用户名: 密码: 验证码:
自锚式斜拉—悬索协作体系桥动力学问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自锚式斜拉—悬索协作体系桥作为一种新型的桥梁结构形式,具备了传统的斜拉—悬索协作体系桥的诸多优点,而且由于庞大锚碇的取消,更好的适应了深海软土地基的建设,在不良地质环境条件下具有强劲的竞争力,目前已被工程界采纳。但从已有的文献看,对这种桥型动力性能的研究颇为少见。本文结合以自锚式斜拉—悬索协作体系桥为研究主体的交通部西部交通建设科技项目“斜拉—悬索协作体系桥梁的研究”这一科研课题,以拟建的大连湾跨海大桥为工程背景,对该新型结构体系若干动力学问题进行了深入的研究,主要工作如下:
     (1)基于大位移非线性弹性理论的广义变分原理,考虑了加劲梁的压弯耦合、剪切应变能和扭转应变能的影响,建立了三跨自锚式斜拉—悬索协作体系桥的空间耦合自由振动大位移不完全广义势能泛函,通过约束变分推导出自锚式斜拉—悬索协作体系桥的竖向挠曲振动、横向挠曲振动、纵向振动、扭转振动以及主塔纵向振动和横向振动的基础微分方程,忽略非线性项的影响,进而得到线性振动微分方程。以一座主跨100m的混凝土自锚式斜拉—悬索协作体系桥为例,求出了竖向振动方程自振频率的解析解,并与数值解作了比较,吻合较好,这一理论和方法为自锚式斜拉—悬索桥的固有振动特性分析提供可靠的理论依据。
     (2)桩-土-结构相互作用使体系的动力特性和地震反应与刚性基础上的结构不同,主要表现为自振周期延长、阻尼增加、内力及位移反应改变等。考虑桩-土相互作用效应,分别建立了考虑实际桩长和等效嵌固桩长的群桩模型,对结构进行反应谱和时程分析,并与墩底固结模式下的地震响应进行比较,得到了加劲梁、主塔、边墩等控制截面的内力和位移响应,并对其影响规律进行了讨论。通过对比计算结果,群桩实际桩长与群桩等效嵌固桩长两种考虑桩-土效应模式下结构地震响应值较为接近,因此,在工程上,可以采用等效嵌固桩长来代替桩的实际桩长来模拟桩基础。
     (3)考虑了几何非线性及材料非线性,采用纤维模型对自锚式斜拉—悬索协作体系桥进行了弹塑性时程分析,对比弹性时程分析的结果表明,结构进入弹塑性阶段,由于塑性铰的产生,使结构控制节点的位移有了明显的增大,同时弹塑性阶段的结构控制截面的内力均有较大幅度的降低,对于半漂浮体系的自锚式斜拉—悬索协作体系桥,塑性铰的产生增大了结构控制节点的纵向位移,主要表现在主塔塔顶及主梁跨中,
     (4)基于弹塑性分析结果,引入粘滞阻尼器,考虑边界非线性,对结构进行了弹性与弹塑性阶段的耗能减震分析,分析结果表明,进入弹塑性阶段的结构,由于塑性铰耗散了一部分地震输入的能力,引入粘滞阻尼器后,对结构控制截面的内力改善较小但对结构控制节点的纵向位移有较大幅度的降低。
     (5)利用铅芯橡胶支座叠层橡胶良好的剪切性能以及铅芯的阻尼特性,通过分析在边墩、主塔与加劲梁间设置铅芯橡胶支座的多种方案发现,设置了铅芯橡胶支座后的结构,在地震荷载作用时,由于减小了地震作用时输入到上部结构的能量,使得结构主要控制节点的位移和控制截面的内力都得到了降低。
     (6)基于模糊决策理论,建立了自锚式斜拉—悬索协作体系桥多层多目标模糊优选模型,它将众多因素分层考虑,协调各因素之间的复杂关系,并应用模糊定权的方法来确定因素的权重,克服了目标函数中用线性评判指标来处理高度非线性多目标问题的不足与确定权重问题的不足。应用该模型对大连湾跨海大桥工程中所提出的动力模型方案进行优化选型,通过比较分析认为选择粘滞阻尼耗能较为合理。
As a new type of bridge, self-anchored cable-stayed suspension bridge has not only some advantages of traditional cable-stayed suspension bridge, but also is more adaptive to being built in deeper sea and soft soil base owing to canceling giant anchor block, so is highly competitive under bad geologic conditions and has been adopted by engineering filed so far. However, there is little research on dynamic behavior for the type of bridge from the documents that have existed. Combined the scientific research question, i.e. the study on cable-stayed suspension bridge-which is scientific and technological item of Ministry of Communciation for traffic construction of west region with the engineering background of Dalian bay across sea bridge, some dynamic problems such as pile-soil-structure interaction, ductility analysis are investigated in this dissertation, the main research work covers the following aspects:
     (1) Based on Large-displacement Non-linear Elastic Generalized Variational Principle, coupling effect of axial and flexural action, shearing strain energy, torsional strain energy of stiffening girder being considered, the large-displacement incomplete generalized potential energy functional of space coupling free vibration of a three-span self-anchored cable-stayed suspension bridge is presented. By constraint variation, fundamental differential equations of vertical flexural vibration, lateral flexural vibration, longitudinal vibration and torisional vibration are formulated, also presented the equations for the main tower with respect to longitudinal and lateral vibration. The linear free vibration differential equation is obtained when the nonlinear items are discarded. In this paper, a self-anchored cable-stayed suspension bridge with the main of span 100m is an example for the analytic solution of frequency of vertical free vibration. Compared with numerical solution, the results inosculate well. This approach provides theoretical basis for analysis of natural vibration character of self-anchored cable-stayed suspension bridges.
     (2) The system's dynamic characteristics and seismic response based on rigid foundation is different from under pile-soil-structure interaction which mainly to extend nature vibration period, increases damping and changes internal forces and displacement. Consider the pile-soil interaction effects, pile groups model is established with actual length and equivalent embedded length separately, compared the seismic response result to the consolidation model from response spectrum and time-history analysis, the force and displacement response on controlling section of stiffening girder, main tower and piers were obtained and effect rules were discussed. Seismic response value of structure is close between the mode with actual length and equivalent embedded length by compared the results, therefore, pile foundation could be simulated by equivalent embedded length in place of actual length in engineering.
     (3) Considering geometric nonlinearity and material nonlinearity, the elastic-plastic time-history analysis had been done for self-anchored cable-stayed suspension bridge by using fiber model. Compared to the results of elastic time-history analysis showed that in elastic-plastic stage, the displacement of controlling node had a obviously increase because of the generation of plastic hinge, meanwhile, the internal force of controlling section were reduced significantly, for semi-floating self-anchored cable-stayed suspension bridge, the longitudinal displacement of controlling node may be increasing by generation of plastic hinge, mainly appeared on top of tower and main span of stiffening girder.
     (4) Based on the results of elastic-plastic analysis, introduced viscous-damper, Analysis of passive energy dissipation for structure had been done by considering boundary non-linear in elastic and elastic-plastic stage. Results showed that the force of controlling had slightly changing, but the longitudinal displacement of controlling node had obviously reduced by considering viscous-damper. The reason of this condition was that plastic hinge had dissipated some energy from earthquake input in elastic-plastic stage.
     (5) The lead-rubber bearing has favorable shearing property of rubber and damping characteristics of lead. From analyzing some plans with setting lead-rubber bearing among side pier, tower and stiffening girder showed that the displacement of controlling node and force of controlling section have been reduced, because of energy that inputted to superstructure decreased under earthquake.
     (6) The multi-level and multi-objective fuzzy optimization model of self-anchored cable-stayed suspension bridge selection is built based on fuzzy decision theory, which combines binary comparison method. The model coordinates the complex relationship among the factors, which are divided into several levels. Fuzzy method is adapted to calculate the weight vector, which can overcome the limitation of linear method. Base on the analysis of the model, energy dissipation by viscous-damper is the most suitable type for dynamic caculation.
引文
[1]潘家英编译.直布罗陀海峡桥渡[J].国外桥梁,1991,69(4):1-8.
    [2]陈明宪.斜拉桥的发展与展望[J].中外公路,2006,26(4):76-86.
    [3]王伯惠.斜拉—悬索协作体系桥[J].辽宁省交通高等专科学校学报,2000,2(03):1-6.
    [4]王伯惠.斜拉—悬索协作体系桥(续)[J].辽宁省交通高等专科学校学报,2000,2(4):1-7.
    [5]唐寰澄.世界长大桥梁技术和艺术的发展趋向[J].广东公路交通,2000,(66):73-79.
    [6]罗福午.19世纪第一悬索桥-布鲁克林桥[J].建筑技术,2001,(10):690-691.
    [7]金增洪.迪辛格(Dischinger)型对超长桥梁的适用性[J].中外公路,2001,21(4):35-39.
    [8]蒙云,孙淑红.吊拉组合桥结构体系研究与决策[C].中国公路学会桥梁和结构工程学会一九九九年桥梁学术讨论会,厦门,2000:691-697.
    [9]蒙云,刘东,孙淑红.大跨度P.F.C吊拉组合桥设计研究[J].重庆交通学院学报,1999,(04):8-12,39.
    [10]黎祖华.超大跨度桥梁形式的探讨[J].国外桥梁,1992,(4):13-15.
    [11]Irvine M. Cable Structures[M]. New York:Dover,1992.
    [12]Gimsing N J. Cable systems for bridges[C]. Vienna, Austria:Int Assoc for Bridge and Struct Eng, Zurich, Switz,1980:727-732.
    [13]Gimsing N J. Cable supported bridges:concept and design[M]. John Wiley & Sons, Chichester, Engl,1983.
    [14]金增洪.介绍吉姆辛的未来长大桥梁概念[J].国外公路,2000,20(3):8-14.
    [15]Gimsing N J. Cable Supported Bridges[M]. Chichester:John Wiley,1997.
    [16]Gimsing N J. Cable supported bridges with spatial cable systems [J]. Bulletin of the International Association for Shell and Spatial Structures,1992,33(108):33-42.
    [17]黎祖华.超大跨度桥梁形式的探讨[J].国外桥梁,1992,(4):13-15.
    [18]万国朝.大贝尔特悬索桥设计[J].国外公路,1995,(1):11-17.
    [19]铁道部大桥工程局桥梁科学研究所编.悬索桥[M].北京:科学技术文献出版社,1996.
    [20]陈炳坤.土耳其伊兹米特海湾上混合型缆索承重桥的设计—为纪念伟大的预想家弗兰茨·迪辛格而作[J].国外桥梁,1997,(3):11-14.
    [21]周孟波,刘自明,王邦楣.悬索桥手册[M].北京:人民交通出版社,2006.
    [22]孙淑红,蒙云.吊拉组合桥交接区域吊杆的疲劳问题研究[J].重庆交通学院学报,1999,018(004):13-18.
    [23]孙淑红,蒙云.吊拉组合体系预应力连续加劲梁性能分析[J].重庆交通学院学报,1999,(04):30-39.
    [24]孙淑红,蒙云.几种吊拉组合体系主梁结构性能计算分析[C].中国公路学会桥梁和结构工程学会一九九九年桥梁学术讨论会,厦门,2000:697-705.
    [25]蒙云.大跨径P.F.C吊拉组合索桥结构计算分析[C].中国公路学会桥梁和结构工程学会1995年桥梁学术讨论会,广州,1995:377-382.
    [26]孙淑红.大跨度吊拉组合体系及计算方法研究[D].重庆:重庆交通学院,1999.
    [27]王伯惠.台湾的斜拉桥[J].东北公路,2000,23(4):56-61.
    [28]王伯惠.伶仃洋三大航道桥桥方案探讨(二)伶仃东桥[C].中国公路学会桥梁和结构工程学会一九九九年桥梁学术讨论会,2000:565-577.
    [29]方世乐,王萍.伶仃东航道桥方案设计与构思[J].广东公路勘察设计,1999,(3):36-48.
    [30]大连理工大学桥梁工程研究所.大连小平岛圣岛大桥改造工程[R].大连:大连理工大学,2006.
    [31]王伯惠编著.斜拉桥结构发展和中国经验[M].北京:人民交通出版社,2004.
    [32]大连理工大学.大连市跨海大桥工程预可行性研究报告[R].大连,2004.
    [33]杜高明.大跨度自锚式斜拉—悬索协作体系桥结构性能分析[D].大连:大连理工大学,2006.
    [34]张凯.自锚式斜拉—悬索协作体系桥地震反应分析[D].大连:大连理工大学,2006.
    [35]张永杰.自锚式吊拉组合桥设计及力学性能分析[D].大连:大连理工大学,2006.
    [36]张哲,王会利,黄才良等.自锚式斜拉—悬索协作体系桥梁设计与分析[J].公路,2006,(7):44-48.
    [37]大连理工大学桥梁工程研究所.大连庄河建设大桥[R].大连:大连理工大学,2005.
    [38]李国豪主编.桥梁结构稳定与振动[M].北京:中国铁道出版社,1992.
    [39]李国豪主编.工程结构抗震动力学[M].北京:中国铁道出版社,1980.
    [40]小西一郎著.戴振藩译:钢桥⑤[M].北京:中国铁道出版社,1981.
    [41]小西一郎著,朱立冬等译:钢桥③[M].北京:中国铁道出版社,1981.
    [42]王勖成,邵敏.有限单元法的基本原理和数值方法[M].北京:清华大学出版社,1995.
    [43]巴特K J,威尔逊E L.有限元分析中的数值方法[M].北京:科学技术出版社,1985.
    [44]钱伟长著.变分法及有限元[M].北京:科学出版社,1980.
    [45]Koishi I, Shiraishi N. On the free vibrational characteristics of long-spanned suspension bridge[C]. Int'l Symposium on Suspension Bridge, Lisbon,1966.
    [46]Komatsu S, Nishiura N. Torsional oscillation analysis of suspension bridges under the consideration of cross sectional distortion in suspended structure, JSCE,1974,4.
    [47]Van der woude F. Natural oscillations of suspension bridges[J]. Journal of the Structural Division,1982,108(8):1815-1830.
    [48]Hayashikawa T, Watanabe N. Vertical vibration in Timoshenko Beam Suspension bridges [J]. Journal of Engineering Mechanics,1984,110(3):341-356.
    [49]A M Abdel-Ghaffar. Suspension bridge vibration:Continuum formulation [J]. Journal of the Engineering Mechanics, ASCE,1982,108(6):1215-1236.
    [50]A M Abdel-Ghaffar. Vertical seismic behaviour of suspension bridge[J]. Earthquake Engineering and Structural Dynamics,1983, (11):1-19.
    [51]A M Abdel-Ghaffar. Suspension bridge response to multiple-support excitations[J]. Journal of the Engineering Mechanics Division,1982,108(2):417-435.
    [52]A M Abdel-Ghaffar. Vertical vibration analysis of suspension bridges[J]. Journal of the structure engineering division,1980,106(10):2053-2075.
    [53]A M Abdel-Ghaffar. Free lateral vibrations of suspension bridges[J]. Journal of Structure Engineering,1978,104(3):503-525.
    [54]孙焕纯,曲乃泗,林家浩编著.计算结构动力学[M].北京:高等教育出版社,1989.
    [55]克拉夫R W,彭津J.结构动力学[M].北京:科学出版社,1983.
    ,[56]武秀丽.结构工程中的振动理论及其应用[M].北京:中国铁道出版社,1980.
    [57]刘春城.混凝土自锚式悬索桥三维地震反应研究[D].大连:大连理工大学,2003.
    [58]黄海新.自锚式斜拉—悬吊协作体系桥动力响应研究[D].大连:大连理工大学,2006.
    [59]余报楚.混凝土斜拉桥与T构协作体系的极限承载力及动力响应研究[D].大连:大连理工大学,2005.
    [60]王高雄,周之铭,朱思铭,王寿松.常微分方程[M].北京:高等教育出版社,1983.
    [61]林武忠,汪志鸣,张九超.常微分方程[M].北京:科学出版社,2004.
    [62]周义仓,靳祯,秦军林.常微分方程及其应用[M].北京:科学出版社,2003.
    [63]王会利.自锚式斜拉—悬索协作体系桥结构性能分析与试验研究[D].大连:大连理工大学,2007.
    [64]王生楠.有限元素法中的变分原理基础[M].西安:西北工业大学出版社,2004.
    [65]胡海昌.弹性力学的变分原理及其应用[M].北京:科学出版社,1981.
    [66]老大中.变分法基础[M].北京:国防工业出版社,2007.
    [67]刘春城,张哲,石磊,杜蓬娟.混凝土自锚式悬索桥竖向自由振动的理论研究[J].工程力学,2005,22(4):126-130.
    [68]张哲.混凝土自锚式悬索桥[M].北京:人民交通出版社,2005.
    [69]陈仁福.大跨悬索桥理论[M].成都:西南交通大学出版社,1994.
    [70]石磊,刘春城,张哲.自锚式悬索桥挠度理论基础微分方程近似推导[J].哈尔滨工业大学学报,2004,36(12):1733-1735.
    [71]石磊.混凝土自锚式悬索桥设计理论研究[D].大连:大连理工大学,2003.
    [72]Timoshenko S P. Theory of Supension Bridges[J]. Journal of the Franklin Institu-te,1943,235(4):327-349.
    [73]吴恒立.悬索与吊桥及薄壁杆件理论[M].重庆:重庆大学出版社,1991.
    [74]肖晓春.地震作用下土-桩-结构动力相互作用的数值模拟[D].大连:大连理工大学,2003.
    [75]刘立平.水平地震作用下桩-土-上部结构弹塑性动力相互作用分析[D].重庆:重庆大学,2004.
    [76]周爱红.桩-土-结构相互作用体系的随机地震响应分析及动力可靠度研究[D].北京:北京交通大学,2007.
    [77]孔德森.桩-土相互作用计算模型及其在桩基结构抗震分析中的应用[D].大连:大连理工大学,2004.
    [78]刘伟岸.大型高桩承台基础的地震反应分析[D].上海:同济大学,2007.
    [79]Bycroft G N. Forced Vibrations of a Rigid Circular Plate on a Semi-infinite Elastic Space and on a Elastic Stratum[J]. Philo Trans Roy Soc,1956,248:327-368.
    [80]Reissner E. Stationare, axialsymmetrische durch eine schuttelnde masse erregte' schwingungen eines homogenen elastischen halbraumes[J]. Ingenieur-Archiv,1936, 7(6):381-396.
    [81]Jean WY, Ling TW, Penzien J. System parameter of soil foundation for time domain dynamic analysis[J]. Earthquake Engineering and Structure Dynamics.1990,19:541-553.
    [82]窦立军,杨柏坡,刘光和.土-结构动力相互作用几个实际应用问题[J].世界地震工程,1999,15(4):62-68.
    [83]Wolf J P吴川明,译.土与结构的动力相互作用[M].北京:地震出版社,1989.
    [84]王开顺,王有为,李林友.土与结构相互作用地震反应研究及实用计算[J].建筑结构学报,1986,2:64-76.
    [85]Medina F. Modeling of soil-structure interaction by finite and infinite elements[M]. Berkeley, California University,1985.
    [86]林皋.土-结构动力相互作用[J].世界地震工程,1991,(1):4-21.
    [87]Gazetas G. Soil dynamics:an overviews, dynamic behaviors of foundations and buried structures[M]. Elsevier Applied Science Publishers LTD,1987.
    [88]Lysmer J, Richart F E. Dynamic response of footings to vertical loading[J]. Journal of Soil Mechnical Foundation Division,1966,92:65-91.
    [89]W H Wu, H A Smith. Efficient Modal Analysis for structures with soil-structure interaction[J]. Earthquake Engineering and Structure Dynamic,1995,24(3):283-299.
    [90]J Guin, P K Banerjee. Coupled soil-pile-structure interaction analysis under seismic excitation[J]. Journal of Structural Engineering,1998,124(4):434-444.
    [91]Y X Cai, P L Gould, C S Desai. Nonlinear analysis of 3D seismic interaction of soil-pile-structure systems and application[J]. Engineering Structures,2000, 22 (2):191-199.
    [92]J P Stewart, G L Fenves, R B Seed. Seismic soil-structure interaction in buildings, Ⅰ:Analytical method [J]. Journal of Geotechnicaal and Geoenvironmental Engineering, 1999,125(1):26-37.
    [93]J P Stewart, G L Fenves, R B Seed. Seismic soil-structure interaction in buildings, Ⅱ:Empirical findings [J]. Journal of Geotechnicaal and Geoenvironmental Engineering, 1999,125(1):38-48.
    [94]K J Ahn, P L Gould. Interactive Base-isolation foundation system I:Finite element formulation[J]. Journal of the Engineering Mechanics,1992,118(10):2048-2058.
    [95]K J Ahn, P L Gould. Interactive Base-isolation foundation systemII:Finite element formulation[J]. Journal of the Engineering Mechanics,1992,118(10):2059-2071.
    [96]N Makris, D Badoni, E Delis, G Gazetas, R D Woods. Prediction of observed bridge response with soil-pile-structure interaction[J]. Journal of Structural Engineering,1994,120(10):2992-3011.
    [97]俞载道,傅公康.桩-土-高层框剪结构动力相互作用分析[J].同济大学学报,1984,1:66-79.
    [98]俞载道,王荣昌,应稼年.地基土与非线性多层剪切型结构相互作用体系的动力分析[J].同济大学学报,1986,14(3):271-280.
    [99]王开顺.地基阻抗与结构地震反应.地震工程与工程振动[J],1985,5(2):87-102.
    [100]王有为,王开顺.建筑物-桩-土相互作用地震反应分析的研究[J].建筑结构学报,1985,5(3):64-73.
    [101]范敏,解明雨,乌区瑞锋.土-桩-结构相互作用体系的非线性地震反应分析[J].地震工程与工程振动,1985,5(3):6-12.
    [102]刘季,阎维明.土-高层建筑、高耸结构相互作用地震反应分析[J].哈尔滨建筑工程学院学报.1988,21(4):11-28.
    [103]王复明,林皋.粘弹性非均质地基的动力柔度系数[J].土木工程学报.1990,23(1):54-64.
    [104]林皋,栾茂田,陈怀海.土-结构相互作用对高层建筑非线性地震反应的影响[J].土木工程学报,1993,26(4):1-13.
    [105]赵彤,于晓黎.高层建筑-基础-土体祸合系统的动力分析析[J].地震工程与工程振动,1991,11(3):67-75.
    [106]黄杰民,庄潮鹏.桩基高层结构体系地震响应的整体分析方法[J].建筑结构学报,1994,15(5):68-78.
    [107]廖雄华,周健,张克绪,李锡燮.广义位移法在土-结构相互作用问题分析中的应用[J].岩土工程,2001,23(6):672-676.
    [108]王霓,严士超.土-群桩-结构系统动力特性及相互作用地震反应分析[J].建筑结构学报,1990,11(3):61-80.
    [109]楼梦麟,吴京宁.桩基-结构体系的地震响应分析[J].土木工程学报,1999,32(5):56-61.
    [110]杨小卫.桩-土-结构动力相互作用的数值分析[D].武汉:武汉理工大学,2007.
    [111]胡聿贤.地震工程学[M].北京:地震出版社,1981.
    [112]范立础.桥梁抗震[M].上海:同济大学出版社,1997.
    [113]交通部公路规划设计院.JTJ004-89公路工程抗震设计规范[S].北京:人民交通出版社,1990.
    [114]交通部公路规划设计院JTG/T B02-01-2008公路桥梁抗震设计细则[S].北京:人民交通出版社,2008.
    [115]范立础,胡世德,叶爱君.大跨度桥梁抗震设计[M].北京:人民交通出版社,2001.
    [116]谢旭.桥梁结构地震响应分析与抗震设计[M].北京:人民交通出版社,2006.
    [117]王克海.桥梁抗震研究[M].北京:中国铁道出版社,2007.
    [118]Wai-Fah Chen, Lian Duan. Bridge Engineering:Seismic Design[M]. CRC:New York,2003.
    [119]陆锐.群桩桥梁结构抗震简化计算方法的比较分析[D].上海:同济大学,2001.
    [120]王猛.大跨度自锚式悬索桥空间地震响应分析[D].大连:大连理工大学,2009.
    [121]张博,宰金珉.考虑桩-土动力相互作用的钢管混凝土拱桥地震反应分析[J].南京工业大学学报,2007,29(6):23-27.
    [122]王浩,杨玉冬,李爱群,乔建东,陈政清.土-桩-结构相互作用对大跨度CFST拱桥地震反应的影响[J].东南大学学报(自然科学版),2005,35(3):433-437.
    [123]王浩,李爱群,韩晓林,李枝军.土-桩-结构相互作用对大跨悬索桥动力特性的影响研究[J].工程抗震与加固改造,2006,28(2):32-35.
    [124]蔡建业,郑史雄.桩-土相互作用对连续梁桥的动力性影响[J].四川建筑,2009,29(1):96-97.
    [125]刘爱荣,张俊平,禹奇才,周福霖.桩-土-结构相互作用对大跨度连续刚架钢桁拱桥地震响应影响研究[J].桥梁建设,2007,1:25-27.
    [126]雷坚,祝兵.考虑桩-土结构相互作用的斜拉桥动力特性分析[J].广东公路交通,2008,4:29-31.
    [127]邹立华,赵人达,陈兴冲.桩-土-独塔斜拉桥相互作用地震响应分析[J].计算力学学报,2006,23(2):242-246.
    [128]Rutenberg A, Heidebrecht A C. Approximate spectral multiple-support seismic analysis; traveling wave approach. Research Report. Hamilton,Ontario, Canada: Department of Civil Engineering, McMaster University,1987.
    [129]Dong K K, Wieland M. Application of response spectrum method to a bridge subjected to multiple support excitation[C]. IN:Proc.9th World Conference. Earthquake Engineering, Tokyo, Japan,1988,6:531-536
    [130]Kiureghian A D, Neuenhofer A. Response spectrum method for multi-support seismic excitaions[J]. Earthquake Engineering and Structural Dynamics,1992,21:713-740.
    [131]Yutaka Nakamura, Kiureghian A D, David Liu. Multiple-support response spectrum analysis of the golden gate bridge[M]. Berkeley:University of California at Berkeley,1993.
    [132]刘洪兵等.大跨度斜拉桥多支承激励地震响应分析[J].土木工程学报,2001,34(6):38-44.
    [133]刘洪兵等.多支承激励地震响应分析的简化反应谱法[J].中国公路学报,2002,15(1):34-37.
    [134]张亚辉,林家浩.香港青马桥抗震分析[J].应用力学学报,2002,19(3):25-30.
    [135]刘小弟,苏经宇.具有天然地震特征的人工地震波研[J].工程抗震,1992(3):33-36.
    [136]翟希梅,吴知丰.人工地震波反应谱拟合技术的改进[J].哈尔滨工业大学学报,1995,27(6):130-133.
    [137]黄朝光,彭大文.人工合成地震波的研究[J].福州大学学报(自然科学版),1996,24(4):82-88.
    [138]陈永祁,刘锡荟,龚思礼.人工合成地震波的研究[J].建筑结构学报,1981,2(4):34-42.
    [139]王亚飞.自锚式悬索桥地震响应分析和减震措施研究[D].大连:大连理工大学,2008.
    [140]钟万勰.结构动力学的精细时程积分法[J].大连理工大学学报,1994,34(2):131-136.
    [141]王君杰,周晶.基于演变随机过程模型的合成地震波[J].地震工程与工程振动,1997,17(1):11-18.
    [142]郭子雄,王妙芳.人造地震动合成的研究现状及展望[J].华侨大学学报(自然科学版),2006,27(1):7-11.
    [143]钟万勰,林家浩等.大跨度桥梁分析方法的一些进展[J].大连理工大学学报,2000,40(2):127-135.
    [144]林家浩,张亚辉,赵岩.大跨度结构抗震分析方法及近期进展[J].力学进展,2001,31(3):350-360.
    [145]苗家武,胡世德,范立础.大型桥梁多点激励效应的研究现状与发展[J]. 同济大学学报,1999,27(2):189-193.
    [146]Standard Specifications for Highway Bridges,16th Edition, Division I-A:Seismic Desing[S]. Washington:American Association of State Highway and Transportation Official(AASHTO), Inc,1995.
    [147]Seismic Design Criteria, Versionl.1[S]. Sacramento, California:California Department of Transportation(Caltrans), Division of Structures,1999.
    [148]Eurocode 8-Design Provisions for Earthquake Resistance of Structures, Part V Bridges[S]. Brussels:Comite European de Normalization(CEN),1994.
    [149]道桥示方书·同解说,V耐震设计篇[S].东京:日本道路协会,平成8年12月.
    [150]National Standard of Canada CAN/CSA-S6-00, Canadian Highway Bridge Design Code. Section 4:Seismic Design. CSA Internationsl,2000.
    [151]交通技术标准规范(中国台湾),公路桥梁耐震设计规范[S].台北:幼狮文化事业公司,1995.
    [152]范立础,卓卫东.桥梁延性抗震设计[M].北京:人名交通出版社,2001.
    [153]李杰,李国强.地震工程学导论[M].北京:地震出版社,1992.
    [154]Park R, Paulay T. Reinforced Concrete Structures[M]. New York:John Wiley&Sons, 1975.
    [155]Paulay T, Priestley M J N. Seismic Design of Reinforced Concrete and Masonry Buildings[M]. New York:John Wiley&Sons,1992.
    [156]Newmark N M, Hall W J. Seismic Design Criteria for Nuclear Reactor Facilities[C]. In: Proc.4th WCEE, Santiago, Chile:IAEE,1969,2:37-50.
    [157]Zahn F A, Park R, Priestley MJN et. Development of Design Procedures for the Flexural Strength and Ductility of Reinforced Concrete Bridge Columns [J]. Bulletin of the New Zealand National Society of Earthquake Engineering,1986,19(3):200-212.
    [158]Watson S, Zahn S A, Park R. Confining Reinforcement for Concrete Columens[J]. Journal of Structural Engineering,1994,120(6):1798-1824.
    [159]Watson S, Park R. Simulated Seismic Load Tests on Reinforced Concrete Columns[J]. Journal of Structural Engineering,1994,120(6):1825-1849.
    [160]Mander J B, Priestley M J N, Park R. Theoretical Stress-Strain Model for Confined Concrete[J]. Journal of Structural Engineering,1988,114(8):1804-1826.
    [161]朱伯龙,张琨联.矩形及环形截面压弯构件恢复力特性的研究[J].同济大学学报,1981,2:1-10.
    [162]沈聚敏,翁义军.钢筋混凝土构件的刚度和延性[R].北京:清华大学出版社,1981:54-71.
    [163]沈聚敏,翁义军,冯世平.周期反复荷载下钢筋混凝土压弯构件的性能[J].土木工程学报,1982,15(2):53-64.
    [164]阎贵平.梁式桥弹塑性地震反应与应用延性抗震设计方法的基础研究[D].上海:同济大学,1989.
    [165]刘庆华.钢筋混凝土桥墩抗震设计中滞回模型与损伤模型的试验与理论研究[D].北京:北方交通大学,1994.
    [166]杨新宝.钢筋混凝土桥梁抗震性能评估与加固[D].上海:同济大学,1997.
    [167]卓卫东.桥梁延性抗震设计研究[D].上海:同济大学,2000.
    [168]弓俊青,朱晞.以位移为基础的钢筋混凝土桥梁墩柱抗震设计方法[J].中国公路学报,2001,14(4):42-46.
    [169]卓卫东,范立础.延性桥墩塑性铰区最低约束箍筋用量[J].土木工程学报,2002,35(5):47-51.
    [170]魏丽华,岳渠德,姜福香.桥梁结构延性抗震分析[J].青岛理工大学学报,2005,26(6):27-29.
    [171]薛瑞杰,袁万城.国内外桥梁延性抗震构造设计比较[J].土木工程学报,2009,31(2):1-8.
    [172]方海,刘伟庆,王仁贵.自锚式悬索桥结构纵向消能减震设计方法研究[J].地震工程与工程振动,2006,26(3):222-224.
    [173]Jankowski R, Wilde K, Fujino Y. Pounding of superstructure segments in isolated elevated bridge during earthquakes[J]. Earthquake Engineering & Structural Dynamics, 1998,27(5):487-502.
    [174]Delis E A, Malla R B, Madani M. Energy dissipation devices in bridges using hydraulic dampers[J]. ASCE, New York,1996,2:1188-1191.
    [175]周云,刘季.新型耗能(阻尼)减震器的开发与研究[J].地震工程与工程振动,1998,18(1):71-79.
    [176]Kwon S D, Park K S. Suppression of bridge flutter using tuned mass dampers based on robust performance design[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2004,92(11):919-934.
    [177]Ruangrassamee A, Kawashima K. Control of nonlinear bridge response with pounding effect by variable dampers[J]. Engineering Structures,2003,25(5):593-606.
    [178]魏琏,郑久建,韦承基等.论粘滞阻尼减震结构及其抗震设计方法[J].建筑结构,2004,34(10):10-16.
    [179]戴显荣,刘建勋.大跨度斜拉桥减震耗能非线性纵向地震反应分析[J].桥梁建设,2004(6):17-19.
    [180]李建中,袁万城.斜拉桥减震耗能体系非线性纵向地震反应分析[J].中国公路学报,1998,11(1):71-76.
    [181]周云.粘滞阻尼器减震结构设计[M].武汉:武汉理工大学出版社,2006.
    [182]王志强,胡世德,范立础.东海大桥粘滞阻尼器参数研究[J].中国公路学报,2005,18(3):37-42.
    [183]Soong T T, Dargush G F. Passive energy dissipation systems in structural engineering[M]. New York:John Willy&sons Inc,1997.
    [184]熊世树,周正华,王补林.铅芯橡胶隔震支座恢复力模型的分析方法[J].华中科技大学学报(城市科学版),2003,20(2):28-31.
    [185]李兴田.设有Maxwell阻尼器的连续梁桥的减震效果分析[J],兰州理工大学学报,2007,33(5):123-127.
    [186]宋旭明,戴公连,曾庆元.自锚式悬索桥的粘滞阻尼器减震控制[J].华南理工大学学报(自然科学版),2009(3):104-108.
    [187]过镇海.钢筋混凝土原理与分析[M].北京:清华大学出版社,2003.
    [188]董毓利.混凝土非线性理学基础[M].北京:中国建筑工业出版社,1997.
    [189]江见鲸.钢筋混凝土结构非线性有限元分析[M].西安:陕西科学技术出版社,1994.
    [190]吕西林,金国芳,吴晓涵.钢筋混凝土非线性有限元分析理论与应用[M].上海:同济大学出版社,1994.
    [191]张新培.钢筋混凝土抗震结构非线性分析[M].北京:科学出版社,2003.
    [192]梁智垚,彭伟.桥梁结构弹塑性地震反应分析新进展[J].世界地震工程,2007,23(4):163-169.
    [193]夏修身,陈兴冲,苏伟,甄津津.新开河大桥弹塑性地震反应分析[J].兰州交通大学学报,2008,27(3):18-22.
    [194]Kent D C, Park R. Flexural members with confined concrete [J]. Journal of The Structural Division,1971,97(7):1969-1990.
    [195]聂利英,李建中,范立础.弹塑性纤维单元及其单元参数分析[J].工程力学,2004,21(3):15-20.
    [196]秦从律,张爱晖.基于截面纤维模型的弹塑性时程分析方法[J].浙江大学学报(工学版),2005,39(7):1003-1008.
    [197]朱巍志.自锚式斜拉-悬索协作体系桥合理成桥状态确定与若干问题研究[D].大连:大连理工大学,2009.
    [198]叶爱君.桥梁抗震[M].北京:人民交通出版社,2002.
    [199]Skinner R I, Robinson W H, Mcverry G H工程隔震概论[M].谢礼立等译.北京:地震出版社,1996.
    [200]日本免震构造协会编.图解隔震结构入门[M].叶列平译.北京:科学技术出版社,1998.
    [201]钟铁毅,杨风利,夏禾.基于能量法的铅芯橡胶支座隔震桥梁设计方法[J].中国铁道科学,2009,30(2):43-48.
    [202]Song T T, Dargush G F. Passive Energy Dissipation Systems in Structural Engineering[M]. New York:John Wiley&Sons,1997.
    [203]王常峰.隔震桥梁地震反应及非迭代设计方法研究[D].兰州:兰州铁道学院,2002.
    [204]吴彬.铅芯橡胶支座力学性能及其在桥梁工程中减、隔震应用的研究[D]北京:铁道科学研究院,2003.
    [205]钟铁毅,李宇,杨风利等.铅芯橡胶支座隔震连续梁桥的地震能量反应分析[J].中国铁道科学,2009,30(3):9-14.
    [206]Shehata E, Abdel Raheem. Pounding mitigation and unseating prevention at expansion joints of isolated multi-span bridges[J]. Engineering Structures,2009,31(10): 2345-2356.
    [207]Meng-Hao Tsai. Transverse earthquake response analysis of a seismically isolated regular bridge with partial restraint[J]. Engineering Structures,2008,30(2): 393-403.
    [208]R S Jangid. Equivalent linear stochastic seismic response of isolated bridges[J]. Journal of Sound and Vibration,2008,309(3):805-822.
    [209]B B Soneji, R S Jangid. Influence of soil-structure interaction on the response of seismically isolated cable-stayed bridge[J]. Soil Dynamics and Earthquake Engineering,2008,28(4):245-257.
    [210]曾攀,阎贵平.铅芯橡胶支座动力特性对连续梁桥地震响应的影响[J].铁道学报,2001,23(5):96-100.
    [211]R S Jangid. Seismic response of isolated bridges[J]. Journal of Bridge Engineering, 2004,9 (2):156-166.
    [212]Alper Ucak, Panos Tsopela. Effect of Soil-Structure Interaction on Seismic Isolated Bridges[J]. Journal of Structural Engineering,2008,134(7):1154-1164.
    [213]M C Kunde, R S Jangid. Seismic behaviour of isolated bridges:A state-of-the-art review[J]. Electronic Journal of Structural Engineering,2003,3:140-170.
    [214]Kunde M C, Jangid R S. Effects of pier and deck flexibility on the seismic response of the isolated bridges[J]. Journal of Bridge Engineering,2006,11(1):109-121.
    [215]陈守煜.工程模糊集理论与应用[M].北京:国防工业出版社,1998.
    [216]Chen S-y. Theory of fuzzy optimum selection for multi-stage and multi-objection decision making system[J]. Journal of fuzzy mathematic,1994,2(1):163-174.
    [217]Wang H-L, Zhang Z, Huang C-L, Shi L. Using a fuzzy optimum model to assess bridge design options[J]. Bridge Engineering,2006,159:9-15.
    [218]Zhang Z, Wang H-L,Huang C-L, Shi L. Application of dual-pole fuzzy pattern recognition model to bridge engineering[C]. Proceedings of the World Engineers'Convention 2004, Vol C, Transportation and Sustainable Mega-Cities-Transportation and Sustainable Mega-Cities, Beijing:China Science Technology Press,2004:208-213.
    [219]王会利,李海滨,黄才良等.两级模糊优选模型及非结构性模糊决策理论在桥梁方案比选中的应用[J].公路交通科技,2004,21(7):79-82.
    [220]张哲,王会利,石磊,黄才良.桥梁方案多层多目标模糊优选模型及其应用[J].哈尔滨工大学学报,2006,38(9):1567-1571.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700