用户名: 密码: 验证码:
钨极氩弧原位合成TiC增强铁基熔敷层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在矿山开采、重型冶金、油气钻探等重工业领域,能够承受剧烈冲击及抗腐蚀、抗磨损成为机械零部件的基本要求,在耐磨部件表面熔敷具有高硬度、高耐磨损性能的涂层成为这些领域修复部件、强化零件使用寿命的重要途径。本文利用钨极氩弧热源,熔敷预涂在普通碳钢表面上的合金粉末,制备出原位合成TiC增强的铁基熔敷层,并对熔敷层的微观组织、TiC增强相的生长机制、熔敷层磨损性能等进行了系统分析,研究了影响熔敷层组织及性能的因素及规律。
     预涂合金粉末组分是钨极氩弧原位合成TiC铁基熔敷层的关键。试验表明,纯钛粉+石墨组分在熔敷过程中容易氧化生成TiO_2,致使熔渣的熔点升高,钨极氩弧熔敷时工艺性较差;加入铁基自熔性合金粉末的组分(G314+Ti+C)能够获得较多的原位合成TiC增强相,熔敷工艺性能优良,具有TiC+M_(23)C_6碳化物复合增强的熔敷层,但其抗裂性能下降;钛铁+石墨组分由于铁.钛低熔点共晶的存在,有利于TiC增强相的原位合成,提高了熔敷层中TiC的合成数量,获得了以聚集树枝状分布伴以较少数量弥散分布的TiC分布特征,增强效果明显。且该粉末组分工艺性好,价格低廉,能够获得与母材结合良好、抗磨损性能和抗裂性能俱佳的铁基熔敷层,是钨极氩弧原位合成TiC增强铁基熔敷层的理想组分。
     钨极氩弧熔敷是在非平衡热力学条件下进行的,由于熔池中热传导及结晶潜热的综合作用,使熔池中不同区域形成温度梯度和成分过冷,初生TiC沿树枝状方向断续形核,熔池中Ti、C原子因浓度梯度而扩散至最近的TiC晶核,使得初生TiC以侧面生长方式长大,形成了呈树枝状排列的“长砖块”状TiC颗粒微观形貌。距离较近的TiC晶核在长大过程中粘连生长,形成了尺寸较大TiC颗粒。而在熔池凝固过程的共晶转变中,TiC的形核生长是扩散机制,先凝固Fe基体的包覆使TiC生长的各向异性被抑制,形成了不同形状的共晶TiC颗粒。原位合成的TiC颗粒呈典型的小面生长形态,其显露面为生长速度较慢的密排[111]晶面。TiC颗粒与基体金属的结合界面洁净,无反应物、附着物生成,与基体金属的结合强度高。
     预涂层厚度、焊接电流、熔敷速度、熔敷层数等不同的熔敷参数影响着熔敷层的成形和耐磨性能。研究表明,当预涂层厚度为1.2mm,焊接电流150A,熔敷速度为55-60mm/min,熔敷层数为三层时,能够获得成形好、与基体结合强度高组织与性能优异的TiC增强铁基熔敷层。不同熔敷层数的对比试验表明,三层熔敷能有效降低组分中Ti、C元素的稀释率,提高了熔敷层中增强颗粒的数量及尺寸,初生TiC颗粒树枝状分布和共晶TiC颗粒弥散分布相结合,基体为低碳马氏体组织,有利于熔敷层硬度及抗磨损性能的提高,又能有效避免裂纹形成。
     预涂粉末的组分及含量影响着熔敷层中原位合成TiC的数量、尺寸、分布特征和基体组织构成。当组分中Ti∶C摩尔数比为1∶1.2时,熔敷层中Fe_2Ti有害相消失,原位合成TiC颗粒的数量增多,尺寸增大,基体为低碳马氏体组织,能够获得硬度较高,抗磨损性能较好的铁基熔敷层;粉末组分中加入稀土La_2O_3,增加了原位合成TiC的异质形核核心,使得熔敷层中TiC颗粒由发达的树枝状分布变为细小的树枝状或者颗粒状弥散分布。另一方面稀土La_2O_3改变了TiC形核与长大方式,降低了TiC中的碳饱和度,对TiC晶体的力学性能带来不利影响,使TiC的强度和硬度降低,影响了其增强效果,使得熔敷层的硬度降低,也使得加入稀土后熔敷层的抗磨损性能有所下降;粉末组分中加入钒铁后,熔敷层中TiC-VC增强相数量增多,呈聚集树枝状和弥散颗粒状分布,形成了TiC-VC复合增强效果。TiC-VC晶粒的元素分布特征表明,TiC-VC晶粒中TiC、VC独立存在并生长,形成了TiC-VC的共生晶粒。另外V元素的加入细化了基体组织晶粒,提高了基体金属和熔敷层的硬度。
     通过对母材、熔敷层的对比磨损试验表明,在相同磨损条件下,钨极氩弧原位合成TiC增强铁基熔敷层的磨损体积为母材金属的1/20~1/23,具有优异的抗磨损性能。熔敷层磨损过程中,参与摩擦更多的是暴露于摩擦面的TiC颗粒,由于其阻碍和钉扎作用,摩擦过程需要消耗更多的摩擦功,磨损量降低。熔敷层基体金属的磨损主要是显微切削与粘着损失,TiC增强相则是经摩擦副较长距离、多次重复摩擦后磨损变小,直至最终剥离脱落。磨痕内有浅而小的凹坑及短而浅的犁沟,犁沟始于磨损变小的TiC颗粒脱落位置而止于下一个耐磨TiC前。不同层数熔敷层对比试验表明,尺寸较大的呈聚集树枝状分布的TiC颗粒与基体金属相互绞接在一起,结合更紧密,阻磨作用更强,三层熔敷层能够获得最优的抗磨损性能。
Properties of endurance impact, corrosion resistance and wear resistance are the basic requirements for components which are employed in commercial application such as mine exploration, heavy metallurgy and gasoline drilling. The method of development high-hardness and anti-resistant coating on the surface of components is a valuable way to repair it and prolong their service life. In this research, the Fe-based coating reinforced by in-situ TiC was fabricated by tungsten-inert gas (TIG) melting process employing a proper amount of alloy powder prepared on the surface of ordinary carbon steel substrate, and the microstructure, wear properties of the coatings and the growth mechanism of TiC carbides were analyzed systematically. At same time, the factors and rules influencing microstructure and properties were investigated.
     It is found that the powders constituents are the key factor to synthesize in-situ TiC reinforced coatings by using TIG welding process. Because of the lower energy-flux density of TIG compared to laser and plasma, it is necessary to select powder elements with lower melting point which can quickly form molten pool. And then, metallurgical reaction occurs between titanium and carbon and synthesizes well-shaped overlap with high effective mass of TiC. The reaction equation is as followed: Ti + C→TiC. According to this principle, the powders composed of ferrotitanium and graphite (FeTi+C ) has excellent processing properties, which can produce a good bonding, excellent mechanical and wear resistant properties of the coating. The in-situ TiC in the coating distribute in dendritic mode majority, with small TiC grains in diffusion minority. Although iron-based self-fluxing alloy powder (G314) has a lower melting point and well manufacturability, complex carbide M_(23)C_6 emerges besides the in-situ TiC reinforced phase in the coating, which increases the crack sensitivity of the coatings. In addition, TiC carbides can also be formed via pure Ti element and graphite, however, the active chemical property of pure titanium, it can react with oxygen easily and form TiO_2, which result in the increasing of the components melting point and poor shaping.
     Under the nonequilibrium condition of TIG fabrication, primary TiC grains in the Fe-based coating reveal dendrite crystal in majority and eutectic form in minority. Because of the directionality of thermal conduction and heat emission in the course of the fabrication of the TiC, component overcooling emerges in the growth front of TiC grains. This results in definite orientation of primary TiC. The primary TiC grows and turns to dendrite distribution. Nevertheless, in the course of eutectic transformation during the solidification of molten pool, the mechanism of TiC nucleation and growth is diffusion. The anisotropic growth of TiC is prohibited by the cladding of iron matrix and the TiC grains become graininess eutectic TiC, the structure and pattern of eutectic TiC_is more close to ideal octahedral shape of face-centered cubic TiC. The growth of in-situ TiC is specific small-plain growth. The exposure plain of TiC grains is the close packing [111] plain which grows slowly. The interface between in-situ TiC carbides and the matrix remains clean and free from deleterious phase. Thus, the carbide-matrix has a strong interface bond.
     Cladding parameters affected the microstructure and properties of the coatings obviously. By selecting proper cladding parameters, such as thickness of the pre-coated coating with 1.2mm, welding current with 150A, cladding speed with 55-60/min, and tri-layers cladding, TiC reinforced coatings, which possess well appearance, high interface strength with the substrate and superior microstructure and property can be obtained. Multilayer cladding method was employed to reduce the dilution effect of substrate metal on the Ti and C elements, thus increasing the amount of the reinforcements in the cladding. For multilayer cladding, it is also found that the particle distribution can be characterized as combination of primary TiC dendrites and eutectic particles. In addition, as FeTi alloy could combine with carbon to form lots of TiC carbides and decrease the carbon content in matrix, which leads to change the microstructure to low carbon martensite. It is favourable for improving resistance for crack and wear resistance of the coatings. Experimental results showed that cladded coating with high hardness and good wear resistance was obtained. At same time, the problems of poor appearance and cracking were also avoided.
     The present study shows that the ratio of FeTi and graphite influences directly not only on the formation of carbides but also matrix microstructure and hardness. Optimization of the composition and content of the raw alloy powder can influence the microstructure of the coating matrix and the amount, size and distribution of the TiC reinforcements. While the ratio of Ti:C is 1:1.2, the detrimental phase of Fe_2Ti can be effectively decreased, and the microstructure of the matrix is composed of low carbon martensite and residual austenite. Moreover, with increasing of graphite, the amount of in-situ TiC increased, and the primary dendrites of TiC tended to transform from fine dendrites to coarse dendrites, which improve the wear resistance of the coating.
     With proper addition of La_2O_3, the nucleus of in-situ TiC was increased and the reinforcement phase of TiC transformed from coarse dendrites to more fine dendrites or diffusive particles. Nevertheless, since the La_2O_3 acted as the heterogeneous nucleus of TiC, the nuclearation and growing mechanism of TiC were changed and the saturation of carbon in TiC was decreased. These brought detrimental effect to the mechanic properties of the TiC crystal, which includes decrease of the hardness of TiC. Consequently, the reinforcing effect was depressed, and the wear resistance of the cladded coating with addition of rear-earth was decreased. When ferrovanadium was added, the TiC/VC grain was formed to produce synergetic reinforcing effect. On the other hand, the grains the coating were thinning and the strength of the substrate were increased.
     Wear test of the substrate and cladded coating showed that under the same load and wear sliding" distance, the wear volume loss of the in-situ TiC reinforced coating produced using TIG was only one twentieth of the substrate, or even less. Compared with the substrate, the average value of the wear coefficient of the clad coating was lowered 0.05-0.1. TiC grains exposed in the surface coating contact with the grinding wheel dominantly in wearing. As a result, higher drag force is needed to overcome encumbrance and embedment resulting from the reinforced TiC particles and wear loss can be reduced enormously with the same load.
     According to the results of dry wear test, main abrasive mechanism of the coating is pull-out of the diminished reinforcements and micro-plough of the substrate. In grinding crack, there are a lot of depressions owing to pull-out of the diminished TiC, and short and shallow grooves developed in the substrate. The grinding cracks begin at the pull-out point of diminished TiC and stop at next resistant TiC grain. According to the examination with different layers, three-layer coatings have the best wear resistant properties. The volume fraction of the reinforcements in the coating is enhanced by multi-layer cladding, which result in large TiC grains and embedded on the substrate in the form of accumulated petaliform. It combines with the substrate and bonds tightly. Therefore, the TiC grains can not be pull out easily in wearing and reveals good wear resistant properties.
引文
1 徐滨士,朱韶华等编著.表面工程的理论与技术[M].北京:国防工业出版社,1999.
    2 孙希泰等编著.材料表面强化技术[M].北京:化学工业出版社,2005.
    3 王新洪,邹增大,曲仕尧.表面熔融凝固强化技术[M]。北京:化学工业出版社,2005.
    4 Xu binshi, Zhang wei, Xu weipu. Influence of oxides on high velocity arc sprayed Fe-Al/Cr_3C_2 composite coatings[J]. Joural of Central University of Technology, 2005, 12(3): 259-262.
    5 Y. Chen, H. M. Wang. Growth morphologies and mechanism of TiC in the laser surface alloyed coating on the substrate of TiAl intermetallics[J]. Journal of Alloys and Compounds. 2003, 351: 304-308.
    6 R. L. Sun, D.Z. Yang, L.X. Guo, et al. Laser cladding of Ti-6Al-4V alloy with TiC and TiCp Ni-Cr-B-Si powders[J]. Surface and Coatings Technology. 2001, 135: 307-312.
    7 Jongmin Lee, Kwangjun Euh, Jun Cheol Oh, et al. Microstructure and hardness improvement of TiC/stainless steel surface composites fabricated by high-energy electron beam irradiation[J]. Materials Science and Engineering. 2002, A323: 251-259.
    8 V. Lopex, et al. Laser melting of plasma-sprayed alumina coatings[J], materials Science and Engineering, 2000, A172: 189-195.
    9 K. C. Chang, et al. Oxidation behavior of thermal barrier coatings modified by laser remelting[J]. Surface and Coatings Technology. 1998, 102: 197-204.
    10 杨森,钟敏霖,刘文今.激光熔覆制备Ni/TiC原位自生复合涂层及其组织形成规律的研究[J].应用激光,2002,4,22(2):105-108.
    11 洪永昌,夏正文.激光扫描速度对Co基合金堆焊重熔层组织和硬度的影响[J].热处理,2006,21(1):31-35.
    12 T.C. May-Smith, D.P. Shepherd and R.W. Eason. Growth ofa multilayer garnet crystal double-clad waveguide structure by pulsed laser deposition[J]. Thin Solid Films. 2007.
    13 U. de Oliveira, V. Ocelik, J.Th.M. De Hosson. Microstresses and microstructure in thick cobalt-based laser deposited coatings[J]. Surface and Coatings Technology. 2007, 201(14): 6363-6371.
    14 R. Jendrzejewski, G. Sliwinski, M. Krawczuk and W. Ostachowicz. Temperature and stress during laser cladding of double-layer coatings [J]. Surface and Coatings Technology. 2006, 201(6): 3328-3334.
    15 张细菊,方军,史华忠等.钢表面激光熔覆TiCp/Fe基合金复合耐磨涂层[J].武汉冶金科技大学学报.1997,20(3):294-299.
    16 Godfrey C. Onwubolu, J. Paulo Davim, Carlos Oliveira, A. Cardoso. Prediction of clad angle in laser cladding by powder using response surface methodology and scatter search[J]. Optics & Laser Technology. 2007, 39(6): 1130-1134.
    17 Hamidreza Alemohammad, Shahrzad Esmaeili, Ehsan Toyserkani. Deposition of Co-Ti alloy on mild steel substrate using laser cladding[J]. Materials Science and Engineering: A. 2007, 456(1-2): 156-161.
    18 S. Economou, M. De Bonte, J. P. Celis, et al. Tribological behavior of TiC/TaC reinforced cermet plasma sprayed coatings tested against sapphire[J]. Wear. 1995, 185(1-2): 93-110.
    19 R. J. Damani, P. Makroczy. Heat treatment induced phase and microstructural development in bulk plasma sprayed alumina[J]. Journal of the European Ceramic Society. 2000, 20(7): 867-888.
    20 Pavel Ctibor, Radka Lechnerova, Viktor Benes. Quantitative analysis of pores of two types in a plasma-sprayed coating [J]. Materials Characterization. 2006, 56(4-5): 297-304.
    21 李剑锋,戴玮玮,丁传贤.等离子喷涂碳化铬-镍铬涂层的摩擦学特性[J].摩擦学学报,1996,16(1):14-20.
    22 吴玉萍.等离子弧熔覆Fe基合金+TiC涂层中的陶瓷相行为与相结构[J].焊接学报.2001,22(6):89-91.
    23 Y. Xie, H.M. Hawthorne. The damage mechanisms of several plasma-sprayed ceramic coatings in controlled scratching[J]. Wear. 1999, 233-235: 293-305.
    24 王惜宝,王晓峰,贾凤锁.等离子弧粉末堆焊条件下粉末颗粒的热行为Ⅰ粉末颗粒与等离子弧之间的传热过程研究[J].焊接学报.2002,23(4):13-16.
    25 C.S. LIU, J.H. HUANG, S. YIN. The influence of composition and process parameters on the microstructure of TiC-Fe coatings obtained by reactive flame spray process[J]. JOURNAL OF MATERIALS SCIENCE. 2002, 37: 5241-5245.
    26 朱子新,徐滨士,马世宁等.高速电弧喷涂Fe-Al/WC复合涂层的组织结构及其滑动磨损性能研究[J].中国表面工程.2003,62(5),15-19.
    27 HUIYUAN LIU, JIHUA HUANG. Reactive thermal spraying of TiC-Fe composite coating by using asphalt as carbonaceous precursor[J]. JOURNAL OF MATERIALSSCIENCE. 2005, 40: 4149-4151.
    28 B. Uyulgan, E. Dokumacia, E. Celika, et al. Wear behaviour of thermal flame sprayed FeCr coatings on plain carbon steel substrate[J]. Journal of Materials Processing Technology. 2007(Article in Press).
    29 S. Harsha, D. K. Dwivedi, A. Agrawal. Influence of WC addition in Co-Cr-W-Ni-C flame sprayed coatings on microstructure, microhardness and wear behaviour[J]. Surface and Coatings Technology. 2007, 201(12): 5766-5775.
    30 M. P. Planche, H. Liao, B. Normand et al. Relationships between NiCrBSi particle characteristics and corresponding coating properties using different thermal spraying processes[J]. Surface and Coatings Technology. 2005, 200(7): 2465-2473.
    31 刘长松,殷声.反应热喷涂的发展[J].材料保护.2000,33(1):83-85.
    32 HuiYuan Liu, JiHua Huang. Reactive flame spraying of TiC-Fe cermet coating using asphalt as a carbonaceous precursor[J]. Surface and Coatings Technology. 2006, 200(18-19): 5328-5333.
    33 T. Watanabe, X. Wang, E. Pfender ,J. Heberlein. Correlations between electrode phenomena and coating properties in wire arc spraying[J]. Thin Solid Films. 1998, 316(1-2): 169-173.
    34 Zheng Chen, Y. Zhou. Surface modification of resistance welding electrodes by electro-spark deposited composite coatings Part Ⅱ. Metallurgical behavior during welding[J]. Surface and Coatings Technology. 2006, 201(6): 2419-2430.
    35 杨尚磊,吕学勤,邹增大等.基于TiC-VC的抗磨粒磨损堆焊焊条[J].机械工程材料,2004,28(6):20-22.
    36 Takayuki Watanabe, Tadayuki Sato, Atsushi Nezu. Electrode phenomena investigation of wire arc spraying for preparation of Ti-Al intermetallic compounds[J]. Thin Solid Films. 2002, 407(1-2): 98-103.
    37 Arvind A. garwal, Narendra B. Dahotre. Pulse electrode deposition of superhard boride coatings on ferrous alloy[J]. Surface and Coatings Technology. 1998, 106(2-3): 242-250.
    38 G. Ruckert, B. Huneau, S. Marya. Optimizing the design of silica coating for productivity gains during the TIG welding of 304L stainless steel[J]. Materials & Design. 2007, Article in Press.
    39 Soner Buytoz, Mustafa Ulutan, M. Mustafa Yildirim. Dry sliding wear behavior of TIG welding clad WC composite coatings[J]. Applied Surface Science. 2005, 252(5): 1313-1323.
    40 S. Mridha, H. S. Ong, L. S. Poh, P. Cheang. Intermetallic coatings produced by TIG surface melting[J]. Journal of Materials Processing Technology. 2001, 113(1-3): 516-520.
    41 F. T. Cheng, K. H. Lo, H. C. Man. NiTi cladding on stainless steel by TIG surfacing process Part Ⅰ. Cavitation erosion behavior[J]. Surface and Coatings Technology. 2003, 172(2-3): 308-315.
    42 张传明,尚丽娟,胡南昌等.氩弧熔覆镍基自熔合金的工艺研究[J].沈阳工业大学学报,28(1):33-36-58.
    43 杨元修,康福仪.球铁表面氩弧重熔强化技术的研究[J].阀门,2001(3):16-18.
    44 宗培,王志国,仲晨华等.TIG熔修对焊接接头的金相组织及断裂韧性的影响[J].兵器材料科学与工程,2003,26(5):40-43.
    45 李冬霞,贾宝春,刘跃进等.高强钢TIG熔修焊缝裂纹的低温力学性能研究[J].郑州纺织工学院学报,2001,12(1):21-23.
    46 郝建军,马跃进,黄继华等。氩弧熔覆Ni60A耐磨层在农机刀具上的应用[J].农业工程学报,2005,21(11):73-76.
    47 刘喜明,连建设,关振中等.氩弧熔覆Ni35B+Co-WC层的组织、性能及强化机制[J].钢铁研究学报,1999,11(5):42-46.
    48 高桥涉. Particulate reinforced titanium matrix composites[J]. Metal. 1997, 67(1): 64-70(in Japanese).
    49 梅志,顾明元,吴人洁.金属基复合材料界面表征及其进展[J].材料科学与工程.1996,14(3):1-5.
    50 冯可芹,杨屹,王一三等.铁基复合材料的制备技术与展望[J].机械工程材料,2002,26(12):9-11.
    51 杨才定,薛烽,吴钱林等.原位合成TiC颗粒增强铝基复合材料及其磨损性能[J].东南大学学报(自然科学版),2005,35(6):907-910.
    52 S. Ranganath, A review on particulate-reinforced titanium matrix composites[J]. J. Mater. Sci., 1997, 32(1): 1-16.
    53 Stanley Abkowitz, Paul F. Weihrauch, Susan M. Abkowitz, Particulate-reinforced titanium alloy composites economically formed by combined cold and hot isostalic pressing[J]. Industrial Heating, 1993, 60(9): 32-37.
    54 M. H. Loretto, D. G. Konitzer, The effect of matrix reinforcement reaction on fracture in Ti-6Al-4V base composites[J]. Metal. Mater. Trans., 1990, 21A(6): 1579-1587.
    55 S. K. Choi, M. Chandrosekaran, M. J. Brabers, Interaction between titanitum and SiC[J]. J. Mater. Sci., 1990, 25(4): 1957-1964.
    56 陈华辉,邢建东,李卫.耐磨材料应用手册[M],北京:机械工业出版社,2006.
    57 李荣久主编.陶瓷-金属复合材料(第2版)[M].北京:冶金工业出版社,2004.
    58 Kitty W. Lee, Yu-Hsia Chen, Yip-Wah Chung, et al. Hardness internal stress and thermal stability of TiB_2/TiC multilayer coatings synthesized by magnetron sputtering with and without substrate rotation[J]. Surface and Coatings Technology. 2004, 177-178: 591-596.
    59 王红美,蒋斌,徐滨士等.纳米SiO_2颗粒增强镍基复合镀层的组织与微动磨损性能研究[J].摩擦学学报,2005,25(3):289-292.
    60 吕维洁,杨志峰,张荻等.原位合成钛基复合材料增强体TiC的微结构特征[J].中国有色金属学报.2006,12(3):511-515.
    61 杨瑞成,周琦,郑丽平等.WC,TiC,Fe_3C及Co_2C的价电子结构与性能的分析[J].甘肃工业大学学报.2001,27(3):11-14.
    62 金云学.TiCp/Ti复合材料TiC生长形态及其控制.哈尔滨工业大学博士学位论文.
    63 吴玉萍,刘立民.常压等离子熔覆FeCrSiB+TiC涂层的研究[J].煤炭学报.2001,26(4):414-417.
    64 R.B.Heimann. Application of Plasma-sprayed Ceramic Coatings[J]. Key Engineering Materials (Advanced Ceramic Materials). 1996, 122-124: 399-442.
    65 L.Fabbri, M.Oksanen. Characterization of plasma-sprayed coatings using nondestructive evaluation techniques: round-robin test results[J]. Journal of Thermal Spray Technology. 1999, 8(2): 263-272.
    66 吴军,王成国,孙康宁.TiC弥散强化铁基合金粉末[J].金属热处理学报,1996,17(4):56-60.
    67 黄继华,刘长松,党全坤等.TiC/Fe-Al复合涂层反应火焰喷涂研究[J].粉末冶金技术.2002,20(4):219-222.
    68 W.H. JIANG, W.D. PAN, G H. SONG, et al. In-situ synthesis ofa TiC-Fe composite in liquid iron[J]. JOURNAL OF MATERIALS SCIENCE LETTERS. 1997, 16: 1830-1832.
    69 R. Zee, Chi Yang, Yi Xing, et al. Effects of boron and heat treatment on structure of dual-phase Ti-TiC[J]. J. Mater. Sci., 1991, 26(14): 3853-3861.
    70 王一三,张欣苑,李凤春等.反应铸造生成Fe-TiC梯度表面复合材料的研究[J].热加工工艺.1999,4:13-15.
    71 Jongmin Lee, Kwangjun Euh, Sunghak Lee, et al. Microstructural analysis of TiC reinforced ferrous surface composites processed by accelerated electron beam irradiation[J]. Current Applied Physics. 2001, 1: 467—471.
    72 S. Economou, M. Bonte, J. Celis, et al. Processing, Structure and Triological Behavior of TiC-reinforced Plasma Sprayed Coatings[J]. Wear. 1998, 220: 34-50.
    73 武晓雷,陈光南.原位TiC/金属基激光熔覆涂层的微结构特征[J].金属热处理学报.1998,19(4):1-8
    74 D.A.Noble. Abrasive Wear Resistance of Hardfacing Weld Deposits[J]. Metal Constructure. 1985, 17(9): 605-611.
    75 E.A. Levashov, P.V. Vakaev, E.I. Zamulaeva, et al. Disperse-strengthening by nanoparticles advanced tribological coatings and electrode materials for their deposition[J]. Surface and Coatings Technology. 2007, 201(13): 6176-6181.
    76 王新洪,邹增大,宋思利等.TiC-VC免预热耐磨堆焊焊条[J].焊接学报,2002,23(4):31-34.
    77 Weijie Lu, Di Zhang, Xiaonong Zhang, et al. Microstructural characterization of TiC in in situ synthesized titanium matrix composites prepared by common casting technique[J]. Journal of Alloys and Compounds. 2001, 327(1-2): 248-252.
    78 Padma Gopalan, R. Rajaraman, B. Viswanathan, et al. The kinetics of formation and growth of TiC precipitates in Ti-modified stainless steel studied by positron annihilation spectroscopy[J]. Journal of Nuclear Materials. 1998, 256(2-3): 229-234.
    79 Chengyun Cui, Zuoxing Guo, Hongying Wang, Jiandong Hu. In situ TiC particles reinforced grey cast iron composite fabricated by laser cladding of Ni-Ti-C system[J]. Journal of Materials Processing Technology. 2007, 183(2-3): 380-385.
    80 Julius J. NicE, Rudiger Vesper. Morphologie des gasphasenabgeschiedenen systems titancarbid-graphit[J]. Journal of the Less Common Metals. 2001, 25(3): 275-285.
    81 于熙泓,张静华,胡壮麒等.快速凝固条件下单晶镍基高温合金中MC碳化物的形态及生长机制[J].金属学报.1994,30(2):55-59.
    82 王华明,于利根,李晓轩等.MC碳化物准快速凝固形态与生长机制研究[J].金属学报.1999,35(12):1246-1248.
    83 陈瑶.小平面相凝固理论及TiC增强金属间化合物复合材料涂层组织与耐磨性.北京航空航天大学博士论文.2003.
    84 吕维洁,张小农,张荻等.原位合成TiC/Ti基复合材料增强体的生长机制[J].金属学报.1999,35(5):536-540.
    85 田永生,陈传忠,王德云等.激光表面合金化层内枝状碳化钛的生长模式[J].应用激光,2005,25(2):109-112.
    86 刘林,傅恒志,史正兴.高温合金中碳化物的初生形貌与晶体结构的关系[J].金属学报.1989,25(4):282-287.
    87 邵荷生,张清编著.金属的磨料磨损与耐磨材料[M].北京:机械工业出版社,1988.
    88 徐滨士,马世宁,刘世参等.表面工程的进展与再制造工程[J].同济大学学报,2001,29(9):1085-1090.
    89 王家金主编.激光加工技术[M].北京:中国计量出版社,1992.
    90 Jinke Tang, Jeffrey S. Zabinski, John E. Bultman. TiC coatings prepared by pulsed laser deposition and magnetron sputtering[J]. Surface and Coatings Technology. 1997, 91: 69-73.
    91 Y. L. REN, L. QI, L.M. FU, et al. Microstructural characteristics of TiC and (TiW)C iron matrix composites[J]. JOURNAL OF MATERIALS SCIENCE. 2002, 37: 5129-5133.
    92 B. Feng, D. M. Cao, W.J. Meng, et al. Probing for mechanical and tribological anomalies in the TiC amorphous hydrocarbon nanocomposite coating system[J]. Thin Solid Films. 2001, 398-399: 210-216.
    93 王立人,王湘,谢贤清等.TiC/ZA43复合材料耐磨性能的试验研究[J].湖南大学学报(自然科学版),2000,27(4):44-49.
    94 王军,武晓雷.激光熔覆涂层中TiCp界面结构与涂层冲击磨损性能[J].材料科学工艺,1999,7(4):21-24.
    95 Y. Chen, H.M. Wang. Microstructure and wear resistance of laser clad TiC reinforced FeAl intermetallic matrix composite coatings[J]. Surface and Coatings Technology. 2003, 168: 30-36.
    96 O. P. Modi, B.K. Prasad, A.K. Jha, et al. Effects of material composition and microstructural features on dry sliding wear behaviour of Fe-TiC composite and a cobalt-based satellite[J]. Tribology Letters. 2004, 17(2).
    97 YH. Wang, YF.Tan. Theory and Practice of "Spontaneous Protective Layer" inSoil Cuting[J]. Terramechanics. 1995, 32(2): 99-104.
    98 R. Vijande, J. Belzunce. Wear and Microstructure in fine cermic coatings[J]. Wear. 1991, 146: 221-233.
    99 J. D. Ayers. Abrasive Wear with Fine Diamond Particles of Carbides Containing Aluminum and Titanium Aluminum Alloys[J]. Wear. 1984, 93: 193-206.
    100 Y. Su, J. S. Lin. Friction and Wear behaviours of a number of ceramic-coated steels matched as sliding pairs to various surface-treated steels[J]. Wear. 1993, 166: 27-35.
    101 杜学铭,施雨湘,李爱农.碳化钨复合耐磨堆焊层泥沙磨损性能的研究[J].武汉理工大学学报(交通科学与工程版),2002,26(2):161-164.
    102 A. Karimi, Ch.Verdon. Hysroabrasive Wear Behaviour of High Velocity Oxyfuel Thermally Sprayed WC-M Coatings[J]. Surface and Coatings Technology, 1993, (63): 493-498.
    103 I. YKonyashin. Improvements in Reliability and Serviceability of Cemented Carbides with Wear-resistant Coatings[J]. Materials Science and Engineering. 1997, 121 (A230): 213-220.
    104 张树生,王志平等.碳化钨喷焊层耐磨性的研究[J].沈阳工业大学学报.1991,13(1):43-51.
    105 刘越,于宝海等.TiC/NiCr金属陶瓷复合堆焊材料摩擦磨损性能[J].摩擦学报.2000,20(4):90-93.
    106 潘春旭 陈俐.耐磨堆焊层显微组织特征及其与耐磨性关系的研究[J].兵器材料科学与工程,2000,23(2):8-12.
    107 周细应,柯黎明,华小珍等.堆焊界面特征与裂纹形成之间的关系研究[J].兵器材料科学与工程,2001,24(6):18-21.
    108 Wang Hui, Xia Weiming, Jin Yuansheng. A Study on Abrasive Resistance of Ni-based Coating with aWC hard Phase[J]. Wear. 1996, 195(1): 47-5.
    109 M.A.Moor. The Relationship Between Abrastance, Wear Resistance and Microstructure of Ferritic Materials[J]. Wear. 1974, 28: 5968.
    110 王莲芳,陈伯蠡等.堆焊金属耐磨性与硬度关系的研究[J].焊接,1991(6):6-9.
    111 陈丽芳,刘咏.稀土元素的添加对原位生成的Ti-TiC-TiB复合材料抗磨损性能的影响[J].粉末冶金材料科学与工程,2005,10(2):100-104.
    112 王新洪,邹增大.稀土对TiC基金属陶瓷耐磨堆焊材料组织性能的影响[J].中国稀土学报,2001,19(3):233-237.
    113 Wang xinhong, Zou zengda. Effect of Rare Earths on Microstructure and Properties of TiC-based Cermet/Cu Alloy Composite Wear Resistant Materials[J], Joural of Rare Earths, 2003, 21(3): 375-379.
    114 R. L. Blomnery, C. M. Perrot and P.M.Robinson. Abrasive Wear of Tungsten Carbide-Cobalt Composites. I. Wear Mechanisms[J]. Materials Science and Engineering. 1974, 3: 93-100.
    115 湛永钟,张国定.SiCp/Cu复合材料摩擦磨损行为研究[J].摩擦学学报,2003,23(6):495-499.
    116 刘灿楼,胡镇华等.Ti(C,N)基金属陶瓷的摩擦磨损研究[J].硬质合金.1994,(3):148-152.
    117 Zum Gahr K H. How Microstructure afects Abrasive Wear Resistance[J]. Metal Progress, 1979, 116 (4): 4652.
    118 辛艳辉,林建国,任志昂.Ti-Al-Cr-Nb-V合金激光表面原位TiC颗粒增强涂层及耐磨性研究[J].材料热处理学报.2004,25(4):63-66.
    119 J. E. Fernandez, et al. Sliding wear of a plasma-sprayed Al_2O_3 coating [J]. Wear. 1995, 181-183: 417-425.
    120 H. M. Hawthorne, et al. The microstructural dependence of wear and indentation behaviour of some plasma-sprayed alumina coatings[J]. Wear. 1997, 203-204: 709.
    121 上官宝,陈跃,铁喜顺等.WC等离子喷涂涂层摩擦磨损特性研究[J].表面技术,2004,33(1):21-22.
    122 长崎诚三,平林真编著,刘安生译.二元合金状态图集[M].北京:冶金工业出版社,2004.
    123 QUNCHENG FAN, HUIFEN CHAI, ZHIHAO JIN. Role of iron addition in the combustion synthesis of TiC-Fe cermet[J]. JOURNAL OF MATERIALS SCIENCE. 1997, 32: 4319-4323.
    124 T. K. BANDYOPADHYAY, S. CHATTERYEE, K. DAS. Synthesis and characterization of TiC-reinforced iron-based composites[J]. JOURNAL OF MATERIALS SCIENCE. 2004, 39: 5735-5742.
    125 赵宇光,姜启川,任露泉等.Fe-C-Ti-Mn合金系中TiC原位生成反应的热力学分析[J].吉林大学学报(工学版),2004,34(1):1-6.
    126 董奇志,张晓宇,胡建东等.激光熔覆Ni基TiC强化复合涂层中内生TiC颗粒的生长机理[J].应用激光,2001,21(4):237-239.
    127 Y. Chen, H.M. Wang. Growth morphology and mechanism of primary TiC carbide in laser clad TiC/FeAl composite coating[J]. Materials Letters. 2003, 57: 1233-1238.
    128 曹忠良,王珍云.无机化学反应方程式手册[M].长沙:湖南科学技术出版社,1982.
    129 严有为,魏伯康,林汉同等.化学成分对TiCp/Fe复合材料组织和性能的影响[J].中国有色金属学报,1999,9(2):225-230.
    130 邹正光著.TiC/Fe复合材料的自蔓延高温合成工艺及应用[M].北京:冶金工业出版社,2002.
    131 章桥新,梅志,杨勇勤.碳含量对TiC颗粒增强铁基复合材料微观结构的影响[J].特种铸造及有色合金 2001,(2):8-9.
    132 国外硬质合金编写组.国外硬质合金[M].北京:冶金工业出版社,1976.
    133 夏斌华,郭幸华,邹序枚等.SHS法合成TiC碳原子饱和度的影响因素研究[J].硬质合金.1996,13(4):207-212.
    134 李安敏,许伯藩,潘应君.La_2O_3对激光熔覆TiC/Ni基复合涂层的组织和性能的影响[J].钢铁研究学报,2003,15(1):57-61.
    135 刘秀波,王华明.La_2O_3对TiAl合金激光熔覆γ/Cr7C3/TiC复合材料涂层组织与性能的影响[J].中国激光.2005,32(7):1011-1016.
    136 梅志,杨峰,严有为等.原位合成TiC颗粒增强铁基复合材料的微观结构研究[J].材料工程,2000,(6):16-19.
    137 杜挺,韩其勇,王常珍著.稀土碱土等元素的物理化学及在材料中的应用[M].北京:科学出版社,1995.
    138 刘光华编著.稀土固体材料学[M].北京:机械工业出版社,1997.
    139 Li Mugin, Ma Chen, Shao Dechun et al. On Mechanism of the Effect of Rare Earth on Wear ability of Nickel Base Self-fluxing Alloy[J]. Journal of Rare Earths, 1991, 9(4): 294-299.
    140 YANG Shang-lei, LU Xue-qin, ZOU Zeng-da et al. Microstructure and Abrasive Mechanism of Surfacing Welding Based on TiC-VC Particle[J]. TRANSACTIONS OF MATERIALS AND HEAT TREATMENT PROCEEDINGS OF THE IFHTSE CONGRESS. 2004, 25(5): 977-980.
    141 徐文雷,孙扬善,丁绍松.VCp和TiCp颗粒增强Fe3Al基合金的显微组织和力学性能[J].中国有色金属学报,2001,11(专辑1):150-153.
    142 高彩桥编著.摩擦金属学[M].哈尔滨:哈尔滨工业大学出版社,1988.
    143 孙家枢编著.金属的磨损[M].北京:冶金工业出版社,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700