用户名: 密码: 验证码:
大跨建筑结构多点输入地震响应计算与抗震设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着科学技术的发展和经济水平的提高,建筑结构的设计、施工技术发展迅速,国内外出现了大量跨度达到百米甚至数百米的大跨建筑结构。大跨建筑结构的支座间距很大,地震动空间效应导致不同支座处的地震动输入不一致(多点输入效应),进而导致结构地震响应与一致输入情况有较大差别。研究多点输入效应对大跨建筑结构的影响,对确保结构在地震中的安全具有重要意义。目前,对大跨建筑结构多点输入地震响应的研究仍处探索阶段,尚未建立完善的理论分析体系或设计计算方法。本文采用理论分析和数值计算等方法,对大跨建筑结构多点输入地震响应计算和抗震设计领域中的关键环节开展了较深入、系统的研究。本文主要完成了以下几方面的工作:
     (1)利用数值计算方法研究地震动功率谱位移特征对多点输入地震响应的影响,构造基于规范反应谱且适用于多点输入计算的实用地震动功率谱模型。
     (2)通过理论公式推导,提出多点地震动时程人工合成的简化方法。由简化方法合成的多点地震动时程可用于大跨建筑结构的多点输入时程分析计算。
     (3)基于理论分析,将静力修正方法引入多点输入动力方程的绝对位移求解法,提出修正绝对位移法,为多点输入动力方程提供了新的求解方法。
     (4)基于理论分析,提出多点输入虚拟激励法的实用求解方法。提出在现有通用有限元计算软件中实现多点输入虚拟激励法的思路与方法,为多点输入随机地震响应分析提供简便有效的计算平台。
     (5)推导简化模型多点输入地震响应功率谱解析式,研究多点输入效应对大跨结构地震响应的影响机理。根据简化模型得出的规律,提出适用于大跨建筑结构抗震设计的多点输入最不利工况的快速确定方法,指导工程设计计算。
     (6)提出新的评价参数和基于抗震验算内容的综合评价方法,用于评价多点输入效应对结构响应的影响程度,为提出以传统一致输入抗震设计为基础的多点输入抗震设计简化方法提供了有效工具和思路。
With the development of science and technology, and the elevation of economic level, building structures’design and construction technologies have developed rapidly, which results in the appearance of many large-span building structures with a span of hundreds of meters. The distance between the restraints of large-span building structures is large, and the spatial variation of ground motion results in the discrepancy of seismic excitations between different restraints (multi-support excitation effect), which causes that the seismic response of structures under multi-support excitations is quite different from that under uniform excitations. Thus study on the influence of multi-support excitation effect on large-span building structures has a great significance for the structure safety during the earthquake. Currently, research on the multi-support excitation effects is still in the exploratory stage, and neither theoretical analysis system nor design method is perfect. By using theoretical analysis and numerical calculation, this dissertation conducts a systematic research on the seismic response analyses and design methods for large-span building structures under multi-support excitations. The main work in this dissertation includes several aspects as follows:
     (1) The influence of displacement characteristics of ground motion power spectral density (PSD) on the seismic response of large-span building structures under multi-support excitations has been studied by using numerical method. A practical ground motion PSD model, which is based on the code response spectrum and suitable for multi-support excitation calculation, has been built.
     (2) Based on theoretical formula derivation, the improvement and simplification of simulation method of spatially correlated earthquake ground motions have been proposed. The consistency between the simulated ground motions and the target PSD model has been validated by numerical examples.
     (3) Based on theoretical analysis, the static correction method has been introduced into the absolute displacement method for multi-support excitation dynamic equation, and the modified absolute displacement method, which provides a new method for solving the multi-support excitation dynamic equation, has been proposed.
     (4) Based on theoretical analysis, the Pseudo Excitation Method (PEM) has been improved into a more practical form. A realizing method in the existing finite element analysis software for PEM has been proposed, which provides a simple and effective computing platform for the multi-support excitation calculation.
     (5) The analytic formulae of seismic response PSD of simplified large-span structure models have been derived to study the influence mechanism of multi-support excitation effects. Based on the response law derived from simplified models, the fast method of determining the most unfavorable conditions of multi-support excitation effect has been proposed for engineering design calculations.
     (6) The design response ratio has been proposed to evaluate the influence of multi-support excitation effects on structure response, and the evaluation system based on seismic design has been built, which provides an effective tool for the simplification of multi-support excitation seismic design that is base on the conventional uniform excitation seismic design.
引文
[1]胡聿贤.地震工程学(第二版)[M].北京:地震出版社, 2006, 1.
    [2] Kiureghian A.D. A coherency modal for spatially varying ground motions [J]. Earthquake Engineering and Structural Dynamics, 1996, 25(1): 99-111.
    [3] Allam S.M., Datta T.K. Seismic behaviour of cable-stayed bridges under multi-component random ground motion [J]. Engineering Structures, 1999, 21(1): 62-74.
    [4] Thomas E.P. and Marc O.E. Effects of spatially varying ground motions on short bridges [J]. Journal of structural engineering, 1998, 124(8): 948-955.
    [5]范立础,王君杰,陈玮.非一致地震激励下大跨度斜拉桥的响应特征[J].计算力学学报, 2001, 18(3): 358-363.
    [6] Soyluk K. and Dumanoglu A.A. Spatial variability effects of ground motions on cable-stayed bridges [J]. Soil Dynamics and Earthquake Engineering, 2004, 24(3): 241-250.
    [7] Ates Sevket, Aydin Dumanoglu A. and Bayraktar Alemdar. Stochastic response of seismically isolated highway bridges with friction pendulum systems to spatially varying earthquake ground motions [J]. Engineering Structures, 2005, 27(13): 1843-1858.
    [8]李忠献,黄健,丁阳,等.不同地震激励下大跨度斜拉桥的地震反应分析[J].中国公路学报, 2005, 18(3): 48-53.
    [9] Yang Q.S., Saiid S.M., Wang H., et al. Influence of earthquake ground motion incoherency on multi-support structures [J]. Earthquake Engineering and Engineering Vibration, 2002, 1(6): 167-180.
    [10]罗尧治,王荣.索穹顶结构动力特性及多维多点抗震性能研究[J].浙江大学学报(工学版), 2005, 39(1): 39-45.
    [11]刘枫,肖从真,徐自国,等.首都机场3号航站楼多维多点输入时程地震反应分析[J].建筑结构学报, 2006, 27(5): 56-63.
    [12] Jiang Yang, Shi Yongjiu and Wang Yuanqing. Seismic Response Analysis of Long-span structures Under Multiple Excitations [C]. Beijing: IASS-APCS, 2006.
    [13]杨庆山,刘文华,田玉基.国家体育场在多点激励作用下的地震反应分析[J].土木工程学报, 2008, 41(2): 35-31.
    [14]江洋,石永久,王元清,等.大跨门式钢管桁架结构多点输入地震响应分析[J].北京交通大学学报, 2009, 33(4): 88-93.
    [15]刘先明,叶继红,李爱群,等. AMECO维修机库的多点输入反应测试与分析[J].建筑结构学报, 2004, 25(5): 17-21.
    [16]叶继红,周树路,包伟,等.老山奥运自行车馆多点激励反应测试与分析[J].中国科学E辑:技术科学, 2008, 38(9): 1440-1452.
    [17]李忠献,林伟,丁阳.大跨度空间网格结构多维多点随机地震反应分析[J].地震工程与工程振动, 2006, 26(1): 56-63.
    [18]梁嘉庆.大跨空间结构在非一致地震输入下的弹性响应分析[硕士学位论文].南京:东南大学土木工程学院, 2004.
    [19] Su Liang, Dong Shilin and Kato Shiro. Seismic design for steel trussed arch to multi-support excitations [J], Journal of Constructional Steel Research, 2007, 63(6): 725-734.
    [20]储烨.多点输入下大跨空间网格结构弹塑性地震响应及强度破坏分析[硕士学位论文].南京:东南大学土木工程学院, 2006.
    [21] Bogdanoff J.L., Goldberg J.E. and Schiff A.J. Effect of ground transmission time on response of long structures [J]. Seismological Society of America– Bulletin, 1965, 55(3): 627-640.
    [22] Eurocode 8: Design of structures for earthquake resistance– Part 2: Bridges, EN 1998-2:2005(E), European committee for standardization.
    [23]中华人民共和国行业推荐性标准. JTG/T B02-01-2008公路桥梁抗震设计细则[S].北京:人民交通出版社, 2008.
    [24] Hao H., Oliveira C.S. and Penzien J. Multiple-station Ground Motion Processing and Simulation based on SMART-1 Array Data [J]. Nuclear Engineering and Design, 1989, 111: 293-310.
    [25] Harichandran R.S. and Vanmarcke E.H. Stochastic variation of earthquake ground motion in space and time [J]. Journal of Engineering Mechanics, 1986, 112(2): 154-174.
    [26] Luco J. and Wong H. Response of a rigid foundation to a spatially random ground motion [J]. Earthquake Engineering and Structural Dynamics, 1986, 14(8): 891-908.
    [27] Zerva A. and Zervas.V. Spatial variation of seismic ground motions: An overview [J]. Applied Mechanics Reviews, 2002, 55(3): 271-296.
    [28]中华人民共和国国家标准. GB50011-2001建筑抗震设计规范[S].北京:中国建筑工业出版社, 2001.
    [29] Leger P., Ide I.M. and Paultre P. Multiple-support seismic analysis of large structures [J]. Computers and Structures, 1990, 36(6): 1153-1158.
    [30] Zembaty Z. and Rutenberg A. Spatial reponse spectra and site amplification effects [J]. Engineering Structures, 2002, 24(11): 1485-1496.
    [31]冯启民,胡聿贤.空间相关地面运动的数学模型[J].地震工程与工程振动, 1981, 1(2): 1-8.
    [32] Abrahamson N.A., Schneider J.F. and Stepp J.C. Spatial variation of strong ground motion for use in soil-structure interaction analyses [C]. Proc of 4th US-Natl Conf on Earthquake Engineering, Palm, Springs CA, 1990, 317-326.
    [33] Loh C.H. Analysis of the spatial variation of seismic waves and ground movements from SMART-1 data [J]. Earthquake Engineering and Structural Dynamics, 1985, 13: 561-581.
    [34]王君杰.多点多维地震动随机模型及结构的反应谱分析方法[博士学位论文].哈尔滨:国家地震局工程力学研究所, 1992.
    [35]刘先明,叶继红,李爱群.竖向地震动场的空间相干函数模型[J].工程力学, 2004, 21(2): 140-144.
    [36]屈铁军,王君杰,王前信.空间变化的地震动功率谱的实用模型[J].地震学报, 1996, 18(1): 55-62.
    [37] Somerville P.G., Mclaren J.P., Sen M.K., et al. The influence of sit conditions on the spatial Incoherence of ground motions [J]. Structural Safety, 1991, 10(1): 1-13.
    [38] Yang Q.S. and Chen Y.J. A practical coherency model for spatially varying ground motions [J]. Earthquake Engineering and mechanics, 2000, 9(2): 141-152.
    [39] Liao S. and Li J. A stochastic approach to site-response component in seismic ground motion coherency model [J]. Soil Dynamics and Earthquake Engineering, 2002, 22: 813-820.
    [40]李杰,陈原.非一致激励条件下工程场地地震动相干函数的数值模拟——Ⅰ分析原理和方法[J].地震工程与工程振动, 2006, 26(1): 30-35.
    [41]陈原,李杰.非一致激励条件下非线性工程场地地震动相干函数研究[J].世界地震工程, 2007, 23(4): 72-78.
    [42]屈铁军,王前信.多点输入地震反应分析研究的进展[J].世界地震工程, 1993, 9(1): 30-36.
    [43]屈铁军,王前信.空间相关的多点地震动合成(I)基本公式[J].地震工程与工程振动, 1998, 18(1): 8-15.
    [44]董汝博,周晶,冯新.非平稳空间相关多点地震动合成方法研究[J].地震工程与工程振动, 2007, 27(1): 8-14.
    [45]胡聿贤,何训.考虑相位谱的人造地震动反应谱拟合[J].地震工程与工程振动,1986, 6(2): 37-51.
    [46]屈铁军,王前信.空间相关的多点地震动合成(II)合成实例[J].地震工程与工程振动, 1998, 18(2): 25-32.
    [47] Clough R.W. and Penzien J. Dynamics of structures [M]. New York:McGraw-Hill, 1993.
    [48]钟万勰.结构动力方程的精细时程积分方法[J].大连理工大学学报, 1994, 34(2): 131-136.
    [49] Wilson E.L.结构静力与动力分析(原著第四版)[M].北京:中国建筑工业出版社, 2005.
    [50] Kiureghian A.D. and Neuenhofer A. Response spectrum method for multi-support seismic excitations [J]. Earthquake Engineering and Structural Dynamics, 1992, 21(8): 713-740.
    [51] Heredia-Zavoni E. and Vanmarcke E.H. Seismic Random-Vibration Analysis of Multisupport-Structural Systems [J]. Journal of Engineering Mechanics, 1994, 120(5): 1107-1128.
    [52]林家浩.随机地震响应的确定性算法[J].地震工程与工程振动, 1985, 5(1): 89-94.
    [53] Lin J.H. and Zhang W.S. A Fast CQC Algorithm of PSD Matrices for Random Seismic Responses [J]. Computers & Structures, 1992, 44(3): 683-687.
    [54] Lin J.H., Zhang Y.H., Li Q.S., et al. Seismic spatial effects for long-span bridges, using the pseudo excitation method [J]. Engineering Structures, 2004, 26(9): 1207-1216.
    [55]林家浩,张亚辉.随机振动的虚拟激励法[M].北京:科学出版社, 2004.
    [56]孙建梅,叶继红,程文瀼.多点输入下大跨空间索结构的虚拟激励法[J].振动与冲击, 2005, 24(4): 107-110.
    [57]丁阳,张笈玮,李忠献.部分相干效应对大跨度空间结构随机地震响应的影响[J].工程力学, 2009, 26(3): 86-92.
    [58]李丽媛.虚拟激励法的工程应用及参数研究[硕士学位论文].大连:大连理工大学工程力学系, 2004.
    [59]薛素铎,王雪生,曹资.空间网格结构多维多点随机地震响应分析的高效算法[J].世界地震工程, 2004, 20(3): 43-49.
    [60]李宏男.结构多维抗震理论[M].北京:科学出版社, 2006.
    [61] Berrah M., Kausel E. Response spectrum analysis of structures subjected to spatially varying motions [J]. Earthquake Engineering and Structural Dynamics, 1992, 21(6): 461-470.
    [62] Berrah M., Kausel E. A modal combination rule for spatially varying seismic motions [J]. Earthquake Engineering and Structural Dynamics, 1993, 22(9): 791-800.
    [63]李杰,李建华.多点激励下结构随机地震反应分析的反应谱方法[J].地震工程与工程振动, 2004, 24(3): 21-29.
    [64]孙建梅,叶继红,程文瀼.多点输入反应谱中相关系数ρijkl的简化[J].工程力学, 2006, 23(7): 124-129.
    [65]刘先明,叶继红,李爱群.多点输入反应谱法的理论研究[J].土木工程学报, 2005, 38(3): 17-22.
    [66] Su Liang, Dong Shilin and Kato Shiro. A new average response spectrum method forlinear response analysis of structures to spatial earthquake ground motions [J]. Engineering Structures, 2006, 28(13): 1835-1842.
    [67]樊珂,李振宝,闫维明.拱桥多点动力响应振动台模型试验与理论分析[J].铁道科学与工程学报, 2007, 4(6): 19-24.
    [68]王进廷,金峰,张楚汉.结构抗震试验方法的发展[J].地震工程与工程振动, 2005, 25(4): 37-43.
    [69]邱法维,钱稼茹.结构在多维多点地震输入下的拟动力实验方法[J].土木工程学报, 1999,32(5): 28-34.
    [70] Hao H. and Duan X.N. Multiple excitation effects on response of symmetric buildings [J]. Engineering Structures, 1996, 18(9): 732-740.
    [71] Hao H. Torsional response of building structures to spatial random ground excitations [J], Engineering Structures, 1997, 19(2): 1105-112.
    [72] Hao H. Response of two-way eccentric building to nonuniform base excitations [J], Engineering Structures, 1998, 20(8): 677-684.
    [73]张亚辉,李丽媛,陈艳,等.大跨度结构地震行波效应研究[J].大连理工大学学报, 2005, 45(4): 480-486.
    [74]许庆霞.地震动空间变化对大跨度结构地震响应的影响[硕士学位论文].大连:大连理工大学, 2006.
    [75] Kanai K. Semi-empirical Formula for Seismic Characteristic of the Ground. Bulletin of the Earthquake Research Institute, University of Tokyo, 1957, 35: 309-325.
    [76] Tajimi H. A Statistical Method of Determining the Maximum Response of a Building Structure during an Earthquake. Proc. 2nd World Conference on Earthquake Engineering, Tokyo and Kyoto, 1960, II: 781-798.
    [77]欧进萍,牛荻涛.地震地面运动随机过程模型的参数及其结构效应[J].哈尔滨建筑工程学院学报, 1990, 23(2): 24-34.
    [78]杜修力,陈厚群.地震动随机模拟及其参数确定方法[J].地震工程与工程振动, 1994, 14(4): 1-5.
    [79]洪峰,江近仁,李玉亭.地震地面运动的功率谱模型及其参数的确定[J].地震工程与工程振动, 1994, 14(2): 104-109.
    [80]薛素铎,王雪生,曹资.基于新抗震规范的地震动随机模型参数研究[J].土木工程学报, 2003, 36(5): 5-10.
    [81]孙景江,江近仁.与规范反应谱相对应的金井清谱的谱参数[J].世界地震工程, 1990, (1): 42-48.
    [82] Kaul M.K. Stochastic characterization of earthquakes through their response spectrum [J]. Earthquake Engineering and Structural Dynamics, 1978, 6(5): 497-510.
    [83]韦晓,王君杰,袁万城,等.桥梁抗震设计规范实用功率谱[J].同济大学学报, 2000, 28(1): 98-102.
    [84]张亚辉,陈艳,李丽媛,等.桥梁抗震随机响应分析及输入功率谱研究[J].大连理工大学学报, 2007, 47(6): 786-792.
    [85] Davenport A.G. Note on the distribution of the largest value of a random function with application to gust loading [J]. Proceedings of the Institution of Civil Engineers, 1961, 28: 187-96.
    [86]俞言祥.长周期地震动研究综述[J].国际地震动态, 2004, (7): 1-5.
    [87] NEHRP recommended provisions for seismic regulations for new buildings and other structures (FEMA 450), 2003 Edition, Part 1: Provisions. Building seismic safety council national institute of building sciences, Washington, D.C. 2004
    [88] Eurocode 8: Design of structures for earthquake resistance– Part 1: General rules, seismic actions and rules for buildings, EN 1998-1:2005, European committee for standardization.
    [89]李英明,刘立平,赖明.工程地震动随机功率谱模型的分析与改进[J].工程力学, 2008, 25(3): 43-48.
    [90]王君杰,范立础.规范反应谱长周期部分修正方法的探讨[J].土木工程学报, 1998, 31(6): 49-55.
    [91]耿淑伟,陶夏新,王国新.对设计反应谱长周期段取值规定的探讨[J].世界地震工程, 2008, 24(2): 111-116.
    [92]丁阳,张笈玮,李忠献.对应地震反应谱的当量功率谱密度函数的数值算法[J].地震工程与工程振动, 2008, 28(6): 148-153.
    [93]俞言祥,胡聿贤.关于上海市《建筑抗震设计规程》中长周期设计反应谱的讨论[J].地震工程与工程振动, 2000, 20(1): 27-34.
    [94] Penzien, J. and Watabe, M. Characteristics of 3-dimensional earthquake ground motions [J]. Earthquake Engineering & Structure Dynamic, 1975, 3(4): 365-373.
    [95] Abdullateef M.A. and Ashraf A. An efficient multi-point support-motion random vibration analysis technique [J]. Computers & Structures, 2002, 80: 1689-1697.
    [96] Hansteen O.E. and Bell K. On the accuracy of mode superposition analysis in structural dynamics [J]. Earthquake Engineering and Structural Dynamics, 1979, 7(5): 405-411.
    [97]景明勇,王元清,张勇,等.大跨度体育馆空间钢管结构的设计与分析[J].建筑结构, 2008, 38(2):16-18.
    [98] Release 11.0 Documentation for ANSYS. ANSYS Inc.
    [99]薛素铎,王雪生,曹资.空间网格结构多维多点随机地震响应分析的高效算法[J].世界地震工程, 2004, 20(3): 43-49.
    [100]江洋,石永久,王元清.大跨结构地震多点输入随机响应[C].第六届全国土木工程研究生学术论坛, 2008: 91.
    [101]丁阳,王波.大跨度空间网格结构在地震行波作用下的响应[J].地震工程与工程振动, 2002, 22(5): 71-76.
    [102]苏亮,董石麟.水平行波效应下周边支承大跨度单层球面网壳的地震反应[J].空间结构, 2006, 12(3): 24-30.
    [103]沈顺高,张微敬,朱丹,等.大跨度机库结构多点输入地震反应分析[J].土木工程学报, 2008, 41(2): 17-21.
    [104]丁阳,林伟,李忠献,等.大跨度空间网格结构多维多点随机地震反应分析[J].福州大学学报(自然科学版), 2005, 33(s1): 50-55.
    [105]张亚辉.复杂结构在多种荷载工况下的屈曲及动力分析[博士学位论文].大连:大连理工大学工程力学系, 1999.
    [106]钱稼茹,张微敬,朱丹,等.北京A380机库结构地震反应分析[J].土木工程学报, 2008, 41(2): 9-16.
    [107]郭海山,沈世钊.单层网壳结构动力稳定性分析方法[J].建筑结构学报, 2003, 24(3): 1-9.
    [108]王志平.多维多点输人下单榀钢管拱析架非线性地震反应分析[硕士学位论文].太原:太原理工大学, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700