用户名: 密码: 验证码:
MBE外延生长β-MnO_2单晶薄膜的结构表征和拉曼光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从过渡金属氧化中发现大量新的物理现象和自旋电子学被高度重视以来,β-MnO2薄膜材料的生长、结构表征和拉曼光谱研究在磁性材料和类钙钛矿结构材料中是研究内涵丰富并且具备科研前景的研究方向之一。我们外延生长的β-MnO2薄膜中采用原位RHEED(反射高能电子衍射)实时监控的MBE(分子束外延)生长,配有氧plasma(等离子体)发射源和生长必需的高纯度Mn单质金属源,预生长前真空腔气压稳定在高真空10-10mbar,衬底选择单晶MgO(100)以保证良好的晶格匹配和研究必需的晶格择优取向,同时因为MgO衬底没有一阶拉曼激活的振动模式也很好的避免拉曼测试中不必要的干扰。生长过程中RHEED图样为明暗交替变化的清晰条纹,证明外延薄膜为层状生长的高质量的单晶相薄膜。XRD(X射线衍射)谱图中只有清晰的衬底峰和MnO2的β相(200)峰,证明了样品的单晶相。XPS(X射线光电子能谱)谱图给出令人满意的Mn4+、O2-离子价态和元素配比,极少量的表面吸附气体和杂质。β-MnO2属于非symmorphic空间群D 414h- P 42 /mnm,具有四方相反铁磁结构,在奈尔温度以下相变为磁螺旋结构。晶体结构方面,中心位置附近的Mn原子和周围6个O原子由强关联作用形成MnO6八面体,八面体中轴线沿(110)方向穿过c/2高度处。MnO6八面体的Mn、O原子以共价键结合,Mn的3d轨道和O的2p轨道杂化而在MnO6八面体中形成游离的eg和局域的t2g态,这就引起了过渡金属氧化物各种新的电学现象的产生。另一方面,Mn的3d自旋电子具有磁性,顶点和中心Mn原子间交换作用的差别导致了低温磁螺旋结构的形成。我们采用不同偏振方向的线偏振入射光的共焦拉曼光谱仪( Renishaw inVia)在室温和奈尔温度附近进行测试,发现了β-MnO2的Eg模式峰值的红移和A1g模式峰强的变化。不同于常规的拉曼分析,我们提出“振动模式投影”的方法来解释线偏振光的磁分支和磁螺旋结构的振动模式之间的相互作用,认为具有特殊磁性结构的样品对线偏振入射光拉曼光谱有重要的影响。
    
     本文创新点如下:
     ■采用装配射频Plasma的分子束外延(MBE)设备在MgO(001)衬底上成功生长了β-MnO2薄膜。
     分子束外延生长是目前生长各种半导体薄膜的重要方法之一。生长过程中可以通过精确控制各个蒸发源的蒸发温度、蒸发时间等参数,并结合各种原位监控手段,实现对外延薄膜的厚度、成分的控制,实现亚单原子层精度的生长。我们采用德国Omicron公司制造的MBE设备在MgO衬底上生长β-MnO2薄膜,通过原位实时的反射高能电子衍射(RHEED)条纹状图样可知生长模式为层状生长,内部缺陷较少。X射线衍射(XRD)的结果表明我们的样品为金红石结构,晶向(001)来自衬底的择优取向。X射线光电子能谱( XPS)测试显示了令人满意的元素配比和各元素价态,同时为费米面附近电子能谱的理论计算提供了实验支持。
     ■改进了密度泛函近似(LDA)+静态平均场( DMFT)理论模型,计算β-MnO2的电子能谱,指明Mn的d电子贡献。
     β-MnO2材料在低于奈尔温度显现各向异性磁螺旋结构,但是在室温情况也会有局域的局部磁螺旋结构形成,这就需要在相关的计算中引入晶格电子自旋方向的给定。基于第一性原理的固体电子结构计算方法,是我们对各种固态材料的物性进行预测和解释的重要理论方法。以局域密度近似(LDA)为代表的电子结构计算方法,不能很好地处理电子之间的关联效应,因此很难应用于强关联材料的第一性原理计算。而以LDA+DMFT为代表的,针对强关联材料的第一性原理计算新方法发展非常迅速,可以兼顾轨道的杂化、晶格结构的各向异性和电子的强关联相互作用。LDA+DMFT方法延用的波函数是平面波,不能提供自旋方向的确定,我们引入万涅尔(Wannier)函数为基态波函数,本质上保留了平面波的基本特点同时也考虑了自旋的定向。计算中以c轴方向上7层单胞作为主体晶体模型,兼顾计算时间和精度,就费米面附近的计算结果分析了eg和t2g电子态对电子态密度和电子能谱的贡献,并对照样品的XPS实验结果解释了费米面以下附近电子能谱主峰的肩部没有完美模拟的原因,同时理论上预测了费米面以上BIS的实验结果,期待能够进一步验证。
     ■在奈尔温度附近研究材料的拉曼光谱,发现了β-MnO2光谱随温度而有特定趋势的变化;就其特殊的磁螺旋结构,作者提出“振动截面投影”(Vibration Mode Pojection)的概念解释了拉曼散射中,样品的磁性结构对光谱的影响。
     我们采用装配514.5nm的线偏振激光的共焦拉曼仪器在奈尔温度附近对样品进行拉曼光谱测量,发现随温度降低Eg模式有明显的红移同时A1g模式峰强变化显著,同时保持测量点和温度不变的情况下改变线偏振方向,光谱也有所不同。拉曼光谱的特征主要来自于原胞中带电原子的振动模式,其峰强和频率对应声子谱中各个振动峰,本质上拉曼光谱项来自电子极化率的变化。作者认为光是电磁波,由电学波部分和磁学波部分耦合在一起而传播的,磁(电子自旋)结构变化同样会影响拉曼光谱,本质上来自入射光的磁学部分和样品的磁性结构,且其相互作用有特定的方向性。对于之前很多拉曼测试中,这些特点没有体现的原因有二:一、大多采用圆偏振入射光或者非偏振入射光,材料对于电和磁的响应没有被分离开来,即使材料有特殊的磁性结构也很难被定性研究;二、材料没有明显的磁结构各向异性。而对于本文中的测试条件,样品在低温的电学结构是没有变化或者变化很小的,所以导致光谱变化的原因来自电子自旋的各向异性,是有了显著方向性的电子自旋与线偏振光中的磁学部分相互作用影响了光谱的特点。
The growth technology, structure characterization, and Raman research forβ-MnO2 films have been one of the active and abundant subject embranchment in the fields of magnetic materials and perovskite-like structures, since new phenomena were found in transition metal oxides and spintronics was attached great importance. Molecular beam epitaxy (MBE) technology is applied to grow theβ-MnO2 film controlled by Reflection high energy electron diffraction (RHEED) in situ. The MBE is supplied with an oxygenic plasma source and a high-quality crystal Manganese source, where high vacuum stably remains 10-10 mbar before growth. Single crystal MgO (100) is selected as a substrate to insure a satisfied mismatch and a preferred orientation needed in subsequent studies. It makes convenient to investigate the Raman spectra that the MgO is not activated for the first-order Raman vibration. The RHEED patterns show obvious stripes during the growth process, which prove a layer by layer growth mode of the single crystalβ-MnO2 film. Single peak ofβ-phase MnO2 is shown with the peak of the substrate in the XRD pattern, which indicates a satisfied single crystal of theβ-MnO2 film. ESCALAB250-XPS measurement is adopted to collect X-ray photoelectron spectroscopy (XPS) data which suggest a good elements match, satisfied ionic valent states, and little gas impurity attached at the surface. The lattice ofβ-MnO2 belongs to non-symmorphic space group as D4 14h- P 42 /mnm and is anti-ferromagnetic tetragonal phase. It transforms to helical structure below Neel temperature (92K). For lattice structure, a MnO6 octahedron is formed with a strong correlation between Mn atoms at center and surrounding 6 O atoms. The corresponded main axis points in (100) and crosses at (0,0,2c ). The Mn atom has covalent bonds to O atoms, and 3d states of Mn atoms have orbital hybridization with 2p states of O atoms (p-d hybridization) in the MnO6 octahedron. These effects lead to a dissociative eg state and a localized t2g state, which result in a large numbers of new electronic phenomena of transition metals. On the other hand, the difference among the exchange effects between the magnetic 3d electrons at center and ones at corners causes the helical structure below the Neel temperature. A confocal (Renishaw invia) Raman spectroscopy with two types of linear polarized incidences at room temperature and around Neel temperature shows a redshift of Eg mode and change of A1g modes. According to normal Raman analysis, a new view as“vibration mode projection”is introduced to research the interaction between the magnetic branch of polarized incidence and vibration modes in helical structure. It suggests an important influence of special magnetic structure on linear polarized incidence.
    
     The main innovations are as follows:
     A rutileβ-MnO2 film was grown on MgO (001) substrate using Plasma assistant molecular beam epitaxy monitored (MBE) by reflection high-energy electron diffraction (RHEED).
     The MBE is one of most important techniques to grow various semiconductive films at present, which performs the growth in atomic and subatomic layers controlling the compositions and thickness of films by adjusting the evaporative conditions in situ. The rutileβ-MnO2 film is grown on MgO(100) substrate by the MBE equipment manufactured by German Omicron Company. The layer by layer growth mode and little defects inside the sample are indicated the RHEED pattern in situ. The XRD pattern shows the rutile structure oriented by the MgO(001) substrate. The XPS data show a satisfied element match and valent states, which support the theoretical calculation at the neighborhood of Fermi surface.
     The Local density approximation (LDA) plus Dynamical
     mean-field theory (DMFT) was developed to compute the electron spectrum ofβ-MnO2 and pointed out the contributions of d electrons.
     Theβ-MnO2 behaves magnetic anisotropy below Neel temperature (TN). However, because some localized magnetic anisotropy occurs, it is necessary to determine the orientation of spins in corresponding calculations. The first-principle calculation in solid states of electrons is an important theoretical method to predict and investigate the properties for various solid materials. The theories represented by local density approximation (LDA) on electronic structure calculations cannot be used to study the correlations between electrons satisfactorily. Therefore, the LDA approach is not suitable to be adopted in the first-principle calculation. The theories represented by LDA+DMFT (dynamic mean-field theory) are developed well, which major in the first-principle calculations taking account of both the orbital hybridization and anisotropy of crystal structure. However, plane wave functions introduced by LDA+DMFT approach cannot determine the orientation of spins. The Wannier function has been introduced instead of plane wave function in LDA+DMFT to determine the orientation of spins including the factors of plane wave. Considering the accuracy and time for the calculation, a crystal model has been established in a pitch of 7c/2. The results at neighborhood of Fermi surface shows the contributions of the eg and t2g states for electronic density of states (DOS) and spectrum of energy. The computed curves satisfied the XPS data well, and the fact is explained that the XPS shoulder of main peak below the Fermi surface is not reproduced. It is expected to be proved in experiments in the future that a BIS result above the Fermi surface is predicted in theory.
     Some special changes with temperature were observed in Raman spectra ofβ-MnO2. A new view as vibration mode projection (VMP) was introduced to study the influence of magnetic structure on Raman spectra.
     The polarized Raman spectra have been taken with the confocal Raman microscope near Neel temperature with a 514.5nm linear polarized incidence. A red shift occurs in Eg mode and the intensities of A1g modes change at different temperature. In conditions keeping the point of incidence and temperature invariant, the spectra show difference with different orientation of polarized incidence. The character of Raman spectra is determined by vibration modes of electrons in unit cells. The intensities and frequencies are corresponded to the peaks of phonon spectrum. Essentially, changes of electronic polarization lead to the Raman effects. As a kind of electromagnetic wave, light transmits with coupling of electronic part and magnetic part. The magnetic part can be influenced by magnetic structure (electronic spins) of the sample. The interaction only occurs in special orientations. The reasons why the interactions between magnetic part of incidence and magnetic structure of sample are as follows: 1) electronic and magnetic influences on the materials are not separated when the incidence is circle polarized or non-polarized, even on materials with special magnetic structure; 2) the sample has not obvious magnetic anisotropy. In this work, the electronic structure changed little at low temperature. Therefore, the main reason of Raman spectra lies in the electronic anisotropy. The Raman spectra are influenced by the interactions between magnetic part of linear polarized incidence and oriented spins.
引文
1. BREAKTHROUGH OF THE YEAR. Science, 2007.
    2. Y.Tokura and N.Nagaosa. Orbital Physics in Transition-Metal Oxides. Science, 2000.
    3. B Xu, WF Zhang, XY Liu, et al. Photophysical properties and electronic structures of the perovskite photocatalysts Ba. Physical Review B, 2007.
    4. Y Sato, K Kinoshita, M Aoki, et al. Consideration of switching mechanism of binary metal oxide resistive junctions using a thermal reaction model.Applied Physics Letters, 2007.
    5. MI Petrov, DA Balaev, KA Shaihutdinov, et al. Superconductor-semiconductor-super- conductor junction network in bulk polycrystalline composites Y3/4Lu1/4Ba2Cu3O7 + Cu1-xLixO. Supercond. Sci. Technol, 2001.
    6. C Jia, S Onoda, N Nagaosa, et al. Microscopic theory of spin-polarization coupling in multiferroic transition metal oxides. Physical Review B, 2007.
    7. H Shima, F Takano, H Akinaga, et al. Resistance switching in the metal deficient-type oxides: NiO and CoO. Applied Physics Letters, 2007.
    8. DJ Pennell, UP Sechtem, CB Higgins, et al. Clinical indications for cardiovascular magnetic resonance (CMR): Consensus Panel report. European Heart Journal, 2004.
    9. JF Scott. Applications of Modern Ferroelectrics. Science, 2007.
    10. M Quintero, P Levy, AG Leyva, et al. Mechanism of Electric-Pulse-Induced Resistance Switching in Manganites. Physical Review Letters, 2007.
    11. K Ueno, T Fukumura, H Toyosaki, et al. Anomalous Hall effect in anatase TiCoO at low temperature regime. Applied Physics Letters, 2007.
    12. NH Hong, J Sakai, V Brize. Observation of ferromagnetism at room temperature in ZnO thin films. Journal of Physics, Condensed Matter, 2007.
    13. H Ohta, S Kim, Y Mune, et al. Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Natrure Materials, 2007.
    14. Y Xia, W He, L Chen, et al. Field-induced resistive switching based on space-charge-limited current. Applied Physics Letters, 2007.
    15. H Iddir, S ??üt, P Zapol, et al. Diffusion mechanisms of native point defects in rutile TiO2: Ab initio total-energy calculations. Physical Review B, 2007.
    16. M Itoh, V Kumar, Y Kawazoe. Hund's rule and growth behavior of Cu and Ag clusters from ab initio calculations. Int Conf Mol Simul Comput Sci Work 2004, 2004.
    17. JD Morgan, W Kutzelnigg. Hund's Rules. American Physical Society, Division of Atomic, Molecular and Optical Physics Meeting, 1996.
    18. Y Asari, H Tamura, K Takeda, Hund's First and Second Rules in Spherical Artificial Atoms. American Physical Society, Annual APS March Meeting, 2002.
    19. NS Chant, PG Roos. Spin orbit effects in quasifree knockout reactions. Physical Review C, 1983.
    20. H Nishioka, RC Johnson, JA Tostevin, et al. Spin-Orbit Interaction Induced by Heavy-Ion Projectile Excitation. Physical Review Letters, 1982.
    21. H Leeb, H Huber, H Fiedeldey. Extraction of spin-orbit potentials from scattering data via inversion. Physics Letters B, 1995.
    22. ED German, AA Levin, ME Dyatkina. Self-consistent spin-orbital interaction in molecules with empty orbitals. Journal of Structural Chemistry, 1965.
    23. ZX Shen, DS Dessau. Electronic structure and photoemission studies of late transition-metal oxides - Mott insulators and high-temperature superconductors. Physics Reports, 1995.
    24. D Belitz, TR Kirkpatrick. The Anderson-Mott transition. Reviews of Modern Physics, 1994.
    25. F Gebhard. The mott metal-insulator transition. physik.uni-marburg.de, 1997.
    26. D Jaksch, V Venturi, JI Cirac, et al. Creation of a Molecular Condensate by Dynamically Melting a Mott Insulator. Physical Review Letters, 2002.
    27. MJ Rozenberg, XY Zhang, G Kotliar. Mott-Hubbard transition in infinite dimensions. Physical Review Letters, 1992.
    28. OK Andersen. Linear methods in band theory. Physical Review B, 1975.
    29. K Terakura, T Oguchi, AR Williams, et al. Band theory of insulating transition-metal monoxides: Band-structure calculations. Physical Review B, 1984.
    30. K Terakura, AR Williams, T Oguchi, et al. Transition-Metal Monoxides: Band or Mott Insulators. Physical Review Letters, 1984.
    31. AI Liechtenstein, VI Anisimov, J Zaanen. Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. Physical Review B, 1995.
    32. BS Shastry, BI Shraiman. Theory of Raman scattering in Mott-Hubbard systems. Physical Review Letters, 1990.
    33. R. Engiman, The John-Teller Effect in Molecules and Crgstals. Wiley,1972.
    34. JD Teller. Shock-absorber and axle-reinforcement. US Patent, 1920.
    35. VI Anisimov, IA Nekrasov, DE Kondakov, et al. Orbital-selective Mott-insulator transition in Ca2-xSrxRuO4. The European Physical Journal B-Condensed Matter, 2002.
    36. DM Newns, JA Misewich, CC Tsuei, et al. Mott transition field effect transistor. Applied Physics Letters, 1998.
    37. PW Anderson. Considerations on Double Exchange. Physical Review, 1955.
    38. Y Okimoto, T Katsufuji, T Ishikawa, et al. Anomalous Variation of Optical Spectra with Spin Polarization in Double-Exchange Ferromagnet: La1-xSrxMnO3. Physical Review Letters, 1995.
    39. AJ Millis, PB Littlewood, BI Shraiman. Double Exchange Alone Does Not Explain the Resistivity of a1-xSrxMnO3. Physical Review Letters, 1995.
    40. PG de Gennes, Effects of Double Exchange in Magnetic Crystals. Physical Review, 1960.
    41. CNR Rao, B Raveau. Colossal Magnetoresistance, Charge Ordering and Related Properties of Manganese Oxides. books.google.com, 1998.
    42. AP Ramirez, Colossal magnetoresistance. J. Phys.: Condens. Matter, 1997.
    43. S Jin, M McCormack, TH Tiefel, et al. Colossal magnetoresistance in La-Ca-Mn-O ferromagnetic thin films. Journal of Applied Physics, 1994.
    44. EL Nagaev, Colossal-magnetoresistance materials: manganites and conventional ferromagnetic semiconductors. Physics Reports, 2001.
    45. AS Alexandrov, AM Bratkovsky. Carrier Density Collapse and Colossal Magnetoresistance in Doped Manganites. Physical Review Letters, 1999.
    46. MA Subramanian, BH Toby, AP Ramirez, et al. Colossal Magnetoresistance Without Mn3+/Mn4+ Double Exchange in the Stoichiometric Pyrochlore Ti2Mn2O7. Science, 1996.
    47. RA Marcus. Chemical and Electrochemical Electron-Transfer Theory. Annual Review of Physical Chemistry, 1964.
    48. M Brandbyge, JL Mozos, P Ordejón, et al. Density-functional method for nonequilibrium electron transport. Physical Review B, 2002.
    49. H Sumi, RA Marcus. Dynamical effects in electron transfer reactions. The Journal of Chemical Physics, 1986.
    50. R Mahendiran, SK Tiwary, AK Raychaudhuri, et al. Structure, electron-transport properties, and giant magnetoresistance of hole-doped LaMnO3. Physical Review B, 1996.
    51. HB Heersche, Z de Groot, JA Folk, et al. Electron Transport through Single Mn12 Molecular Magnets. Physical Review Letters, 2006.
    52. J Zaanen, GA Sawatzky, The electronic structure and superexchange interactions in transition-metal compounds. Canadian Journal of Physics, 1987.
    53. J Blinowski, P Kacman, JA Majewski. Ferromagnetic superexchange in Cr-based diluted magnetic semiconductors. Physical Review B, 1996.
    54. Edwin K. L. Yeow and Kenneth P. Ghiggino. Electronic Energy Transfer in Multichromophoric Arrays. The Effects of Disorder on Superexchange Coupling and Energy Transfer Rate. J. Phys. Chem. A, 2000.
    55. Y Moritomo, H Kuwahara, Y Tomioka, et al. Pressure effects on charge-ordering transitions in Perovskite manganites. Physical Review B, 1997.
    56. H Kuwahara, Y Tomioka, A Asamitsu, et al. A First-Order Phase Transition Induced by a Magnetic Field. Science, 1995.
    57. Y Moritomo, H Kuwahara, Y Tomioka, et al. Pressure effects on charge-ordering transitions in Perovskite manganites. Physical Review B, 1997.
    58. Y Moritomo, A Asamitsu, H Kuwahara, et al. Giant magnetoresistance of manganese oxides with a layered perovskite structure. Nature, 1996.
    59. ST OYAMA. Preparation and catalytic properties of transition metal carbides and nitrides. Catalysis today, 1992.
    60. J Livage, M Henry, C Sanchez. Sol--Gel Chemistry of Transition Metal Oxides. Prog. Solid State Chem., 1988.
    61. K Ueda, H Tabata, T Kawai. Magnetic and electric properties of transition-metal-doped ZnO films. Applied Physics Letters, 2001.
    62. G Kresse, J Hafner. Ab initio molecular dynamics for open-shell transition metals. Physical Review B, 1993.
    63. F Cleri, V Rosato. Tight-binding potentials for transition metals and alloys. Physical Review B, 1993.
    64. MI Katsnelson, AI Lichtenstein. First-principles calculations of magnetic interactions in correlated systems. Physical Review B, 2000.
    65. S Biermann, F Aryasetiawan, A Georges. First-Principles Approach to the Electronic Structure of Strongly Correlated Systems: Combining the GW Approximation and Dynamical Mean-Field Theory. Physical Review Letters, 2003.
    66. I Schnell, G Czycholl, RC Albers. Hubbard-U calculations for Cu from first-principle Wannier functions. Physical Review B, 2002.
    67. G Kotliar, SY Savrasov. Dynamical Mean Field Theory, Model Hamiltonians and First Principles Electronic Structure Calculations. Arxiv preprint cond-mat, 2002.
    68. SY Savrasov, G Kotliar, E Abrahams. Correlated electrons in delta-plutonium within a dynamical mean-field picture. Nature, 2001.
    69. IV Solovyev. First-principles Wannier functions and effective lattice fermion models for narrow-band compounds. Physical Review B, 2006.
    70. VI Anisimov, AO Shorikov, J Kune?. Magnetic state and electronic structure of plutonium from first principles calculations. Journal of Alloys and Compounds, 2007.
    71. I Galanakis, P Mavropoulos. Spin-polarization and electronic properties of half-metallic Heusler alloys calculated from first principles. Journal of Physics: Condensed Matter, 2007.
    72. JE Klepeis. Introduction to First-Principles Electronic Structure Methods: Application to Actinide Materials. Journal of Materials Research, 2006.
    73. AI Lichtenstein, MI Katsnelson, G Kotliar. Finite-Temperature Magnetism of Transition Metals: An ab initio Dynamical Mean-Field Theory. Physical Review Letters, 2001.
    74. MB Z?lfl, T Pruschke, J Keller, et al. Combining density-functional and dynamical-mean-field theory for La1-xSrxTiO3. Physical Review B, 2000.
    75. A Houari, SF Matar, MA Belkhir. Stability and magnetic properties of Mn-substituted ScN semiconductor from first principles. Computational Materials Science, 2008.
    76. L Chioncel, E Arrigoni, MI Katsnelson, et al. Electron Correlations and the Minority-Spin Band Gap in Half-Metallic Heusler Alloys. Physical Review Letters, 2006.
    77. AI Lichtenstein, MI Katsnelson. Ab initio calculations of quasiparticle band structure in correlated systems: LDA++ approach. Physical Review B, 1998.
    78. G Kotliar, D Vollhardt. Strongly Correlated Materials: Insights From Dynamical Mean-Field Theory. Physics Today, 2004.
    79. Y Imai, I Solovyev, M Imada. Electronic Structure of Strongly Correlated Systems Emerging from Combining Path-Integral Renormalization Group with the Density-Functional Approach. Physical Review Letters, 2005.
    80. MI Katsnelson, AI Lichtenstein. Electronic structure and magnetic properties of correlated metals. The European Physical Journal B-Condensed Matter, 2002.
    81. SA Wolf, DD Awschalom, RA Buhrman, et al. Spintronics: A Spin-Based Electronics Vision for the Future. Science, 2001.
    82. K Sato, H Katayama-Yoshida. First principles materials design for semiconductor spintronics. Semiconductor Science and Technology, 2002.
    83. AR Rocha, VM Garcia-Suarez, SW Bailey, et al. Towards molecular spintronics. Nature Materials, 2005.
    84. H Ohno. Toward Functional Spintronics. Science, 2001.
    85. SJ Pearton, CR Abernathy, DP Norton, et al. Advances in wide bandgap materials for semiconductor spintronics. Materials Science & Engineering R, 2003.
    86. I Malajovich, JJ Berry, N Samarth, Persistent sourcing of coherent spins for multifunctional semiconductor spintronics. Nature, 2001.
    87. EG Emberly, G Kirczenow. Molecular spintronics: spin-dependent electron transport in molecular wires. Chemical Physics, 2002.
    88. DD Awschalom, ME Flatte, N Samarth. Spintronics. Scientific American, 2002.
    89. SD Sarma. Spintronics. American Scientist, 2001.
    90. H Katayama-Yoshida, K Sato. Materials design for semiconductor spintronics by ab initio electronic-structure calculation. Physica B: Physics of Condensed Matter, 2003.
    91. S Das Sarma, EH Hwang, A Kaminski. How to make semiconductors ferromagnetic: a first course on spintronics. Solid State Communications, 2003.
    92. P Bruno, JP Renard. Magnetic surface anisotropy of transition metal ultrathin films. Applied Physics A: Materials Science & Processing, 1989.
    93. R Janisch, P Gopal, NA Spaldin. Transition metal-doped TiO2 and ZnO-present status of the field. J. Phys. Condens. Matter, 2005.
    94. A Yeh, YA Soh, J Brooke, Quantum phase transition in a common metal. Nature, 2002.
    95. RB Laughlin. Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations. Physical Review Letters, 1983.
    96. RE Prange, SM Girvin, R Joynt. The Quantum Hall Effect. American Journal of Physics, 1988.
    97. JE Hirsch. Spin Hall Effect. Physical Review Letters, 1999.
    98. R Karplus. Hall Effect in Ferromagnetics. Physical Review, 1954.
    99. W Doster, S Cusack, W Petry. Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature, 1989.
    100. HF Fong, B Keimer, PW Anderson, Phonon and Magnetic Neutron Scattering at 41 meV in YBa2Cu3O7. Physical Review Letters, 1995.
    101. NP Raju, JE Greedan, MA Subramanian. Magnetic, electrical, and small-angle neutron-scattering studies of possible long-range order in the pyrochlores Ti2Mn2O7 and In2Mn2O7. Physical Review B, 1994.
    102. S Nie, SR Emory. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science, 1997.
    103. AM Rao, E Richter, S Bandow, et al. Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes. Science, 1997.
    104. M Zwolak. DNA spintronics. Applied Physics Letters, 2002.
    105. P Riederer, E Sofic, WD Rausch, et al. Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem, 1989.
    106. CS Johnson, DW Dees, MF Mansuetto, et al. Structural and electrochemical studies ofα-manganese dioxide (α-MnO2). Journal of Power Sources, 1997.
    107. RN Reddy, RG Reddy. Sol–gel MnO2 as an electrode material for electrochemical capacitors. Journal of Power Sources, 2003.
    108. MM Thackeray, MH Rossouw, RJ Gummow, et al. Ramsdellite-MnO2 for lithium batteries: The ramsdellite to spinel transformation. Electrochimica Acta, 1993.
    109. RN Reddy, RG Reddy. Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material. Journal of Power Sources, 2004.
    110. S Hamoudi, F Larachi, A Adnot, et al. Characterization of Spent MnO2/CeO2 Wet Oxidation Catalyst by TPO–MS, XPS, and S-SIMS. Journal of Catalysis, 1999.
    1. R Schaub, P Thostrup, N Lopez, et al. Oxygen Vacancies as Active Sites for Water Dissociation on Rutile TiO2(110). Physical Review Letters, 2001.
    2. E Wahlstr?m, N Lopez, R Schaub, et al. Bonding of Gold Nanoclusters to Oxygen Vacancies on Rutile TiO2(110). Physical Review Letters, 2003.
    3. MN Gardos, HS Hong, WO Winer. The Effect of Anion Vacancies on the Tribological Properties of Rutile TiO2-x. Tribology Transactions, 1990.
    4. JW Halley, MT Michalewicz, N Tit. Electronic structure of multiple vacancies in rutile TiO2 by the equation-of-motion method. Physical Review B, 1990.
    5. K Jug, NN Nair, T Bredow. Molecular dynamics investigation of oxygen vacancy diffusion in rutile. Physical Chemistry Chemical Physics, 2005.
    6. LA Bursill, MG Blanchin. Structure of small oxygen vacancy defects in nonstoichiometric rutile. Journal of solid state chemistry, 1984.
    7. J Yahia. Dependence of the Electrical Conductivity and Thermoelectric Power of Pure and Aluminum-Doped Rutile on Equilibrium Oxygen Pressure and Temperature. Physical Review, 1963.
    8. MG Sanchez, JL Gazquez. Oxygen vacancy model in strong metal-support interaction. Journal of catalysis, 1987.
    9. VV Lobanov, VE Klimenko. Features of the Adsorption of Molecular Oxygen at the Anionic Vacancies on the (110) Face of the Surface of Rutile. Theoretical and Experimental Chemistry, 2000.
    10. I Khubeis, R Fromknecht, O Meyer. Lattice location and electrical conductivity in Sb-implanted rutile. Physical Review B, 1997.
    11. S Chakraborty, M Sadhukhan, DK Modak, et al. Study of the a.c. conductivity of BaTiO3-doped V2O5-Bi2O3 glasses using Long's overlapping large-polaron tunnelling model.Philosophical Magazine Part B, 1995.
    12. FJ Morin. Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature. Physical Review Letters, 1959.
    13. DB Rogers, RD Shannon, AW Sleight, et al. Crystal chemistry of metal dioxides with rutile-related structures. Inorganic Chemistry, 1969.
    14. J Riga, C Tenret-No?l, JJ Pireaux, et al. Electronic Structure of Rutile Oxides TiO2, RuO2 and IrO2 Studied by X-ray Photoelectron Spectroscopy. Physica Scripta, 1977.
    15. LE Hollander, PL Castro. Anisotropic Conduction in Nonstoichiometric Rutile(TiO2). Physical Review, 1960.
    16. YK Syrkin. The Chemical Bond and Molecular Structure. Goskhim izdat, Mos cow-Leningrad, 1946.
    17. M Sakata, T Uno, M Takata, Electron density in rutile(TiO2) by the maximum entropy method. Acta Crystallographica Section B Structural Science, 1992.
    18. M Okutan, E Basaran, HI Bakan, et al. AC conductivity and dielectric properties of Co-doped TiO2. Physica B: Physics of Condensed Matter, 2005.
    19. LE Hollander, TJ Diesel, GL Vick. Piezoresistivity in the Oxide Semiconductor Rutile(TiO2). Physical Review, 1960.
    20. FA Grant. Property of Rutile (Titanium Dioxide). Review of Modern Physic, 1959.
    21. FC Newman, LG Rowan. Fourier-Transform Electron-Nuclear Double Resonance of V4+ in TiO2. Physical Review B, 1972.
    22. PI Sorantin, K Schwarz. Chemical bonding in rutile-type compounds. Inorganic Chemistry, 1992.
    23. JC Woicik, EJ Nelson, L Kronik, et al. Hybridization and Bond-Orbital Components in Site-Specific X-Ray Photoelectron Spectra of Rutile TiO2. Physical Review Letters, 2002.
    24. T Yamanaka, R Kurashima, J Mimaki. X-ray diffraction study of bond character of rutile-type SiO2, GeO2 and SnO2. Z. Kristallogr, 2000.
    25. CL Wang, SRP Smith. Dynamics of ferroelectric thin films described by the transverse Ising model. Journal of Physics: Condensed Matter, 1996.
    26. Z Ye, EB Slamovich, AH King. Size-driven domain reorientation in hydrothermally derived lead titanate nanoparticles. Journal of Materials Research, 2005.
    27. CL Borst, WN Gill, RJ Gutmann. Chemical-Mechanical Polishing of Low Dielectric Constant Polymers and Organosilicate Glasses. books.google.com, 2002.
    28. M Guermazi, P Thevenard, JP Dupin, et al. Effects of implantation in rutile with metallic ions. Radiation Effects and Defects in Solids, 1980.
    29. VV Zuev. The chemical bond in rutile-type SiO2. Journal of Structural Chemistry, 1969.
    30. C Soulard, X Rocquefelte, S Jobic, et al. Metal–ligand bonding and rutile- versus CdI2-type structural preference in platinum dioxide and titanium dioxide. Journal of Solid State Chemistry, 2003.
    31. D Vogtenhuber, R Podloucky, J Redinger, et al. Ab initio and experimental studies of chlorine adsorption on the rutile TiO2(110) surface. Physical Review B, 2002.
    32. FE Senftle, FA Grant. Magnetic Susceptibility of Tetragonal Titanium Dioxide. Physical Review, 1960.
    33. JM Belloch, J Isasi, ML Lopez. Synthesis, characterization, and semiconducting properties of solid solutions with rutile structure. Materials Research Bulletin, 1994.
    34. WH Baur, AA Khan. Rutile-type compounds. IV. SiO2, GeO2 and a comparison with other rutile-type structures. Structural Crystallography and Crystal Chemistry, 1971.
    35. M Predota, AV Bandura, PT Cummings, et al. Electric double layer at the rutile (110) surface. J. Phys. Chem. B, 2004.
    36. VA Bakaev. Computer simulation of the atomic structure of a heterogeneous surface by surface melting. Surface science, 1992.
    37. L Pauling. The Nature of the Chemical Bond and the Structure of Molecules and Crystals. books.google.com, 1960.
    38. VV Zuev. The chemical bond in rutile-type SiO2. Journal of Structural Chemistry,1969.
    39. HW Verleur, AS Barker, CN Berglund. Optical Properties of VO2 between 0.25 and 5eV. Physical Review, 1968.
    40. M Franck, JP Celis, JR Roos. Microprobe Raman spectroscopy of TiN coatings oxidized by solar beam heat treatment. J. Mater. Res, 1995.
    41. Z Wang, J Tang, WZ Le Duc Tung, Ferromagnetism and transport properties of Fe-doped reduced-rutile TiO 2àthin films. Journal of applied Physics, 2003.
    42. Z Wang. Extraordinary Hall effect and ferromagnetism in Fe-doped reduced rutile. Applied Physics Letters, 2003.
    43. A Vijay, G Mills, H Metiu. Adsorption of gold on stoichiometric and reduced rutile TiO(110) surfaces. The Journal of Chemical Physics, 2003.
    44. DC Cronemeyer. Infrared Absorption of Reduced Rutile TiO2 Single Crystals. Physical Review, 1959.
    45. A Georges, G Kotliar, W Krauth, et al. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Reviews of Modern Physics, 1996.
    46. VI Anisimov, AI Poteryaev, MA Korotin, et al. First-principles calculations of the electronic structure and spectra of strongly correlated systems: dynamical mean-field theory. Journal of Physics: Condensed Matter, 1997.
    47. G Kotliar, D Vollhardt. Strongly Correlated Materials: Insights from Dynamical Mean-Field Theory. Physics Today, 2004.
    48. AI Lichtenstein, MI Katsnelson, G Kotliar. Finite-Temperature Magnetism of Transition Metals: An ab initio Dynamical Mean-Field Theory. Physical Review Letters, 2001.
    49. S Ciuchi, F de Pasquale, S Fratini, et al. Dynamical mean-field theory of the small polaron. Physical Review B, 1997.
    50. SY Savrasov, G Kotliar, E Abrahams. Correlated electrons in delta-plutonium within a dynamical mean-field picture. Nature, 2001.
    51. JK Freericks, V Zlati?. Exact dynamical mean-field theory of the Falicov-Kimball model. Reviews of Modern Physics, 2003.
    52. JL Smith, Q Si. Spatial correlations in dynamical mean-field theory. Physical Review B, 2000.
    53. G Kotliar, SY Savrasov, G Pálsson, et al. Cellular Dynamical Mean Field Approach to Strongly Correlated Systems. Physical Review Letters, 2001.
    54. G Kotliar, SY Savrasov, K Haule, et al. Electronic structure calculations with dynamical mean-field theory. Reviews of Modern Physics, 2006.
    55. R Chitra, G Kotliar. Dynamical Mean Field Theory of the Antiferromagnetic Metal to Antiferromagnetic Insulator Transition. Physical Review Letters, 1999.
    56. A Chattopadhyay, S Das Sarma, AJ Millis. Transition Temperature of Ferromagnetic Semiconductors: A Dynamical Mean Field Study. Physical Review Letters, 2001.
    57. L Amico, V Penna. Dynamical Mean Field Theory of the Bose-Hubbard Model. Physical Review Letters, 1998.
    58. R Bulla, M Potthoff. " Linearized" dynamical mean-field theory for theMott-Hubbard transition. The European Physical Journal B-Condensed Matter, 2000.
    59. AI Lichtenstein, MI Katsnelson. Antiferromagnetism and d-wave superconductivity in cuprates: A cluster dynamical mean-field theory. Physical Review B, 2000.
    60. S Florens, A Georges, G Kotliar, et al. Mott transition at large orbital degeneracy: Dynamical mean-field theory. Physical Review B, 2002.
    61. M Potthoff. Two-site dynamical mean-field theory. Physical Review B, 2001.
    62. M Capone, M Civelli, SS Kancharla, et al. Cluster-dynamical mean-field theory of the density-driven Mott transition in the one-dimensional Hubbard model. Physical Review B, 2004.
    63. AJ Millis, J Hu, S Das Sarma. Resistivity Saturation Revisited: Results from a Dynamical Mean Field Theory. Physical Review Letters, 1999.
    64. C Tang, P Bak. Mean field theory of self-organized critical phenomena. Journal of Statistical Physics, 1988.
    65. EG Blackman, GB Field. New Dynamical Mean-Field Dynamo Theory and Closure Approach. Physical Review Letters, 2002.
    66. M Feldbacher, K Held, FF Assaad. Projective Quantum Monte Carlo Method for the Anderson Impurity Model and its Application to Dynamical Mean Field Theory. Physical Review Letters, 2004.
    67. MB Z?lfl, T Pruschke, J Keller, et al. Combining density-functional and dynamical-mean-field theory for La1-xSrxTiO3. Physical Review B, 2000.
    68. XG Wen. Mean-field theory of spin-liquid states with finite energy gap and topological orders. Physical Review B, 1991.
    69. M Fleck, AI Liechtenstein, AM Ole?, et al. Dynamical Mean-Field Theory for Doped Antiferromagnets. Physical Review Letters, 1998.
    70. P Ring. Relativistic mean field theory in finite nuclei. Progress in Particle and Nuclear Physics, 1996.
    71. K Haule, A Rosch, J Kroha, et al. Pseudogaps in the tJ model: An extended dynamical mean-field theory study. Physical Review B, 2003.
    72. JW Negele. The mean-field theory of nuclear structure and dynamics. Reviews of Modern Physics, 1982.
    73. B Michaelis, AJ Millis. Dynamical mean-field theory for transition temperature and optics of pseudocubic manganites. Physical Review B, 2003.
    74. TR Kirkpatrick, PG Wolynes. Stable and metastable states in mean-field Potts and structural glasses. Physical Review B, 1987.
    75. DJ García, K Hallberg, MJ Rozenberg. Dynamical Mean Field Theory with the Density Matrix Renormalization Group. Physical Review Letters, 2004.
    76. R Dickman. Kinetic phase transitions in a surface-reaction model: Mean-field theory. Physical Review A, 1986.
    77. JK Freericks. Dynamical mean-field theory for strongly correlated inhomogeneous multilayered nanostructures. Physical Review B, 2004.
    78. S Zapperi, KB Lauritsen, HE Stanley. Self-Organized Branching Processes: Mean-Field Theory for Avalanches. Physical Review Letters, 1995.
    79. HO Jeschke, G Kotliar. Decoupling method for dynamical mean-field theory calculations. Physical Review B, 2005.
    80. RF Dashen, SK Ma, R Rajaraman. Finite-temperature behavior of a relativistic field theory with dynamical symmetry breaking. Physical Review D, 1975.
    81. A Vardi, JR Anglin. Bose-Einstein Condensates beyond Mean Field Theory: Quantum Backreaction as Decoherence. Physical Review Letters, 2001.
    82. K Held, G Keller, V Eyert, et al. Mott-Hubbard Metal-Insulator Transition in Paramagnetic V2O3: An LDA+ DMFT (QMC) Study. Physical Review Letters, 2001.
    83. IA Nekrasov, K Held, N Blümer, et al. Calculation of photoemission spectra of the doped Mott insulator La1-xSr-xTiO3 using LDA+DMFT. The European Physical Journal B-Condensed Matter, 2000.
    84. K Held, IA Nekrasov, G Keller, et al. Realistic investigations of correlated electron systems with LDA+DMFT. Physica status solidi. B. Basic research, 2006.
    85. AI Poteryaev, AI Lichtenstein, G Kotliar. Nonlocal Coulomb Interactions and Metal-Insulator Transition in Ti2O3: A Cluster LDA+DMFT Approach. Physical Review Letters, 2004.
    86. T Saha-Dasgupta, A Lichtenstein, R Valentí. Correlation effects on the electronic structure of TiOCl: A NMTO+ DMFT study. Physical Review B, 2005.
    87. L Chioncel, L Vitos, IA Abrikosov, et al. Ab initio electronic structure calculations of correlated systems: An EMTO-DMFT approach. Physical Review B, 2003.
    88. H Flyvbjerg, K Sneppen, P Bak. Mean field theory for a simple model of evolution. Physical Review Letters, 1993.
    89. A Georges, R Siddharthan, S Florens. Dynamical Mean-Field Theory of Resonating-Valence-Bond Antiferromagnets. Physical Review Letters, 2001.
    90. T Pruschke, Q Qin, T Obermeier, J Keller. Magnetic properties of the T-J model in the dynamical mean-field theory. Journal of Physics: Condensed Matter, 1996.
    91. HT Dobbs, DD Vvedensky, A Zangwill, et al. Mean-Field Theory of Quantum Dot Formation. Physical Review Letters, 1997.
    92. G Cwilich, TR Kirpatrick. Mean-field theory and fluctuations in Potts spin glasses. Journal of Physics A: Mathematical and General, 1989.
    93. EH Hwang, SD Sarma. Transport properties of diluted magnetic semiconductors: Dynamical mean field theory and Boltzmann theory. Physical Review B, 2005.
    94. G Aarts, J Smit. Particle production and effective thermalization in inhomogeneous mean field theory. Physical Review D, 1999.
    95. S Kurien, KR Sreenivasan. Dynamical equations for high-order structure functions, and a comparison of a mean-field theory with experiments in three-dimensional turbulence. Physical Review E, 2001.
    96. D Vollhardt, K Held, G Keller, et al. Dynamical Mean-Field Theory and Its Applications to Real Materials. Journal of the Physical Society of Japan, 2005.
    97. AJ Millis, BI Shraiman, R Mueller. Dynamic Jahn-Teller Effect and Colossal Magnetoresistance in La1-xSrXMnO3. Physical Review Letters, 1996.
    98. S Pankov, G Kotliar, Y Motome. Semiclassical analysis of extended dynamical mean-field equations. Physical Review B, 2002.
    99. R Pandit, M Wortis. Surfaces and interfaces of lattice models: Mean-field theory as an area-preserving map. Physical Review B, 1982.
    100. G Biroli, O Parcollet, G Kotliar. Cluster dynamical mean-field theories: Causality and classical limit. Physical Review B, 2004.
    101. P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964); W. Kohn, L.J. Sham, Phys. Rev. 140, 4A, A1133 (1965).
    102. R.O. Jones, O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).
    103. V.I. Anisimov, J. Zaanen, O.K. Andersen, Phys. Rev. B 44, 943 (1991); V.I. Anisimov, F. Aryasetiawan, A.I. Lichtenstein, J. Phys. Cond. Matt. 9, 767 (1997).
    104. D. Vollhardt, in Correlated Electron Systems, edited by; V.J. Emery (World Scienti, Singapore, 1993, 57.
    105. Th. Pruschke, M. Jarrell, J.K. Freericks, Adv. in Phys. 44, 187 (1995).
    106. A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev.Mod. Phys. 68, 13 (1996).
    107. W. Metzner, D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).
    108. A. Georges, G. Kotliar, Phys. Rev. B 45, 6479 (1992).
    109. H. Keiter, J.C. Kimball, Phys. Rev. Lett. 25, 672 (1970);N.E. Bickers, D.L. Cox, J.W. Wilkins, Phys. Rev. B 36, 2036 (1987).
    110. Th. Pruschke, N. Grewe, Z. Phys. B 74, 439 (1989).
    111. Th. Pruschke, D.L. Cox, M. Jarrell, Phys. Rev. B 47, 3553(1993).
    112. J.E. Hirsch, R.M. Fye, Phys. Rev. Lett. 56, 2521 (1986);M. Jarrell, Phys. Rev. Lett. 69, 168 (1992); M. Rozenberg,X.Y. Zhang, G. Kotliar, Phys. Rev. Lett.
    69, 1236 (1992);A. Georges, W. Krauth, Phys. Rev. Lett. 69, 1240 (1992).
    113. M. Ca_arel, W. Krauth, Phys. Rev. Lett. 72, 1545 (1994).
    114. R. Bulla, Adv. Sol. State Phys. (to be published), preprint cond-mat/0003377.
    115. V.I. Anisimov, A.I. Poteryaev, M.A. Korotin, A.O.Anokhin, G. Kotliar, J. Phys. Cond. Matt. 9, 7359 (1997).
    116. A.I. Lichtenstein, M.I. Katsnelson, Phys. Rev. B 57, 6884(1998).
    117. V. Drchal, V. Jani_s, J. Kudrnovsk_y, in Electron Correlations and Material Properties, edited by A. Gonis, .Kioussis, M. Ciftan Kluwer/Plenum, New York, 1999, 273.
    118. J. Lgsgaard, A. Svane, Phys. Rev. B 58, 12817 (1998).
    119. Th. Wolenski, Combining bandstructure and dynamicalmean-field theory: A new perspective on V2O3, Ph.D. thesis, Universit¨at Hamburg 1998, Shaker Verlag, Aachen1999.
    120. M.B. Z¨olfl, Th. Pruschke, J. Keller, A.I. Poteryaev, I.A.Nekrasov, V.I. Anisimov, Phys. Rev. B 61, 12810 (2000).
    121. M.I. Katsnelson, A.I. Lichtenstein, J. Phys. Cond. Matt.11, 1037 (1999).
    122. M.I. Katsnelson, A.I. Lichtenstein, Phys. Rev. B 61, 8906(2000)
    123. A. Liebsch, A. Lichtenstein, Phys. Rev. Lett. 84, 1591(2000).
    124. O.K. Andersen, Phys. Rev. B 12, 3060 (1975); O.Gunnarsson, O. Jepsen, O.K. Andersen, Phys. Rev. B 27, 7144 (1983).
    125. E. M¨uller-Hartmann, Z. Phys. B 74, 507 (1989); J. Wahleet al., Phys. Rev. B 58, 12749 (1998).
    126. O. Gunnarson, O.K. Andersen, O. Jepsen, J. Zaanen,Phys. Rev. B 39, 1708 (1989).
    127. M.J. Rozenberg, Phys. Rev. B 55, R4855 (1997); J.E. Han,M. Jarrell, D.L. Cox, Phys. Rev. B., 58, R4199 (1998); K.Held, D. Vollhardt, Eur. Phys. J. B., 5, 473 (1998).
    1. Y. Murakami, H. Kawada, H. Kawata, M. Tanaka, T. Arima, Y. Moritomo, and Y. Tokura, Phys. Rev. Lett. 80 (1998) 1932.
    2 . C. Zener, Phys. Rev. 82 (1951) 40 .
    3 . P. W. Anderson and H. Hasegawa, Phys. Rev. 100 (1955) 675.
    4. Q. Feng, H. Kanoh, and K. Ooi, J. Mater. Chem. 9 (1999) 319.
    5. H. Sato, J.-I.Yamaura, T. Enoki, and N. Yamamoto, J. Alloys Compd. 262 (1997) 443.
    6. H. Sato, T. Enoki, J.-I. Yamaaura, and N. Yamamoto, Phys. Rev. B 59 (1999) 836.
    7. A. Yoshimori, J. Phys. Soc. Jpn. 14 (1959) 807.
    8 .N. Ohama and Y. Hamaguchi, J. Phys. Soc. Jpn. 30(1971) 1311.
    9 .H. Bizette, J. Phys. Radium 12 (1951) 161.
    10 .D. B. Rogers, R. D. Shannon, A. W. Sleight, and J. L. Gillson, Inorg. Chem. 8 (1969) 841.
    11. H.Sato, T. Enoki, M.Isobe and Y.Ueda, Phys. Rev. B 61 (2000) 3563.
    12. A. Fujimori and F.Minami, Phys. Rev. B 30 (1984) 957.
    13. Z.-X. Shen, R. S. List, D. S. Dessau, B. O. Wells, O. Jepsen, A. J. Arko, R. Barttlet, C. K. Shih, F. Parmigiani, J. C. Huang, and P. A. P. Lindberg, Phys. Rev. B 44 (1991) 3604.
    14. Z.-X. Shen and D. S. Dessau, Phys. Rep. 253 (1995) 1.
    15. A. Svane and O. Gunnarsson, Phys. Rev. Lett. 65 (1991) 1148.
    16. V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44 (1991) 943.
    17. F. Aryasetiawan and O. Gunnarsson, Phys. Rev. Lett. 74 (1995) 3221.
    18. S. Massidda, A. Continenza, M. Posternak, and A. Baldereschi, Phys. Rev. B 55 (1997) 13494.
    19. S. V. Faleev, M. van Schilfgaarde, and T. Kotani, Phys. Rev. Lett. 93 (2004) 126406.
    20. J.-L. Li, G.-M. Rignanese, and S. G. Louie, Phys. Rev. B 71 (2005) 193102.
    21. A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68 (1996) 13.
    22. G. Kotliar and D. Vollhardt, Phys. Today 57(3) (2004) 53.
    23. A. Georges and G. Kotliar, Phys. Rev. B 45 (1992) 6479.
    24. M. Jarrell, Phys. Rev. Lett. 69 (1992) 168.
    25. W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62 (1989) 324.
    26. G. H. Wannier, Phys. Rev. 52 (1937) 191.
    27. X.Ren, I.Leonow, G.Keller, M.Kollar, I.Nekrasov, D.Volhardt, Phys.Rev.B 74 (2006) 195114.
    1. A. Yoshimori. A New Type of Antiferromagnetic Structure in the Rutile Type Crystal. Journal of the Physical Society of Japan, 1959, 14:807.
    2. M. Isobe, Y. Ueda. Transport properties and magnetism of a helically Hund-coupled conductor:β-MnO2. Physical Review B, 2000, 61:3563.
    3. J Beille, J Voiron, F Towfiq, et al. Helimagnetic structure of the FexCo1-xSi alloys. Journal of Physics F: Metal Physics, 1981.
    4. A Pimpinelli, G Uimin, J Villain. Ferrimagnetic-helimagnetic transition in an XY magnet with infinitely many phases. Journal of Physics: Condensed Matter, 1991.
    5. JB Forsyth, JP Wright, MD Marcos, et al. Helimagnetic order in ferric arsenate, FeAsO4. Journal of Physics: Condensed Matter, 1999.
    6. D Loison. First-order transition in helimagnetic systems with Heisenberg spins. Physica A: Statistical Mechanics and its Applications, 2000.
    7. O Prokhnenko, Z Arnold, J Kamarád, et al. Helimagnetic order in the re-entrant ferromagnet Ce2Fe15.3Mn1.7. Journal of Applied Physics, 2005.
    8. RJ Plumier. Neutron Diffraction Study of Helimagnetic Spinel ZnCrSe. Journal of Applied Physics, 2004.
    9. J Baruchel, J Sandonis, A Pearce. Observation of the helimagnetic-ferromagnetic phase coexistence in terbium by neutron diffraction topography. Physica B, 1989.
    10. H Nakamura, N Metoki, S Suzuki, et al. Helimagnetic structure of YMn2 observed by means of nuclear magnetic resonance and neutron diffraction. J. Phys.: Cond. Mat, 2001.
    1. Y.Murakami, H.Kawada, M.Tanaka, T.Arima, Y.Moritomo, and Y.Tokura, Phys. Rev. Lett. 1998; 80: 1932.
    2. Murakami, J.P.Hill, D.Gibbs, M.Blume, I.Koyama, M.Tanaka, H.Kawata, T.Arima, Y.Tokura, K.Hirota, and Y.Endo, Phys. Rev. Lett. 1998; 81: 582.
    3. Suib, Chem. Innovation. 2000; 30: 27.
    4. Yoshimori, J.Phys.Soc.Jpn. 1959; 14: 807.
    5. A.Gonzalo and D.Cox, An.Fis. 1970; 66: 407.
    6. Kelley and G.E.Moore, J.Am.Chem.Soc. 1943; 65: 72.
    7. Ohama and Y.Hamaguchi, J.Phys.Soc.Jpn., 1971; 30: 1311.
    8. D.B.Rogers, Inorg.Chem. 1969; 8: 841.
    9. G.Deo and I.E.Wachs, J.Phys.Chem. 1991; 95: 5889.
    10. D.S.Kim, K.Sega, T.Soeya and I.E. Waches, J.Catal., 1992; 136: 539.
    11. S.Soled, L.L.Murrell, I.E.Wachs, G.B.Mcvicker, L.G.Sherman, S.Chan, N.C.Dispenziere and R.T.K.Baker, ASC Symposium Series, 1985; 279: 165.
    12. N.B.Manson, W.Von der Ohe, and S.L.Chodos, Phys.Rev.B. 1971; 3: 1968.
    13. Effendi Widjaja and Jeyagowry T.Sampanthar, Analytica Chimica Acta, 2007; 585, 241.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700