用户名: 密码: 验证码:
ZnO纳米结构与器件的制备和研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,半导体纳米结构因其在先进器件等方面存在广阔的应用前景,而成为国内外纳米领域人们关注的热点。其中,ZnO纳米阵列结构被认为是最具有应用前景的纳米材料之一。ZnO是一种宽禁带直接带隙Ⅱ-Ⅳ族半导体材料,室温下禁带宽度为3.37 eV,具有较大的激子束缚能(60 meV),是制备下一代短波长发光二极管(LED)和激光器的最佳候选者之一;它具有良好的压电性和生物适合性,可用于压电传感器、机电耦合传感器、表面声波器件、微机电系统和生物医药等领域。而且,制备ZnO纳米结构的技术较多,如:化学气相沉积(CVD)、金属有机化学气相沉积(MOCVD)、热蒸发、分子束外延(MBE)等。因此,ZnO纳米结构成为众多研究者关注的焦点,许多研究人员通过各种制备技术得到了不同形貌和性质的ZnO纳米结构。本文以ZnO材料为出发点,重点研究了目前阻碍ZnO基纳米器件发展的难点问题:制备高质量的ZnO纳米结构阵列和p型掺杂ZnO纳米结构。同时对ZnO基纳米线场效应晶体管器件进行了初步研究。
     通常人们采用金属催化的方法生长ZnO纳米结构,但是这些金属催化剂会引入新的杂质缺陷,所以发展无催化方法制备ZnO纳米结构是很有必要的。据了解,到目前为止还没有关于无金属催化的脉冲激光沉积(PLD)方法制备ZnO纳米结构的报道。本文采用PLD技术通过独特的方法在InP衬底上实现了ZnO纳米结构阵列的可控生长,实验中没有采用金属催化剂,避免引入了新的杂质缺陷。通过SEM、XRD、PL谱等表征手段对其进行了表征,结果表明制备出的ZnO纳米结构具有较好的表面形貌和结晶质量,常温PL呈现出紫外发射峰和绿光发射峰,表现出良好的光学性质。这种简单的PLD法为进一步制备质量满足纳米器件要求的ZnO纳米结构提供了一种无金属催化的生长方法。
     进一步优化生长条件制备出整齐的ZnO纳米结构阵列。SEM显示制备出的ZnO纳米结构阵列具有很好的表面形貌和择优生长取向;XRD测试结果表明ZnO纳米结构阵列结晶质量很好;低温PL谱出现新奇的现象,通过比较不同生长温度的低温PL谱,推断磷元素可以从InP衬底溢出扩散进入ZnO,形成磷掺杂的ZnO(ZnO:P)纳米结构阵列;采用变温和变激发PL光谱对光学特性和发光机理进行了细致研究,证实了磷元素是作为受主掺杂进入ZnO纳米结构阵列;采用Arrhenius公式对实验数据进行拟合计算,计算出的受主束缚能E_A的数值与理论模型预言和其他课题组得到的实验数据相符合。本实验成功制备出ZnO:P纳米结构阵列,为实现ZnO基纳米器件的p型掺杂提供了一种可借鉴的方法。
     通过在反应源中加入P_2O_5粉末的简单约束管化学气相沉积方法在α-蓝宝石衬底上制备出具有奇特形貌的磷掺杂ZnO纳米四角棱锥结构。SEM测试显示未掺杂和磷掺杂的ZnO纳米四角棱锥结构具有相似的形貌特征,但是ZnO:P纳米四角棱锥的顶端要比未掺杂的尖锐;XRD测试结果表明制备出的未掺杂和磷掺杂的ZnO纳米四角棱锥具有良好的晶体质量;选择区域电子衍射出现了清晰的矩形亮斑衍射花样说明未掺杂和磷掺杂的ZnO纳米四角棱锥的晶体结构为六角纤锌矿结构,结晶质量很好具有明显的(002)择优生长取向;通过比较未掺杂和磷掺杂样品的低温PL谱,发现未掺杂样品出现施主束缚激子(D~0X)和自由激子相关的发射峰,磷掺杂样品的低温PL谱中D~0X消失并出现了几个新的发射峰,推测这几个发射峰应该是与磷掺杂有关,采用变温和变激发PL谱表征磷掺杂样品的光学性质,通过对机理的分析确认这几个发射峰是与磷受主掺杂相关的:A~0X,FA,DAP以及DAP-1LO,因此证实了磷元素是作为受主掺杂进入ZnO。利用Arrhenius公式和Haynes规则通过实验数据拟合得出受主束缚能E_A。本实验通过一种简单的CVD方法和一种廉价的P_2O_5掺杂源实现了ZnO纳米结构的p型掺杂,这为进一步实现ZnO基纳米器件提供了一种可行的p型掺杂方法。
     通过化学气相沉积方法生长出ZnO纳米线,利用电子束蒸发和光刻技术制备出规则的微米级Au电极,将单根ZnO纳米线搭连在Au电极上,组装出了最基本的半导体ZnO纳米线场效应晶体管。利用Ⅰ-Ⅴ特性测试仪对制作的ZnO纳米线场效应晶体管的Ⅰ-Ⅴ特性进行测试分析,结果显示该场效应晶体管具有良好的整流特性,达到了场效应晶体管应用的基本要求。
Zinc oxide(ZnO) is a unique semiconductor material with a wide direct band gap of 3.37 eV and a relatively large exciton binding energy of 60 meV at room temperature.In recent year,it has attracted increasing interests.It has been regarded as one of the most promising candidates for the next generation of short-wavelength light emitting diode(LED) and laser devices.With the development of nanoscience and nanotechnology,semiconductor nanomaterials will have great influences not only in the fields of physics,chemistry,biology and material science,but also in medicine and information technology.The availability of a rich genre of nanostructures makes ZnO an ideal material for nanoscale optoelectronics devices in the visible and near ultraviolet regions.Furthermore,functional devices such as nanostructure field-effect transistors(FETs),electromechanical coupled sensor,piezoelectric nanosensors,surface acoustic wave(SAW) device,micro-electro mechanical systems (MEMS) and nanolasers have already been realized.Moreover,since ZnO is a biocompatible material,ZnO nanomaterials are expected to be used for biochemical,biomedical,and biomolecular applications.In addition,various techniques are employed to fabricate ZnO nanostructures,such as chemical vapor deposition(CVD),metal-organic chemical vapor deposition(MOCVD),thermal evaporation,molecule beam epitaxy(MBE),etc.Therefore, ZnO nanostructures have attracted so much attention,and a large number of publications have been presented recently for reporting ZnO nanostrucmres with diverse morphologies and properties grown by different approaches.In order to develop nano-scale devices based on ZnO,fabrication high quality ZnO nanostructure arrays and p-type ZnO nanostructures are essential.
     The assistance of metal catalysts is the most widely used technique for synthesis aligned ZnO nanostrucmres.However.metal catalysts commonly introduce extra impurities defects in the products.Consequently.it is necessary to develop catalyst-free growth techniques of ZnO nanostructures.As we known,there is no report about catalyst-free preparing ZnO nanostructures by pulse laser deposition(PLD) technique.In this thesis,ZnO nanonod arrays were deposited on InP(001) wafer by PLD system with a KrF excimer laser.ZnO seed-layer and buffer-layer rather than metal was used as the catalyst for fabricating ZnO nanostructure. The synthesized ZnO nanorod arrays exhibited a strong c-axis preferential growth orientation with high crystalline quality,and well optical quality.It reveals that the method is a effective technique for growing ZnO nanostructures without metal catalysts.The well aligned and separated ZnO nanorods fabricated by this comparatively simple technique sheds light on further applications for nano-devices.
     ZnO is naturally an n-type materials,p-type doping is still a bottleneck to device fabrication.Both theoretical model and experimental results illustrate that phosphorus element may act as effective p-type dopants for ZnO thin films.As for the development of ZnO:P nanostructures,very few reports have been published thus far.In this thesis,ZnO:P nanorods and nanoneedles were successfully synthesized by phosphorus diffusion from an InP substrate using a PLD technique.Low temperature(10 K) PL spectra near-band-edge emission peaks were attributed to acceptor-related A~0X,FA,and DAP transitions.The effect of p-doping on the optical characteristics of the ZnO nanorods was investigated by excitation intensity and temperature dependent PL spectra.Morover,the value of the acceptor energy level of the phosphorus dopant,determined by experimental data and fitting,agree well with the corresponding theoretical and experimental values in ZnO:P films and nanowires.
     Although p-type ZnO thin films have been reported by some research groups,the availability of p-type doping ZnO nanostructure is very scarce.The Lack of p-type ZnO nanostructure is currently the major factor precluding the realization of a wide range of functional nanodevices based on ZnO.High-quality novel undoped and phosphorus-doped ZnO nanotetrapods were synthesized on sapphire substrates by a simple chemical vapor deposition(CVD) method.Phosphorus doping was performed by using P_2O_5 as the dopant source.Low temperature PL spectrum exhibited acceptor related emission peaks.P-type doping signals were confirmed by temperature and excitation intensity dependent PL measurements.X-ray diffraction and selected area electron diffraction results revealed that crystalline quality and structure of ZnO single crystals were not degraded by phosphorus doping.The binding energy of phosphorus acceptor dopant was established to be about 120 meV.The synthesis of p-type doping ZnO nanotetrapods sheds light on further applications for nanolasers,nanosensors,biocompatible materials etc..and opens up enormous opportunities for nanoscale electronics,optoelectronics and biologics.
     The simple ZnO nanowire-based field effect transistor(FET) was fabricated by linking up a ZnO nanowire with two Au electrodes,where ZnO nanowires were synthesized by chemical physics deposition,Au electrodes were fabricated using photolithography and electron beam evaporation technologies.The current-voltage results presented favorableⅠ-Ⅴcharacteristics curves.
引文
[1]Zu P,Tang Z K,Wong G K L,et al.Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature[J].Solid State Communications,1997,103(8):459-463.
    [2]Bagnall D M,Chen Y F,Zhu Z,et al.Optically pumped lasing of ZnO at room temperature[J].Applied Physics Letters,1997,70(17):2230-2232.
    [3]Tang Z K,Wong G K L,Yu P,et al.Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films[J].Applied Physics Letters,1998,72(25):3270-3272.
    [4]Hellemans A.Physics - Laser light from a handful of dust[J].Science,1999,284(5411):24-25.
    [5]Yu P,Tang Z K,Wong G K L,et al.Room-temperature gain spectra and lasing in microcrystalline ZnO thin films[J].Journal of Crystal Growth,1998,185:601-604.
    [6]Bagnall D M,Chen Y F,Zhu Z,et al.High temperature excitonic stimulated emission from ZnO epitaxial layers[J].Applied Physics Letters,1998,73(8):1038-1040.
    [7]沈学础.半导体光谱和光学性质[M].北京:科学出版社,2002.
    [8]King S L,Gardeniers J G E,Boyd I W Pulsed-laser deposited ZnO for device applications [J].Applied Surface Science,1996,96(8):811-818.
    [9]Wang Z L Novel nanostructures of ZnO for nanoscale photonics,optoelectronics,piezoelectricity,and sensing[J].Applied Physics a-Materials Science & Processing,2007,88(1):7-15.
    [10]Pearton S J,Norton D P,Ip K,et al.Recent progress in processing and properties of ZnO [J].Superlattices and Microstructures,2004,34(1-2):3-32.
    [11]Service R E Materials science - Will UV lasers beat the blues?[J].Science.1997,276(5314):895-895.
    [12]Chen Y F,Bagnall D,Yao T F ZnO as a novel photonic material for the UV region[J].Materials Science and Engineering B-Solid State Materials for Advanced Technology,2000,75(2-3):190-198.
    [13]Look D C Recent advances in ZnO materials and devices[J].Materials Science and Engineering B-Solid State Materials for Advanced Technology,2001.80(1-3):383-387.
    [14]边继明.紫外光电材料氧化锌薄膜的生长及性能研究[D].上海:中国科学院上海硅酸盐研究所,2005.
    [15]方俊鑫,陆栋.固体物理学[M].上海:上海科学技术出版社.1980.
    [16]Look D C,Hemsky J W,Sizelove J R Residual native shallow donor in ZnO[J].Physical Review Letters,1999,82(12):2552-2555.
    [17]Look D C,Reynolds D C,Sizelove J R,et al.Electrical properties of bulk ZnO[J].Solid State Communications,1998,105(6):399-401.
    [18]Kohan A F,Ceder G,Morgan D,et al.First-principles study of native point defects in ZnO[J].Physical Review B,2000,61(22):15019-15027.
    [19]Oba F,Nishitani S R,Isotani S,et al.Energetics of native defects in ZnO[J].Journal of Applied Physics,2001,90(2):824-828.
    [20]Zhang S B,Wei S H,Zunger A Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO[J].Physical Review B,2001.63(7):075205(1-7).
    [21]Tuomisto F,Ranki V,Saarinen K,et al.Evidence of the Zn vacancy acting as the dominant acceptor in n-type ZnO[J].Physical Review Letters,2003,91(20):205502(1-4).
    [22]Van de Walle C G Hydrogen as a cause of doping in zinc oxide[J].Physical Review Letters,2000,85(5):1012-1015.
    [23]Look D C,Farlow G C,Reunchan P,et al.Evidence for native-defect donors in n-type ZnO[J].Physical Review Letters,2005,95(22):225502(1-4).
    [24]Alivov Y I,Kalinina E V,Cherenkov A E,et al.Fabrication and characterization of n-ZnO/p-A1GaN heterojunction light-emitting diodes on 6H-SiC substrates[J].Applied Physics Letters,2003,83(23):4719-4721.
    [25]段理,林碧霞,傅竹西ZnO薄膜的掺杂及其结型材料的研究进展[J].物理,2003,32(01):27-31.
    [26]叶志镇,张银珠,徐伟中等,ZnO薄膜p型掺杂的研究进展[J].无机材料学报,2003,18(01):11-18.
    [27]Yan Y F,Zhang S B,Pantelides S T Control of doping by impurity chemical potentials:Predictions for p-type ZnO[J].Physical Review Letters,2001,86(25):5723-5726.
    [28]Wang L G,Zunger A Cluster-doping approach for wide-gap semiconductors:The case of p-type ZnO[J].Physical Review Letters,2003,90(25):256401(1-4).
    [29]Matsui H,Saeki H,Kawai T,et al.N doping using N2O and NO sources:From the viewpoint of ZnO[J].Journal of Applied Physics,2004,95(10):5882-5888.
    [30]Jiao S J,Lu Y M,Shen D Z,et al.Donor-acceptor pair luminescence of nitrogen doping p-type ZnO by plasma-assisted molecular beam epitaxy[J].Journal of Luminescence,2007,122:368-370.
    [31]Ryu Y R,Lee T S,White H W Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition[J].Applied Physics Letters,2003,83(1):87-89.
    [32]Yu Z G,Wu P,Gong H Control of p- and n-type conductivities in P doped ZnO thin films by using radio-frequency sputtering[J].Applied Physics Letters,2006,88(13):-.
    [33]Joseph M,Tabata H,Saeki H,et al.Fabrication of the low-resistive p-type ZnO by codoping method[J].Physica B,2001,302:140-148.
    [34]Ye Z Z,Fei Z G,Lu J G,et al.Preparation of p-type ZnO films by AI plus N-codoping method[J].Journal of Crystal Growth,2004,265(1-2):127-132.
    [35]Bian J M,Li X M,Chen L D,et al.Properties of undoped n-type ZnO film and N-In codoped p-type ZnO film deposited by ultrasonic spray pyrolysis[J].Chemical Physics Letters.2004,393(1-3):256-259.
    [36]Bian J M,Li X M,Gao X D.et al.Deposition and electrical properties of N-In codoped p-type ZnO films by ultrasonic spray pyrolysis[J].Applied Physics Letters,2004,84(4):541-543.
    [37]Lee E C.Kim Y S,Jin Y G.et al.First-principles study of the compensation mechanism in N-doped ZnO[J].Physica B-Condensed Matter,2001,308-310:912-915.
    [38]Guo X L,Tabata H,Kawai T p-type conduction in transparent semiconductor ZnO thin films induced by electron cyclotron resonance N2O plasma[J].Optical Materials,2002,19(1):229-233.
    [39]Aoki T,Hatanaka Y,Look D C ZnO diode fabricated by excimer-laser doping[J].Applied Physics Letters,2000,76(22):3257-3258.
    [40]Yu D Q,Li J,Hu L Z,et al.Synthesis and photoluminescence investigation of ZnO:P nanorods on an InP substrate by pulsed laser deposition [J].Chemical Physics Letters,2008,464 (l-3):69-72.
    [41]Yu D Q,Hu L Z,Qiao S S,et al.Photoluminescence study of novel phosphorus-doped ZnO nanotetrapods synthesized by chemical vapour deposition [J].Journal of Physics D-Applied Physics,2009,42 (5):055110(1-6).
    [42]Xiong G,Wilkinson J,Mischuck B,et al.Control of p-and n-type conductivity in sputter deposition of undoped ZnO [J].Applied Physics Letters,2002,80 (7):1195-1197.
    [43]Norton D P,Heo Y W,Ivill M P,et al.ZnO:growth,doping & processing [J].Materials Today,2004,7 (6):34-40.
    [44]Kafadaryan E A,Petrosyan S I,Hayrapetyan A G,et al.Infrared 45 degrees reflectometry of Li doped ZnO films [J].Journal of Applied Physics,2004,95(6):3005-3009.
    [45]Mackenzie J D,Abernathy C R,Stewart J D,et al.Growth of group Ⅲ nitrides by chemical beam epitaxy [J].Journal of Crystal Growth,1996,164 (1-4):143-148.
    [46]White R M,Voltmer F W DIRECT PIEZOELECTRIC COUPLING TO SURFACE ELASTIC WAVES [J].Applied Physics Letters,1965.7 (12):314-316.
    [47]Chu S Y,Chen T Y,Water W The investigation of preferred orientation growth of ZnO films on the PbTiO3-based ceramics and its application for SAW devices [J].Journal of Crystal Growth,2003,257 (3-4):280-285.
    [48]Seo S H,Shin W C,Park J S A novel method of fabricating ZnO/diamond/Si multilayers for surface acoustic wave (SAW) device applications [J].Thin Solid Films,2002,416(1-2):190-196.
    [49]Levinson L M,Philipp H R Zinc oxide varistors-a review [J].American Ceramic Society Bulletin,1986,65 (4):639-646.
    [50]Yano Y,Takai Y,Morooka H Interface states in ZnO varistor with Mn,Co,and Cu impurities [J].Journal of Materials Research.1994.9 (1):112-118.
    [51]Singhal M,Chhabra V,Kang P.et al.Synthesis of ZnO nanoparticles for varistor application using Zn-substituted aerosol OT microemulsion [J].Materials Research Bulletin,1997,32 (2):239-247.
    [52]Lee A P,Reedy B J Temperature modulation in semiconductor gas sensing [J].Sensors and Actuators B-Chemical.1999,60 (1):35-42.
    [53]Jing Z H,Zhan J H Fabrication and Gas-Sensing Properties of Porous ZnO Nanoplates [J].Advanced Materials,2008,20 (23):4547-4551.
    [54]Weissenrieder K S,Muller J Conductivity model for sputtered ZnO-thin film gas sensors [J].Thin Solid Films,1997,300 (1-2):30-41.
    [55]Bodade A B,Bende A M,Chaudhari G N Synthesis and characterization of CdO-doped nanocrystalline ZnO:Ti02-based H2S gas sensor [J].Vacuum.2008.82 (6):588-593.
    [56]Kim S K,Son J Y Epitaxial ZnO Thin Films for the Application of Ethanol Gas Sensor:Thickness and Al-Doping Effects [J].Electrochemical and Solid State Letters,2009.12(2):J17-J19.
    [57]Kuo G H,Wang H P,Hsu H H,et al.Sensing of ethanol with nanosize FeZnO thin films [J].Multi-Functional Materials and Structures.Pts 1 and 2.2008.47-50:1117-1120.
    [58]Qi Q,Zhang T,Liu L,et al.Selective acetone sensor based on dumbbell-like ZnO with rapid response and recovery[J].Sensors and Actuators B-Chemical,2008,134(1):166-170.
    [59]Singh R C,Singh O,Singh M P,et al.Synthesis of zinc oxide nanorods and nanoparticles by chemical route and their comparative study as ethanol sensors[J].Sensors and Actuators B-Chemical,2008,135(1):352-357.
    [60]Norton D P,Ivill M,Li Y,et al.Charge carrier and spin doping in ZnO thin films[J].Thin Solid Films,2006,496(1):160-168.
    [61]孔凡太,戴松元 染料敏化太阳电池研究进展[J].新材料产业.2007,7:32-35.
    [62]Bylander E G Surface effects on the low-energy cathodoluminescence of zinc oxide[J].Journal of Applied Physics,1978,49(3):1188-1195.
    [63]Ghis A,Meyer R,Rambaud P,et al.Sealed vacuum devices:fluorescent microtip displays[J].Electron Devices,IEEE Transactions on,1991,38(10):2320-2322.
    [64]Nicoll F H ULTRAVIOLET ZnO LASER PUMPED BY AN ELECTRON BEAM[J].Applied Physics Letters,1966,9(1):13-15.
    [65]Reynolds D C,Look D C,Jogai B Optically pumped ultraviolet lasing from ZnO[J].Solid State Communications,1996,99(12):873-875.
    [66]Segawa Y,Ohtomo A,Kawasaki M,et al.Growth of ZnO thin film by laser MBE:Lasing of exciton at room temperature[J].Physica Status Solidi B-Basic Research,1997,202(2):669-672.
    [67]Cao H.Zhao Y G,Ho S T,et al.Random laser action in semiconductor powder[J].Physical Review Letters,1999,82(11):2278-2281.
    [68]Huang M H,Mao S,Feick H,et al.Room-temperature ultraviolet nanowire nanolasers [J].Science,2001,292(5523):1897-1899.
    [69]Vispute R D,Talyansky V,Choopun S.et al.Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices[J].Applied Physics Letters,1998,73(3):348-350.
    [70]Hong S K,Hanada T,Makino H,et al.Band alignment at a ZnO/GaN(0001)heterointerface[J].Applied Physics Letters.2001.78(21):3349-3351.
    [71]Park W I.Yi G C Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN[J].Advanced Materials.2004,16(1):87-90.
    [72]Saito N,Haneda H,Sekiguchi T.et al.Low-temperature fabrication of light-emitting zinc oxide micropatterns using self-assembled monolayers[J].Advanced Materials,2002.14(6):418-421.
    [73]Liu C H,Zapien J A,Yao Y,et al.High-density,ordered ultraviolet light-emitting ZnO nanowire arrays[J].Advanced Materials,2003.15(10):838-841.
    [74]Yan H Q,He R R,Johnson J.et al.Dendritic nanowire ultraviolet laser array[J].Journal of the American Chemical Society.2003,125(16):4728-4729.
    [75]Johnson J C,Knutsen K P,Yan H Q,et al.Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers[J].Nano Letters,2004,4(2):197-204.
    [76]Johnson J C,Yan H Q,Yang P D,et al.Optical cavity effects in ZnO nanowire lasers and waveguides[J].Journal of Physical Chemistry B,2003,107(34):8816-8828.
    [77]Johnson J C,Yan H Q,Schaller R D,et al.Single nanowire lasers[J].Journal of Physical Chemistry B,2001,105(46):11387-11390.
    [78]Wang Z L,Song J H Piezoelectric nanogenerators based on zinc oxide nanowire arrays [J].Science,2006,312(5771):242-246.
    [79]Wang X D,Song J H,Liu J,et al.Direct-current nanogenerator driven by ultrasonic waves[J].Science,2007,316(5821):102-105.
    [80]范东华.znO纳米结构的制备、表征及其光学性质研究[D].上海:上海交通大学.2008.
    [81]Wan Q,Li Q H,Chen Y J,et al.Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors[J].Applied Physics Letters,2004,84(18):3654-3656.
    [82]Wang H T,Kang B S,Ren F,et al.Hydrogen-selective sensing at room temperature with ZnO nanorods[J].Applied Physics Letters,2005,86(24):243503(1-3).
    [83]Li Q H,Liang Y X,Wan Q,et al.Oxygen sensing characteristics of individual ZnO nanowire transistors[J].Applied Physics Letters,2004,85(26):6389-6391.
    [84]Xue X Y,Chen Y J,Wang Y G,et al.Synthesis and ethanol sensing properties of ZnSnO3 nanowires[J].Applied Physics Letters,2005,86(23):233101(1-3).
    [85]Jeong M C,Oh B Y,Ham M H,et al.ZnO-Nanowire-Inserted GaN/ZnO heterojunction light-emitting diodes[J].Small,2007,3(4):568-572.
    [86]Zheng X G,Li Q S,Zhao J P,et al.Photoconductive ultraviolet detectors based on ZnO films[J].Applied Surface Science,2006,253(4):2264-2267.
    [87]Sharma P,Sreenivas K Highly sensitive ultraviolet detector based on ZnO/LiNbO3hybrid surface acoustic wave filter[J].Applied Physics Letters,2003,83(17):3617-3619.
    [88]Kittilstved K R,Norberg N S,Gamelin D R Chemical manipulation of High-T-C ferromagnetism in ZnO diluted magnetic semiconductors[J].Physical Review Letters,2005,94(14):147209(1-4).
    [89]Radovanovic P V,Gamelin D R High-temperature ferromagnetism in Ni2+-doped ZnO aggregates prepared from colloidal diluted magnetic semiconductor quantum dots[J].Physical Review Letters,2003,91(15):157202(1-4).
    [90]Ku C H,Wua J J Electron transport properties in ZnO nanowire array/nanoparticle composite dye-sensitized solar cells[J].Applied Physics Letters.2007,91(9):093117(1-3).
    [91]Pradhan B,Batabyal S K,Pal A J Vertically aligned ZnO nanowire arrays in Rose Bengal-based dye-sensitized solar cells[J].Solar Energy Materials and Solar Cells,2007.91(9):769-773.
    [92]Wu J J,Chen G R,Yang H H,et al.Effects of dye adsorption on the electron transport properties in ZnO-nanowire dye-sensitized solar cells[J].Applied Physics Letters,2007,90(21):213109(1-3).
    [93]Law M,Greene L E,Radenovic A,et al.ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells[J].Journal of Physical Chemistry B,2006,110(45):22652-22663.
    [94]Zheng M J,Zhang L D,Li G H,et al.Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique[J].Chemical Physics Letters,2002,363(1-2):123-128.
    [95]Wang R C,Liu C P,Huang J L,et al.Growth and field-emission properties of single-crystalline conic ZnO nanotubes[J].Nanotechnology,2006,17(3):753-757.
    [96]Liang H W,Lu Y M,Shen D Z,et al.Growth of vertically aligned single crystal ZnO nanotubes by plasma-molecular beam epitaxy[J].Solid State Communications,2006,137(4):182-186.
    [97]Kong X Y,Wang Z L Polar-surface dominated ZnO nanobelts and the electrostatic energy induced nanohelixes,nanosprings,and nanospirals[J].Applied Physics Letters,2004,84(6):975-977.
    [98]Lao J Y,Huang J Y,Wang D Z,et al.ZnO nanobridges and nanonails[J].Nano Letters,2003,3(2):235-238.
    [99]Wagner R S,Ellis W C VAPOR-LIQUID-SOLID MECHANISM OF SINGLE CRYSTAL GROWTH[J].Applied Physics Letters,1964,4(5):89-90.
    [100]Huang M H,Wu Y Y,Feick H,et al.Catalytic growth of zinc oxide nanowires by vapor transport[J].Advanced Materials,2001,13(2):113-116.
    [101]Wang Y W,Meng G W,Zhang L D,et al.Catalytic growth of large-scale single-crystal CdS nanowires by physical evaporation and their photoluminescence[J].Chemistry of Materials,2002,14(4):1773-1777.
    [102]Chen C C,Yeh C C,Chen C H,et al.Catalytic growth and characterization of gallium nitride nanowires[J].Journal of the American Chemical Society,2001,123(12):2791-2798.
    [103]Ramgir N S,Late D J,Bhise A B,et al.ZnO multipods,submicron wires,and spherical structures and their unique field emission behavior[J].Journal of Physical Chemistry B,2006,110(37):18236-18242.
    [104]Chik H.Liang J,Cloutier S G,et al.Periodic array of uniform ZnO nanorods by second-order self-assembly[J].Applied Physics Letters,2004,84(17):3376-3378.
    [105]Jie J S.Wang G Z.Wang Q T,et al.Synthesis and characterization of aligned ZnO nanorods on porous aluminum oxide template[J].Journal of Physical Chemistry B,2004,108(32):11976-11980.
    [106]Hu W C,Gong D W,Chen Z,et al.Growth of well-aligned carbon nanotube arrays on silicon substrates using porous alumina film as a nanotemplate[J].Applied Physics Letters.2001,79(19):3083-3085.
    [107]罗远苏,赵继良,黄胜涛.几种金属玻璃结构的X射线研究[J].物理学报,1982,31(09):1256-1262.
    [108]王华馥.我国近年来光散射研究的进展[J].物理,1991,20(08)455-459
    [109]何杰.许振嘉.一种新的反应机制-轻稀土金属薄膜与Si衬底的反应机理研究[J].物理学报.1993.42(10):1617-1626.
    [110]方容川.固体光谱学[M].合肥:中国科技大学出版社.2001.
    [111]Wang Y G.Lau S P.Zhang X H,et al.Enhancement of near-band-edge photoluminescence from ZnO films by face-to-face annealing[J].Journal of Crystal Growth.2003,259(4):335-342.
    [112]Sun Y.Ketterson J B.Wong G K L Excitonic gain and stimulated ultraviolet emission in nanocrystalline zinc-oxide powder[J].Applied Physics Letters,2000,77(15):2322-2324.
    [113]Lin B X,Fu Z X.Jia Y B,et al.Defect photoluminescence of undoping ZnO films and its dependence on annealing conditions[J].Journal of the Electrochemical Society,2001.148(3):G110-G113.
    [114]Vanheusden K,Seager C H,Warren W L,et al.Correlation between photoluminescence and oxygen vacancies in ZnO phosphors[J].Applied Physics Letters,1996,68(3):403-405.
    [115]Limpijumnong S,Zhang S B,Wei S H,et al.Doping by large-size-mismatched impurities:The microscopic origin of arsenic- or antimony-doped p-type zinc oxide[J].Physical Review Letters,2004,92(15):155504(1-4).
    [116]Hwang D K,Kim H S,Lim J H,et al.Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering[J].Applied Physics Letters,2005,86(15):151917(1-3).
    [117]Jeong T S,Han M S,Youn C J,et al.Raman scattering and photoluminescence of As ion-implanted ZnO single crystal[J].Journal of Applied Physics,2004,96(1):175-179.
    [118]Xiu F X,Yang Z,Mandalapu L J,et al.High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy[J].Applied Physics Letters,2005,87(15):152101(1-3).
    [119]Xiu F X,Yang Z,Mandalapu L J,et al.p-Type ZnO films with solid-source phosphorus doping by molecular-beam epitaxy[J].Applied Physics Letters,2006,88(5):052106(1-3).
    [120]Kim K K,Kim H S,Hwang D K,et al.Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant[J].Applied Physics Letters,2003,83(1):63-65.
    [121]Shim E S,Kang H S,Pang S S,et al.Annealing effect on the structural and optical properties of ZnO thin film on ImP[J].Materials Science and Engineering B-Solid State Materials for Advanced Technology,2003,102(1-3):366-369.
    [122]Shan C X,Liu Z,Hark S K Temperature dependent photoluminescence study on phosphorus doped ZnO nanowires[J].Applied Physics Letters,2008,92(7):073103(1-3).
    [123]Kang H S,Kang J S,Kim J W,et al.Annealing effect on the property of ultraviolet and green emissions of ZnO thin films[J].Journal of Applied Physics,2004.95(3):1246-1250.
    [124]Liu Z S,Jing X P,Song H W,et al.The relationships between UV emission and green emission in ZnO phosphor[J].Acta Physico-Chimica Sinica,2006,22(11):1383-1387.
    [125]Neugebauer J,VandeWalle C G Gallium vacancies and the yellow luminescence in GaN[J].Applied Physics Letters,1996,69(4):503-505.
    [126]Zhang D H,Xue Z Y,Wang Q P The mechanisms of blue emission from ZnO films deposited on glass substrate by r.f.magnetron sputtering[J].Journal of Physics D-Applied Physics,2002,35(21):2837-2840.
    [127]孟祥东.CVD法制备ZnO薄膜的发光特性研究及碱金属钛酸盐纳米线的合成与表征[D].合肥:中国科技大学,2006.
    [128]Teke A,Ozgur U,Dogan S,et al.Excitonic fine structure and recombination dynamics in single-crystalline ZnO[J].Physical Review B,2004,70(19):195207(1-10).
    [129]Thonke K,Gruber T,Teofilov N,et al.Donor-acceptor pair transitions in ZnO substrate material[J].Physica B-Condensed Matter,2001,308:945-948.
    [130]Boemare C,Monteiro T,Soares M J,et al.Photoluminescence studies in ZnO samples [J].Physica B-Condensed Matter,2001,308:985-988.
    [131]Reynolds D C,Look D C,Jogai B,et al.Neutral-donor-bound-exciton complexes in ZnO crystals[J].Physical Review B,1998,57(19):12151-12155.
    [132]Kobayashi A,Sankey O F,Volz S M,et al.Semiempirical tight-binding band structures of wurtzite semiconductors:AlN,CdS,CdSe,ZnS,and ZnO[J].Physical Review B,1983,28(2):935-945.
    [133]Alves H,Pfisterer D,Zeuner A,et al.Optical investigations on excitons bound to impurities and dislocations in ZnO[J].Optical Materials,2003,23(1-2):33-37.
    [134]Kim D S,Fallert J,Lotnyk A,et al.Growth and optical properties of phosphorus-doped ZnO nanowires[J].Solid State Communications,2007,143(11-12):570-573.
    [135]Reshchikov M A,Shahedipour F,Korotkov R Y,et al.Photoluminescence band near 2.9 eV in undoped GaN epitaxial layers[J].Journal of Applied Physics,2000,87(7):3351-3354.
    [136]Ahn C H,Kim Y Y,Kang S W,et al.Phosphorus-doped ZnO films grown nitrogen ambience by magnetron sputtering on sapphire substrates[J].Physica B-Condensed Matter,2007,401:370-373.
    [137]Lee C Y,Tseng T Y,Li S Y,et al.Effect of phosphorus dopant on photoluminescence and field-emission characteristics of Mg0.1Zn0.90 nanowires[J].Journal of Applied Physics,2006,99(2):024303(1-6).
    [138]Zang C H,Zhao D X,Tang Y,et al.Acceptor related photoluminescence from ZnO:Sb nanowires fabricated by chemical vapor deposition method[J].Chemical Physics Letters,2008,452(1-3):148-151.
    [139]Ye J D,Gu S L,Li F,et al.Correlation between carrier recombination and p-Correlation between carrier recombination and p-type doping in P monodoped and In-P codoped ZnO epilayers[J].Applied Physics Letters,2007,90(15):152108(1-3).
    [140]Wahl U,Rita E,Correia J G,et al.Direct evidence for As as a Zn-site impurity in ZnO [J].Physical Review Letters,2005,95(21):215503(1-4).
    [141]Ozgur U,Alivov Y I,Liu C,et al.A comprehensive review of ZnO materials and devices[J].Journal of Applied Physics,2005,98(4):041301(1-103).
    [142]Xiang B,Wang P W,Zhang X Z,et al.Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition[J].Nano Letters,2007,7(2):323-328.
    [143]Zhou J,Xu N S,Wang Z L Dissolving behavior and stability of ZnO wires iin biofluids:A study on biodegradability and biocompatibility of ZnO nanostructures[J].Advanced Materials,2006,18(18):2432-2435.
    [144]Mandalapu L J,Xiu F X,Yang Z,et al.p-type behavior from Sb-doped ZnO heterojunction photodiodes[J].Applied Physics Letters,2006,88(11):112108(1-3).
    [145]Yuan G D.Zhang W J,Jie J S,et al.p-type ZnO nanowire arrays[J].Nano Letters,2008,8(8):2591-2597.
    [146]刘恩科,朱秉升,罗晋升等.半导体物理学[M].北京:国防工业出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700