用户名: 密码: 验证码:
混凝土自锚式悬索桥三维地震反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土自锚式悬索桥作为一种特殊的桥梁结构形式,它保留了地锚式悬索桥优美的线型和错落有致的外观,因此越来越受到工程界的青睐,成为城市市区中小跨径桥梁极具竞争力的方案。由于其结构受力复杂,从已有的文献来看,对于自锚式悬索桥特别是混凝土自锚式悬索桥的动力性能研究颇为少见,本文在总结国内外文献的基础上,对混凝土自锚式悬索桥的动力特性和地震反应进行了全面系统的研究,主要工作如下:
     (1) 基于大位移非线性弹性理论的广义变分原理,考虑了加劲梁的压弯耦合、剪切应变能和扭转应变能的影响,建立了三跨自锚式悬索桥空间耦合自由振动的大位移不完全广义势能泛函,通过约束变分推导出自锚式悬索桥的竖向挠曲振动、横向挠曲振动和纵向振动的基础微分方程,忽略非线性项的影响,进而得到线性振动微分方程。文中以一座主跨240m混凝土自锚式悬索桥为例,求出了竖向振动方程自振频率的解析解,并与数值解作了比较,吻合较好,这一理论和方法为自锚式悬索桥的固有振动特性分析提供可靠的理论依据。
     (2) 混凝土自锚式悬索桥的动力特性主要包括体系的自振频率和主振型,它是自锚式悬索桥动力分析的基础和前提。通过建立空间有限元模型,以兰旗松花江大桥(主跨240米的混凝土自锚式悬索桥)为工程实例,给出了前20阶频率和相应的振型,同时分别计算了恒载、加劲梁刚度、塔架刚度、矢跨比等结构参数变化对混凝土自锚式悬索桥动力特性的影响,并与相同跨径和结构参数的一座地锚式悬索桥相比,对其影响规律作了详细的讨论。
     (3) 根据兰旗松花江大桥的地震效应初步评价报告,按照三水准抗震设防目标的要求,在两种概率水准(P1、P2)的地震作用下,用反应谱方法计算了兰旗松花江大桥的地震反应,考虑了两种地震组合,即纵桥向+竖向输入和横桥向+竖向输入。根据《公路桥梁抗震设计规范》,竖向输入反应谱值取水平反应谱值的2/3。为了保证计算精度,在计算中采用了CQC(Complete Quadratic Combination)方法,本文的结论可用于指导该类桥梁的初步设计。
     (4) 采用4组人工生成的地震波,考虑多点激励、行波效应以及结构的几何非线性因素的影响,对混凝土自锚式悬索桥在竖向、纵向和横向地震波输入下,进行了地震响应研究,分析比较了多点线性一致激励、多点非线性一致激励以及多点行波效应输入情况下主梁、主塔、边墩等控制截面的内力和位移响应时程,并对其影响规律进行了详细地讨论。由于时域分析采用精细积分格式,使计算结果更加精确。
     (5) 基于大位移不完全广义势能变分原理,考虑压、弯耦合效应影响,建立了混凝土自锚式悬索桥的竖向非线性地震动方程,忽略非线性项,得到线性竖向地震动微分方程。同时基于概率水准P1,由规范反应谱生成当量功率谱曲线,考虑多点激励和地震动空间效应的影响,对混凝土自锚式悬索桥在竖向、纵向和横向地震波输入下,进行了地震反应分析,比较了多点一致激励和多点非一致激励情况下结构的内力和位移响应结果。将虚拟激励法引入到混凝土自锚式悬索桥的随机地震反应分析中,由于虚拟激励
    
    摘要
    法自动计及了参振振型的互相关项和激励之间的互相关项,是快速精确的cQC算法。
    文中以两座混凝土自锚式悬索桥为例,计算了主梁、主塔等控制截面的期望峰值响应,
    讨论了地震动空间效应和阻尼比的变化对其地震反应影响规律。最后,对三种抗震分析
    方法进行了综合比较。
     (6)基于一般有限元理论,考虑连续质量惯性力的影响,引入局部动位移修正项,推
    导了在任意荷载激励下梁单元的局部效应修正公式,并以一悬臂梁为例,在任意荷载激
    励下,进行了动力响应分析。最后对一斜拉桥和混凝土自锚式悬索桥结构进行了局部效
    应修正计算,结果表明:考虑局部效应时,梁、塔和墩单元内力与一般有限元方法存在
    较大误差,特别是梁、塔单元的内力修正值尤为显著,最大值高达12.5%。而对于索单
    元的动内力计算几乎没有影响,这与实际情况相符。在进行大型复杂结构的动力响应分
    析时,通过考虑局部效应,可以获得较为精确的结果。
As a particular kind of suspension bridge, and preserving the exquisite configuration of conventional suspension bridge, self-anchored suspension bridge has made an appeal in field of engineering by its elegant and picturesque disorder figure. It has become a competitive design scheme in middle, and small-span bridges in cities. However, due to complexity of its structure, from the document that has existed, there is little research of dynamic behavior for self-anchored suspension bridge, especially concrete self-anchored suspension bridge. The dynamic behavior and seismic response of self-anchored suspension bridge are investigated in this paper. The main research work covers the following aspects:
    (1) Based on Large-displacement Non-linear Elastic Generalized Variational Principle, coupling effect of axial and flexural action, shearing strain energy, torsional strain energy of stiffening girder being considered, the large-displacement incomplete generalized potential energy functional of space coupling free vibration of a three-span concrete self-anchored suspension bridge is presented. By constraint variation, fundamental differential equations of vertical flexural vibration, lateral flexural vibration, and longitudinal vibration are formulated, and the linear free vibration differential equation is obtained when the nonlinear items are discarded. In this paper, a concrete self-anchored suspension bridge with the main of span 240m is an example for the analytic solution of frequency of vertical free vibration. Compared with numerical solution, the results inosculate well. This approach provides theoretical basis for analysis of natural vibration character of concrete self-anchored suspension bridges
    .
    (2) Dynamic behaviors of concrete self-anchored suspension bridge mainly include natural vibration frequency and principal mode, which is the base and precondition of dynamic analysis for self-anchored suspension bridge. Lan Qi Songhua River Bridge, a concrete self-anchored suspension bridge with the main span of 240m, is taken for example, and the first 20 frequencies and corresponding vibration modes are given by using space finite element model. At the same time, effects caused by varieties of dead load, rigidity of stiffing girder, stiffness of tower, rise-span ratio are computed. The results are compared with those of an earth-anchored suspension bridge with the same span and structure parameter. The influence regulations are discussed in detail.
    (3) According to the preparatory estimate report of seismic effect on the Lan Qi Songhua River Bridge, following the fortifying demand of three-level seismic resistance, under the effect of two earthquake probability P1 and P2, the seismic response of Lan Qi Songhua River Bridge is analyzed by the Response Spectrum Method. Two kinds of seismic combinational modes, which are longitudinal vibration plus vertical vibration, and transverse plus vertical vibration are considered. According to the Seismic Resistance Design Specification of Highway Bridges, vertical response spectrum is 2/3 that of horizontal. In order to ensure the precision, the CQC ( Complete Quadratic Combination) approach is applied. The method and conclusion can conduct the preliminary design of similar bridge.
    (4) Multiple-support excitation, traveling wave effect and the nonlinear of the structure taken into account, four group of artificial seismic waves are utilized to study on the seismic response of concrete self-anchored suspension bridge under vertical, longitudinal, and lateral
    
    
    
    Abstract
    seismic excitation. In the condition of multiple-support linear uniform, nonlinear uniform and traveling wave effect excitation, the response time histories of internal force and displacement of controlling section such as main beam, tower, side pier, are analyzed and compared. The effect regulation is discussed in detail. Since the HPD(High Precision Direct integration) method is applied in time domain analysis, the results are more accurate.
    (5) Based on Large-displacement Incomplete Generalized Po
引文
[1] 悬索桥.铁道部大桥工程局桥梁科学研究所[M].北京:科学技术文献出版社,1996.10
    [2] 雷俊卿,郑明珠等.悬索桥设计[M].北京:人民交通出版社,2002.1
    [3] 钱冬生,陈仁福.大跨度悬索桥的设计与施工[M].西南交通大学出版社,1999
    [4] 张哲,窦鹏,石磊,刘春城.混凝土自锚式悬索桥的发展综述[J].世界桥梁,2003,1:4~9
    [5] 林荫岳译.世界上第一座自锚体系斜吊杆悬索桥—日本此花大桥[J].国外桥梁,1993.1:1~4
    [6] M.Kamei,T.Maruyama, H.Tanaka,Japan. Konohana Bridge,Japan.国际桥协(IABSE) Structural Engineering International SEI Vol.2,No. 1,1992
    [7] 严国敏 译.韩国永宗悬索桥.国外公路[J].1998.12:16~18.
    [8] C.Y.Cho,S.W.Lee,S.Y.Park,M.Lee,Korea. Yongiong Self-anchored Suspension Bridge. 国际桥协(IABSE) Structural Engineering International SEI Vol. 11,No. 1, 2001
    [9] H.Gil,C.Cho,Korea. Yongjong Grand Suspension Bridge. 国际桥协(IABSE) Structural Engineering International SEI Vol.8,No.2,1998
    [10] John A.Ochsendorf.Divid P.Villington. Self-anchored suspension bridges[J]. Journal of bridge engineering, August 1999,vol4,No.3: 155~155
    [11] 颜娟 译.自锚式悬索桥.国外桥梁[J].2002.1:19~22
    [12] 楼庄鸿 严文彪.自锚式悬索桥[A].中国公路学会桥梁和结构工程学会2002年全国桥梁学术会议论文集.2002.10
    [13] 楼庄鸿 译.自锚式悬索桥.中外公路[J].2002.6:49~51
    [14] 金石滩金湾大桥施工图设计.大连理工大学土木建筑设计研究院桥梁研究所,2002.12
    [15] J.F.Klein.瑞士日内瓦湖上的新型悬索桥方案.哥本哈根IABSE学术会议论文集[C],1996.
    [16] 高小云 译.日本Konohana桥.国外公路[J].1993.1:30~31
    [17] Kim, Ho-Kyung, Lee, Myenong-Jae, etc. Non-linear shape-finding analysis of a self anchored suspension bridges[J]. Engineering Structures, 2002, 12(24): 1547~1559
    [18] 甘科 李东平 孙剑飞等,广西桂林丽君桥主缆、吊杆安装施工技术[J]。建筑施工,2002(3),221~223
    [19] 张元凯,肖汝诚等.自锚式悬索桥设计[J].桥梁建设,2002,5:30~32
    [20] 张元凯,肖汝诚等.自锚式悬索桥概念设计[J].公路,2002,11:46~49
    [21] 张哲,石磊,刘春城.延吉市布尔哈通河局子街桥设计[J].华东公路,2003,10(32):690~691
    [22] 延吉市布尔哈通河局子街桥施工图设计.大连理工大学土木建筑设计研究院桥梁研究所,2002.12
    [23] 兰旗松花江大桥施工图设计.大连理工大学土木建筑设计研究院桥梁研究所,2002.8
    [24] 河北巨力悬索桥施工图设计.大连理工大学土木建筑设计研究院桥梁研究所,2002.10
    [25] 抚顺市前甸大桥施工图设计.大连理工大学土木建筑设计研究院桥梁研究所,2002.12
    [26] 李国豪主编.工程结构抗震动力学[M].上海:上海科学技术出版社,1980
    [27] 李国豪主编,桥梁结构稳定与振动[M].北京:中国铁道出版社,1992
    [28] 胡聿贤.地震工程学[M] .北京:地震出版社,1981
    [29] 范立础.桥梁抗震[M].上海:同济大学出版社,1997
    
    
    [30] 范立础,胡世德,叶爱君.大跨度桥梁抗震设计[M] .北京:人民交通出版社,2001
    [31] 交通部公路规划设计院.JTJ004-89公路工程抗震设计规范[M] .北京:人民交通出版社,1990
    [32] 项海帆.斜张桥在行波作用下的地震反应分析.[J] 同济大学学报,1983,1 1(2):1~8
    [33] Yamamura N, Hiroshi Tanaka. Response analysis of flexible MDF systems for multiple-support excitations[J]. EESD,1990,19: 345~357
    [34] Berrah M K, Eduardo Kausel. A modal combination rule for spatially varying seismic motions.EESD[J], 1993, 22: 791~800
    [35] Kiureghian A D, Neuenhofer A. Response spectrum method for multi-support seismic excitaions[J]. Earthquake Engineering and Structural Dynamics, 1992,21: 713~740
    [36] Kiureghian A D, Neuenhofer A. A discussion on seismic random vibration analysis of multi-support seismic excitaions[J]. Journal of Engineering Mechanics,1995,121: 1037
    [37] Ernesto H Z, Vanmarcke E H. Seismic random vibration analysis of multi-support structural systems[J]. ASCE, Journal of Engineering Mechanics, 1994, 120: 1107~1128
    [38] Yutaka Nakamura, Kiureghian A D, David Liu, Multiple-support response spectrum analysis of the golden gate bridge. Berkeley: University of California at Berkeley, 1993
    [39] Zavoni E H, Vanmarcke E H. Seismic random-vibration analysis of multisupport-structrual systims[J]. Journal of Engineering Mechanics,ASCE, 1994,120(5): 1107~1128
    [40] 克拉夫R W(王光远译).结构动力学[M] .北京:科学出版社,1981
    [41] 庄表中,王行新.随机振动概论[M].北京:地震出版社,1982
    [42] 庄表中,陈乃立,高瞻等.非线性随机振动理论与应用[M].杭州:浙江大学出版社,1986
    [43] 徐昭鑫.随机振动[M].北京:高等教育出版社,1990
    [44] 王光远,建筑结构的振动[M].北京:科学出版社,1978
    [45] Loh C.H, Lin S.G.Directionality and simulation in spatial variation of seismic waves[J]. ASCE, Engineering Structures, 1990,12: 1~27
    [46] Lob C.H,Yeh Y.T. Spatial variation and stochastic modeling of seismic differential ground movement[J]. EESD, 1988, 16: 583~596
    [47] Harichandran R S, Vanmarcke E H. Stochastic variation of earthquake ground motion in space, and time[J]. Journal of Engineering Mechanics,ASCE, 1986,105(2): 217~231
    [48] Corotis.R.B, Vanmarcke.E.H. First passage of nonsationary random process[J]. ASCE, Journal of Engineering Mechanics Division, 1972,98(5): 1107~1120
    [49] Vanmarcke.E.H., Lee.G.C. On the distribution of the first-passage time for normal stationary random processes[J]. Application of Mechanics, 1975,42: 1254~1265
    [50] 钟万勰.一个高效结构随机响应算法系列[J] .自然科学进展-国家重点实验室通讯,1996,6(4):391~401
    [51] 林家浩.随机地震响应的确定性算法[J] .地震工程与工程振动,1985,5(1):89~94
    [52] 林家浩,张亚辉.受非均匀调制演变随机激励结构响应快速精确计算[J].计算力学学报,1997,1(14):2~8
    [53] 林家浩,林少培,钟万勰.固定式海洋平台结构分析程序DASOS-J(D)的动力分析策略[J].计算结构力学及其应用.1985,2(3):37~44
    
    
    [54] 林家浩.随机地震响应功率谱快速算法[J].地震工程与工程振动,1990,10(4):38~46
    [55] 林家浩.多相位输入结构随机响应[J].振动工程学报,1992,5(1):73~77
    [56] 林家浩.非平稳随机地震响应的精确高效算法[J].地震工程与工程振动,1993,13(1):24~29
    [57] 林家浩.关于虚拟激励法与结构随机响应的注记[J].计算力学学报,1998,15(2):217~223
    [58] 林家浩,沈为平,F.W.威廉斯.受演变随机激励结构响应的精细逐步积分法[J].大连理工大学学报,1995,35(5):600~605
    [59] 林家浩,张亚辉,赵岩.大跨度结构抗震分析方法及近期进展[J].力学进展,2001,31(3):350~360
    [60] Lin J H, Willams F W, Zhang W S. A new approach to multi-excitation stochastic seismic response[J]. Microcomputers in Civil Engineering. 1993,8(4): 283~290
    [61] Lin J H, Zhang W S, Willams F W. Pseudo excitation algorithm for non-stationary random seismic responses[J]. Engineering Structures, 1994,16(4): 270~276
    [62] Lin Jiahao, Zhang Wenshou, Li Jianjun. Structure responses to arbitrary coherent stationary random excitation[J]. Computers&Structures, 1994,50(5); 629~634
    [63] Lin J H, Willams F W. Computation and analysis of multi-excitation random seismic response[J]. Engineering Computations, 1992,9: 561~574
    [64] Lin J H, Shen W P. Williams F W. A high precision direct integration scheme for non-stationary random seismic responses of non-classically damped structures[J]. Int Journal Structure Engineering and Mechanics, 1995, 3(3): 215~228
    [65] 钟万勰.结构动力学的精细时程积分法[J].大连理工大学学报,1994,34(2):131~136
    [66] 林家浩,钟万勰等.结构非平稳随机响应方差矩阵的直接精细积分计算[J].振动工程学报,1999,12(1):1~8
    [67] 陈仁福,大跨度悬索桥理论[M].成都:西南交通大学出版社,1994
    [68] 小西一郎著,戴振藩译:刚桥⑤[M].北京:中国铁道出版社,1981
    [69] 石磊,张哲,刘春城等。混凝土自锚式悬索桥设计及其力学性能分析[J].大连理工大学学报,2003,43(2):202~206
    [70] 张哲,石磊,刘春城等.混凝土自锚式悬索桥结构内力分析[J] .哈尔滨工业大学学报,2003,35(5):625~627
    [71] 刘春城,张哲,石磊.自锚式悬索桥的纵向地震反应研究[J].武汉理工大学学报,2002,26(5):607~610
    [72] 刘春城,张哲,石磊.虚拟激励法在自锚式悬索桥竖向地震反应分析中的应用[J].东南大学学报,2003,33(4):522~525
    [73] 刘春城,张哲,石磊.多支承激励下自锚式悬索桥空间地震反应研究[J].哈尔滨工业大学学报,(已录用)
    [74] 刘春城,张哲,石磊.压弯耦合效应自锚式悬索桥自由振动研究[J] .哈尔滨工业大学学报,(已录用)
    [75] 钟万勰,林家浩等.大跨度桥梁分析方法的一些进展[J] .大连理工大学学报,2000,40(2):127~135
    [76] 苗家武,胡世德,范立础.大型桥梁多点激励效应的研究现状与发展[J].同济大学学报,1999,27(2):189~193
    
    
    [77] 赵灿晖.大跨度钢管混凝土拱桥的地震响应研究[D] .西南交通大学博士学位论文,2001
    [78] 张亚辉.复杂结构在多种荷载工况下的屈曲及动力分析[D] .大连理工大学博士学位论文,1999
    [79] Said M.Allam和T.K.Datta. Analysis of cable-stayed bridges under multi-component random ground motion by response spectrum method[J]. Engineering Structures, 2000, 22: 1367~1377
    [80] 刘洪兵等.大跨度斜拉桥多支承激励地震响应分析[J] .土木工程学报,2001,34(6);38~44
    [81] 刘洪兵等.多支承激励地震响应分析的简化反应谱法[J].中国公路学报,2002,15(1):34~37
    [82] ALY S.Nazmy. Nonlinear-linear earthquake-response analysis of long-span cable-stayed bridges: theory[J]. Earthquake Engineering and Structural Dynamics. 1990.vol. 19, 45~62
    [83] ALY S.Nazmy. Nonlinear-linear earthquake-response analysis of long-span cable-stayed bridges: applications[J]. Earthquake Engineering and Structural Dynamics. 1990.vol. 19, 63~76
    [84] A.M.Abdel-Ghaffar.and ALY S.Nazmy. 3-D nonlinear seismic behaviour of cable-stayed bridges[J]. Journal of structural Engineering, 1991, 117 (11): 3456~3476
    [85] ALY S.Nazmy and A.M.Abdel-Ghaffar. Seismic responses analysis of cable-stayed bridges subjected to uniform and muliple-support excitations[C].Report No.87-SM-1,Department of Civil Engineering, Princeton University, 1987
    [86] Nazmy A S, A.M.Abdel-Ghaffar Effects of ground motion spatial variability on the response of cable-stayed bridges[J]. EESD, 1992,21 (1): 1~20
    [87] A.M.Abdel-Ghaffar. Vertical seismic behaviour of suspension bridge[J]. Earthquake Engineering and Structural Dynamics. 1983.vol. 11, 1~19
    [88] A.M.Abdel-Ghaffar. Suspension bridge response to multiple-support excitations[J]. Journal of the Engineering Mechanics Division,ASCE 1982, 108 (2): 417~435
    [89] A.M.Abdel-Ghaffar. Vertical vibration analysis of suspension bridges[J]. Journal of the structure engineering division,ASCE 1980, 106 (10): 2053~2075
    [90] A.M.Abdel-Ghaffar. Free lateral vibrations of suspension bridges[J] ,Journal of Structure Engineering ,ASCE, 1978,104(3): 503~525
    [91] A M.Abdel-Ghaffar. Suspension bridge vibration. Continuum formulation. Journal of the Engineering Mechanics, ASCE, 1982,108(6): 1215~1236
    [92] 范立础,王君杰,陈玮.非一致地震激励下大跨度斜拉桥的响应特征.[J]计算力学学报,2001,18(3):358~363
    [93] 陈幼平,周宏业.斜拉桥地震反应的行波效应[J] .土木工程学报,1996,29(6);61~67
    [94] 陈幼平,周宏业.斜拉桥地震反应特性[J] .中国铁道科学,1996,17(1);1~8
    [95] 陈淮等.大跨度斜拉桥动力特性分析[J] .计算力学学报,1997,14(1):57~63
    [96] 朱宏平,唐家祥.斜拉桥动力分析的三维有限元模型[J] .振动工程学报,1998,11(1):121~126
    [97] 李建中,袁万城.斜拉桥减震耗能体系非线性纵向地震反应分析[M] .中国公路学报,1998,11(1):71~76
    [98] 杨玉民,袁万城,范立础.大跨斜拉桥横向地震反应及其分形特征[J].同济大学学报,2001,29(1):15~19
    [99] 郭永辉,贺国京.桥梁在多点激振下的非线性响应[J] .长沙铁道学院学报,2000,18(2):9~12
    [100] 邹立华,袁薇等.单索面斜拉桥考虑几何非线性地震反应分析[J].甘肃工业大学学报,
    
    1997,23(1):83~87
    [101] 白国良等.咸阳渭河大桥斜拉桥结构地震反应分析[J].西安建筑科技大学学报,2000,32(4):330~333
    [102] 刘春城,张哲,黄才良.任意荷载激励下考虑局部效应的斜拉桥结构动力响应分析[J].公路交通科技,2002,19(5);70~73
    [103] 邱新林.大跨斜拉桥空间非线性地震反应分析[J] .华东公路,2001,3,8~12
    [104] 张亚辉,林家浩.香港青马桥抗震分析[J] .应用力学学报,2002,19(3)25~31
    [105] 李志岭,秦权.用Ritz法分析江阴悬索桥的地震反应的影响[J].工程力学,2003,20(1):32~37
    [106] 秦权,罗颖,孙浩.悬索桥上部结构的抗震设计[J] .清华大学学报,1998,38(12):52~56
    [107] 胡世德,范立础.江阴长江公路大桥纵向地震反应分析[J].同济大学学报,1994,22(4):433~438
    [108] 聂利英,叶爱群,胡世德.大跨度悬索桥地震动力分析中的高阶振动的影响[J].同济大学学报,2001,29(1):84~88
    [109] 朱宏平,张之勇.悬索桥动力模型设计与实验[J] .华中理工大学学报,1999,27(3):25~27
    [110] 柳春光,焦双建.城市立交桥结构三维地震反应[J].地震工程与工程振动,2001,21(2):41~47
    [111] 彭大文,黄朝光等.单塔悬索桥的地震响应研究[J] .中国公路学报,1997,10(4):55~63
    [112] 黄朝光,彭大文.单塔悬索桥的结构参数对动力特性的影响分析[J] .福州大学学报(增刊),1996,24(9):279~287
    [113] 徐艳,胡世德,王志强.卢浦大桥地震反应分析及抗震性能评估[C] .上海:第十五届全国桥梁学术会议论文集,2002,11,396~403
    [114] 张宁勇,王君杰,陆锐.土—桩—桥相互作用的集中质量模型的比较研究[J].结构工程师,2002,(1):43~48
    [115] 杨玉民,胡勃,袁万城.基于位移反应谱的连续梁桥的抗震设计简化方法[J].同济大学学报,1999,27(2):150~154
    [116] 赵大亮等.大跨度连续梁桥地震反应分析[J].兰州铁道学院学报,2002,21(6):87~90
    [117] 钱伟长著,变分法及有限元[M].北京:科学出版社,1980
    [118] 孙焕纯,曲乃泗,林家浩编著[M].计算结构动力学,北京:高等教育出版社,1989
    [119] 屈铁军,王前信.多点输入地震反应分析研究的进展[J].世界地震工程,1993(1):30~36
    [120] 屈铁军,王君杰,王前信.空间变化的地震动功率谱的实用模型[J].地震学报,1996,18(1):55~62
    [121] 李建俊,林家浩等.大跨度结构受多点随机地震激励的响应[J].计算结构力学及其应用,1995,12(4):445~452
    [122] 江近仁,洪峰.功率谱和反应谱的转换和人造地震波[J] .地震工程与工程振动,1984,4(3):1~10
    [123] Feng Q M,Hu Y X. Spatial Correlation of earthquake motion and its effect on structural response[C]. ProCUS-PRC Bilateral Workshop on Earthquake Engineering
    [124] 赵凤新等.地震动功率谱和反应谱的转换关系[J] .地震工程与工程振动,2001,21(2):30~35
    [125] 翟希梅,吴志丰.人工地震波反应谱拟合的改进[J] .哈尔滨工业大学学报,1995,27(6);130~133
    [126] 朱东生,虞庐松.用人工地震波分析斜拉桥的地震响应[J].兰州铁道学院学报,1997,16(4):1~6
    [127] 王君杰,周晶.地震动频谱非平稳性对结构非线性反应的影响[J].地震工程与工程振动,1997,17(2):16~20
    [128] 王君杰,周晶.基于演变随机过程模型的合成地震波[J].地震工程与工程振动,1997,17(1):11~18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700