distribution. 2001, 148(2): 133-141
    [48] Kornegay D L. Approaching the governor. International Water Power and Dam Construction, 2008, 60(2): 44-45
    [49]王玲花,沈祖诒,陈德新.水轮机调速器控制策略研究综述.水利水电科技进展,2002,22(2): 56-59
    [50]刘乐星,毛宗源.水轮机的GA-PID控制器研究.电力系统自动化, 1997, 21(12): 41-43
    [51] Natarajan K. Robust PID controller design for hydroturbines. IEEE Transactionson Energy Conversion, 2005, 20(3): 661-667
    [52] Eker Ilyas. Hydro turbine speed control using robust cascade governor controllers. European Transactions on Electrical Power, 2004, 14(5): 293-310
    [53] Lu Q, Sun Y S, Sun Y Z, et al. Nonlinear decentralized robust governor control for hydroturbine-generator sets in multi-machine power systems. International Journal of Electrical Power and Energy Systems, 2004, 26(5): 333-339
    [54] Dewi J S M. Predictive feedforward control for a hydroelectric plant. IEEE Transactions on Control Systems Technology, 2004, 12(6): 956-965
    [55]桂小阳,梅生伟,刘锋,卢强.水轮机调速系统的非线性自适应控制.中国电机工程学报, 2006,26(8): 66-71
    [56] Mahmoud M, Dutton K, Denman M. Design and simulation of a nonlinear fuzzy controller for a hydropower plant. Electric Power Systems Research, 2005, 73 (1): 87–99
    [57] Wang S Q, Liu S Y,Zhang Z P. Research on the improved learning algorithm of FNNC for the control of hydraulic turbine generating units. In: Proc. of the Sixth Int. Conf. on Machine Learning and Cybernetics, Hong Kong, 2007, 617-622
    [58] Tang L B, Bao J M. Study on adaptive PID algorithm of hydraulic turbine governing system based on fuzzy neural network,In: Proceedings of SPIE - The International Society for Optical Engineering, Beijing, China, 2006, v 6358, 1-6
    [59] Du Y P, Wang N. Neuron model-free control with fuzzy tuning parameters for hydraulic turbine generators. In: 31st Annual Conference of IEEE Industrial Electronics Society, Raleigh, NC, United States, 2005, 299-303
    [60] Dai X, Zhang K, Zhang T, Lu X. ANN generalised inversion control of turbogenerator governor. IEE Proceedings: Generation, Transmission and Distribution, 2004, 151(3): 327-333
    [61] Sun J P, Jin X Z. The intelligent hybrid control of the hydraulic governor system. In: 2005 International Conference on Machine Learning and Cybernetics, Guangzhou, China, 2005, 942-946
    [62] Navin B B. Field experience with momentary fast turbine valving and other special stability controls employed at AEP's rockport plant. IEEE Transactions on Power Systems, 1996, 11(l):155-161
    [63] Moon Y H, Ryu H S, Choi B K, Cho B H. Modified PID load-frequency control with the consideration of valve position limits. IEEE Power Engineering Society Winter Meeting, 1999, vol.1, p 701-706
    [64]曹全喜.快速汽门控制的研究.哈尔滨工业大学博士论文, 1993, 28-66
    [65] Borules H, Colledani F, Houry M P. Robust continuous speed governor control for small-signal and transient stability. IEEE Transaction on Power Systems, 1994, 9(3):1218-1225
    [66] Subbarao G V, Iyer A. Nonlinear excitation and governor control using variable structures. International Journal of Control, 1993, 57(6):1325-1342
    [67]刘伟,余贻鑫,袁号,田树堡.变结构模型参考自适应汽门控制.电力系统自动化, 1997, 21(8):28-30
    [68] Xie X S, Lu Y. Optimization control of fast turbine valve. In: Proc. of 32nd IEEE Conf. on Decision and Control, San Antonio, USA, 1993, vol. 4, 3742-3743
    [69] Li W L, Liu S R, Jiang G Y, Geogi M D. Adaptive robust backstepping design for turbine valve controller. In: Proc. of the World Congress on Intelligent Control and Automation, Dalian, China, 2006, v 2, 7439-7443
    [70] Bolek W, Sasiadek J, Wisniewski T. Two-valve control of a large steam turbine. Control Engineering Practice, 2002, 10(4): 365-377
    [71] Han G H, Chen L H, Shao J P, et al. Study of fuzzy PID controller for industrial steam turbine governing system. In: Proc. of Int. Symposium on Communications and Information Technologies, Beijing, China, 2005, 1228-1232
    [72]康锦萍,张粒子,徐英辉,林宪枢.基于神经网络的快速汽门暂态稳定控制器的研究.电网技术, 2003, 27(11): 22-24
    [73] Patel R, Pagalthivarthi K V. Artificial neural network based turbine fast valving for enhancement of power system transient stability. Journal of Electrical Engineering, 2006, 57(1): 3-11
    [74] Pahalawaththa N C, Hope G S, Malik O P. Multivariable self-tuning power system stabilizer simulation and implementation studies. IEEE Transaction on Energy Conversion, 1991, 6(2):310-318
    [75] Wang Y Y, David J H. Robust nonlinear coordinated control of power systems. Automatic, 1996, 32(4):611-618
    [76] Li X Y, Song Y H,Liu X C,Liu J. Nonlinear optimal-variable-aim strategy for improving multimachine power system transient stability. IEE Proceedings: Generation, Transmission and Distribution, 1996, 143(3):229-252
    [77] Wang Y Y, David J H, Richard H M, Gao L. Transient stability enhancement and voltage regulation of power system. IEEE Transaction on Power System, 1993, 8(2):620-626
    [78]于占勋,陈学允.用变结构控制理论设计的汽轮发电机组综合控制器.电力系统自动化, 1997, 21(12):27-29
    [79] Chen H, Ji H B, Wang B, Xi H S. Coordinated passivation techniques for the dual-excited and steam-valving control of synchronous generators. IEE Proceedings: Control Theory and Applications, 2006, 153(1): 69-73
    [80] Iyer A,Subbarao G V. Inverse control for nonlinear excitation and governor control. International Journal of Systems Science, 1996, 27(10):1043-1054
    [81] Mei S W, Liu F, Chen Y, Lu Q. Coordinated H infinity control of excitation and governor of hydroturbo-generator sets: a Hamiltonian approach. International Journal of Robust and Nonlinear Control, 2004, 14(9-10): 807-832
    [82] Sishuba S, Redfern M A. Adaptive control system for continuity of supply using dispersed generators. IEE Proceedings: Generation, Transmission and Distribution, 2005, 152(1): 23-30
    [83] Wu J, Yokoyama A, Lu Q, et al Decentralised nonlinear equilibrium point adaptive control of generators for improving multimachine power system transient stability. IEE Proceedings: Generation, Transmission and Distribution, 2003, 150(6): 697-708
    [84] Jin M J, Hu W, Liu F, Mei S W, Lu Q. Nonlinear coordinated control of excitation and governor for hydraulic power plants. IEE Proceedings: Generation, Transmission and Distribution, 2005, 152(4): 544-548
    [85] Senjyu T, Gibo N, Uezato K. Cooperative fuzzy control of AVR and GOV based on sliding mode to improve transient stability of power systems. Electrical Engineering in Japan, 1995, 115(2):78-88
    [86] Venayagamoorthy G K, Harley R G. Two separate continually online-trained neurocontrollers for excitation and turbine control of a turbogenerator. IEEE Transactions on Industry Applications, 2002, 38(3): 887-893
    [87] Djukanovic M, Novicevic M, Dobrijevic D, et al. Neural-net based coordinated stabilizing control for the exciter and governor loops of low head hydropower plants. IEEE Transactions on Energy Conversion, 1995, 10(4): 760-767
    [88] Djukanovic M B, Dobrijevic D M, Calovic M S, et al. Coordinated stabilizing control for the exciter and governor loops using fuzzy set theory and neural nets. International Journal of Electrical Power and Energy System, 1997, 19(8):489-499
    [89]鞠平,倪腊琴,韩敬东,陈新琪.同步发电机参数辨识的模拟进化方法.电工技术学报,1999,14(5):1-5
    [90]胡家声,郭创新,曹一家.基于扩展粒子群优化算法的同步发电机参数辨识.电力系统自动化, 2004,28(6):35-40
    [91]曾灵,丁坚勇.基于混合算法的同步发电机参数辨识方法研究.大电机技术,2006,18(6):13-16
    [92] Audet C, Dennis J E. Pattern search algorithms for mixed variable programming. SIAM Journal on Optimization, 2001, 11(3): 573–594
    [93] Tavazoei M S, Haeri M. An optimization algorithm based on chaotic behavior and fractal nature. Journal of Computational and Applied Mathematics, 2007, 206(2): 1070-1081
    [94]单梁,强浩,李军等.基于Tent映射的混沌优化算法,控制与决策, 2005, 20(2): 179-182
    [95] He G G, Shrimali M D, Aihara K. Threshold control of chaotic neural network. Neural Networks, 2008, 21(2-3): 114-121
    [96] He D, He C, Jiang L G et al. Chaotic characteristics of a one-dimensional iterative map with infinite collapses. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 2001, 48(7): 900-906
    [97]石鸿雁,陈治飞,孙昌志.一种混合优化算法及其收敛性证明.控制与决策, 2004, 19(5): 546-549
    [98]商国才.电力系统自动化.天津:天津大学出版社,1999,35-69
    [99] Dai X, He D, Zhang T, Zhang K. ANN generalized inversion for the linearization and decoupling control of nonlinear systems. IEE Proceedings Control Theory & Applications, 2003, 150(3): 267–277
    [100] Ge S S, Zhang J, Lee T H. Adaptive MNN control for a class of nonaffine NARMAX systems with disturbances. Systems & Control Letters, 2004, 53(1): 1–12
    [101] Kumpati S N, Snehasis M. Adaptive control using neural networks and approximate models. IEEE Transaction on Neural Networks, 1997, 8(3): 475-485
    [102] Adetona O, Garcia E, Keel L H. A new method for the control of discrete nonlinear dynamic systems using neural networks. IEEE Transaction on Neural Networks, 2000, 11(1):102-112
    [103] Adetona O, Sathananthan S, Keel L H. Robust adaptive control of nonaffine nonlinear plants with small input signal changes. IEEE Transaction on Neural Networks, 2004, 15(2): 408-416
    [104] Li H X, Deng H. An approximate internal model-based neural control for unknown nonlinear discrete processes. IEEE Transaction on Neural Networks, 2006, 17(3): 659-669
    [105] Yuan X F, Wang Y N. LS-SVM approximate based inverse controller with uncertainty compensation. Journal of Dynamic Systems, Measurement and Control, 2007, 129(6): 845-850
    [106] Wang Y N, Yuan X F. SVM approximate based internal model control strategy. ACTA Automatica Sinica, 2008, 34(2): 172-179
    [107] Kokshenev Illya, Braga Antonio Padua. A multi-objective approach to RBF network learning. Neurocomputing, 2008, 71(7-9): 1203-1209
    [108] Li W, Hori Y. An algorithm for extracting fuzzy rules based on RBF neural network. IEEE Transactions on Industrial Electronics, 2006, 53(4): 1269-1276
    [109]张小军,冯宏伟.基于径向基函数神经网络的车型识别技术.西北大学学报(自然科学网络版), 2006, 4(2):1-7
    [110] Spooner J T, Maggiore M, Ordonez R, Passino K M. Stable adaptive control and estimation for nonlinear systems. New York: Wiley, 2002, 25-39
    [111] Hoagg J B, Santillo M A, Bernstein D S. Internal model control in the shift and delta domains. IEEE Transactions on Automatic Control, 2008, 53(4):1066-1072
    [112] Saidi L, Dibi Z, Ababsa F. Internal model control and disturbance observers. WSEAS Transactions on Circuits and Systems, 2006, 5(4): 525-529
    [113] Rivals I, Personnaz L. Nonlinear internal model control using neural networks: application to processes with delay and design issues. IEEE Transactions on Neural Networks, 2000, 11(1):80-90
    [114] Boukezzoula R, Galichet S, Foulloy L. Nonlinear internal model control: application of inverse model based fuzzy control. IEEE Transactions on Fuzzy Systems, 2003, 11(6):814-829
    [115] Wen X Y, Zhang J G, Zhao Z C. Fuzzy neural network internal model control. In: 2003 International Conference on Machine Learning and Cybernetics, Xi'an, China 2003, vol 2, 661-665
    [116] Nahas E P, Henson M A, Seborg D E. Nonlinear internal model control strategy for neural network models. Computers & Chemical Engineering, 1992, 16(12):1039-1057
    [117] Wang J S, Chen Y P. A fully automated recurrent neural network for unknown dynamic system identification and control. IEEE Transactions on Circuits and Systems -I, 2006, 53(6): 1363-1372
    [118] Lin C J, Chen C H. A compensation-based recurrent fuzzy neural network for dynamic system identification. European Journal of Operational Research, 2006,172(2): 696-715
    [119] Arvandi M, Wu S, Sadeghian A. On the use of recurrent neural networks to design symmetric ciphers. IEEE Computational Intelligence Magazine, 2008, 3(2): 42-53
    [120] Cabrera J B D, Narendra K S. Issues in the application of neural networks for tracking based on inverse control. IEEE Transactions on Automatic Control, 1999, 44(11):2007-2027
    [121] Krejci P, Kuhnen K. Inverse control of systems with hysteresis and creep. IEE Proceedings - Control Theory and Applications, 2001, 148(3):185-192
    [122] Lu Q, Sun Y Z, Mei S W. Nonlinear control system and power system dynamics. Boston: Kluwer Academic Publishers, 2001
    [123]戴先中.多变量非线性系统的神经网络逆控制方法,北京:科学出版社, 2005, 59-62
    [124] Vapnik V. Universal learning technology: support vector machines. NEC Journal of Advanced Technology, 2005, 2(2):137-144
    [125] Vapnik V. An overview of statistical learning theory. IEEE Transactions on Neural Networks, 1999, 10 (5): 988 - 999
    [126] Chan W C, Chan C W, Cheung K C, et al. On the modelling of nonlinear dynamic system using support vector neural networks. Engineering Applications of Artificial Intelligence, 2001, 14 (2): 105-113
    [127] Yuan X F, Wang Y N. Parameters selection of support vector machines for function approximation based on chaos optimization algorithms. Journal of Systems Engineering and Electronics, 2008, 19(1): 191-197
    [128] Takahashi N, Guo J, Nishi T. Global convergence of SMO algorithm for support vector regression. IEEE Transactions on Neural Networks, 2008, 19(6):971-982
    [129] Wu H C. The Karush-Kuhn-Tucker optimality conditions for the optimization problem with fuzzy-valued objective function. Mathematical Methods of Operations Research, 2007, 66(2): 203-224
    [130]桂小阳,胡伟,刘锋,梅生伟.基于水轮发电机综合非线性模型的调速器控制.电力系统自动化, 2005, 29(15): 18-22
    [131] Kang Y W, Li J, Cao G Y, et al. Dynamic temperature modeling of an SOFC using least squares support vector machines. Journal of Power Sources, 2008, 179(2): 683-692
    [132] Zeng X Y, Chen X W. SMO-based pruning methods for sparse least squares support vector machines. IEEE Transactions on Neural Networks, 2005, 16(6):1541-1546
    [133] Van Gestel T, Suykens J A K, Baestaens D, et al. Financial time series prediction using least squares support vector machines within the evidence framework. IEEE Transaction on Neural Networks, 2001, 12(4): 809-821.
    [134]席在荣,程代展.多机非线性系统分散汽门H∞控制器.电力系统自动化, 2002, 26(21): 7-11
    [135] Gestel V T, Suykens J A K, Lanckriet G, et al. A Bayesian framework for least squares support vector machine classifiers, Gaussian processes and kernel Fisher discriminant analysis. Neural Computation, 2002, 15(5): 1115-1148
    [136]余涛,沈善德,李东海等.基于扩张状态观测器的多机系统非线性协调控制.清华大学学报, 2004,44(1): 97-101
    [137] Campbell AS, Schwartz HM. Multiple model control improvements: Hypothesis testing and modified model arrangement. Control and Intelligent Systems, 2007, 35(3): 236-243
    [138] Lourenco J M A, Lemos J M. Learning in switching multiple model adaptive control . IEEE Instrumentation and Measurement Magazine, 2006, 9,(3): 24-29
    [139] Narendra K S, Cheng X. Adaptive control of discrete-time systems using multiple models. IEEE Transactions on Automatic Control, 2000, 45(9):1669-1686
    [140] Narendra K S, Osvaldo A D, Mathias F, Koshy G. Adaptive control using multiple models, switching and tuning. International Journal of Adaptive Control and Signal Processing, 2003, 17(2): 87-102
    [141] Feng G. A survey on analysis and design of model-based fuzzy control systems. IEEE Transactions on Fuzzy Systems, 2006, 14(5):676-697
    [142] Zhang Yunjie, Wang Weina, Zhang Xiaona, Li Yi. A cluster validity index for fuzzy clustering. Information Sciences, 2008, 178(4): 1205-1218
    [143] Diez J L, Navarro Jose Luis, Sala A. A fuzzy clustering algorithm enhancing local model interpretability. Soft Computing, 2007, 11(10): 973-983
    [144]王耀南.智能控制系统.长沙:湖南大学出版社, 2006, 265-268
    [145] Jung W P, Ronald G H, Ganesh K V. Indirect adaptive control for synchronous generator: comparison of MLP/RBF neural networks approach with Lyapunov stability analysis. IEEE Transaction on Neural Networks, 2004, 15(2):460-464
    [146] Mohammad A A. A new optimal root locus technique for LQR design. Control and Intelligent Systems, 2007, 35(1):15-23
    [147] Miller Daniel E. Near optimal LQR performance for a compact set of plants.IEEE Transactions on Automatic Control, 2006, 51(9):1423-1439
    [148] Robandia I, Nishimorib K, Nishimurab R, Ishiharab N. Optimal feedback control design using genetic algorithm in multimachine power system. Electrical Power and Energy Systems, 2001, 23(4): 263-271
    [149] Nelder J A, Mead R. A simplex method for function minimization. The Computer Journal, 1965, 7(4): 308-313

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700