用户名: 密码: 验证码:
组合式白腐真菌反应器处理实际染料废水过程中生态结构和功能解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白腐真菌因其极强的降解能力和特殊的代谢类型,其在难降解有机污染物的降解上发挥着十分重要的作用。但白腐真菌工艺由于各种因素的影响,其对实际染料废水的综合处理能力难以进一步提升,并影响到其实际应用价值和效益。
     本论文主要依托于国家科技部863计划项目《污水的高效微生物处理技术》(2006AA06Z331),利用白腐真菌对难降解有机废水——实际染料废水进行处理技术研究,同时后期在上海染化八厂开展现场中试实验研究,论文的重点研究内容有以下几个方面:①四种白腐真菌菌株产酶(MnP和LiP)优化筛选研究;②P.C. (MnP和LiP)的固定化载体研究;③组合式白腐真菌反应器的构建及运行参数的确定;④组合式白腐真菌反应器用于实际染料废水的小试及中试研究。本论文的目标是通过白腐真菌菌株优化、固定化载体筛选、组合式白腐真菌反应器构建及小试和中试研究,为组合式白腐真菌反应器处理实际染料废水的特性、效能及存在问题提供一定的科学依据。主要得出如下结论:
     (1)四种白腐真菌菌株产MnP和LiP优化筛选研究
     四种白腐真菌紫芝G. sinense、云芝C. versicolor、韩芝G. lucidum HG及黄孢原毛平革菌P.C.产MnP及LiP酶活差异明显,其中以P.C.的两种酶活为最高,其MnP和LiP酶活分别于第5天和第6天达到最大值225.67 U/L和110.35 U/L而P.C.在氮限制培养时要明显高于碳限制培养条件下,通过统计分析软件spss18.0分析得知,P.C.在氮、碳限制培养条件下MnP和LiP的酶活均呈显著性差异,其p值均低于0.05。
     对应P.C.的起始pH介于4.0~4.5之间时,P.C.产MnP及LiP的酶活相对较高,而当起始pH为4.5时两种酶活为最高;当装液量在500 mL/L时对应的MnP(高于240 U/L)和LiP(高于110 U/L)酶活均达到最高值;而孢子的接种量则以1.3×106个/mL时获得的MnP及LiP均分别达到180 U/L及130 U/L的最高水平;摇床转速介于120 r/min和140 r/min之间,其所获得的MnP及LiP酶活均较高。因此,对于四种白腐真菌而言,以P.C.所产MnP及LiP酶活为最高。
     (2)P.C.经六种不同的固定化载体固定化后的产酶情况
     P.C.经植物废料甘蔗渣和玉米芯固定化后其MnP和LiP酶活较其它四种载体固定化所获得的酶活高,通过spss18.0进行分析得知,甘蔗渣和玉米芯所产MnP与LiP酶活与其他四种载体具有极其显著的差异,其对应的p=0.000<0.01。虽经甘蔗渣固定后的MnP酶活要略低于玉米芯组,但甘蔗渣的LiP酶活均值要高于玉米芯组,综合考虑后采用甘蔗渣做为后续小试及中试的固定化载体。
     固定化载体甘蔗渣的投加量在6g/L时其所获得的MnP为最高,达157.1 U/L,同时其对应的对100 mg/L活性艳红X3-B脱色效果也最佳,至实验结束时可达99.6%,利用spss分析得知,不同的甘蔗渣的投加量对脱色率具有极其显著的相关性,其相关系数r=0.373,p值为0.00<0.01。而且该投加量下甘蔗渣能有效抑制其他杂菌的生长,同时利用SEM观察得知甘蔗渣能较好的作为P.C.生长、附着的载体。
     (3)利用正交优化实验确定了组合式白腐真菌反应器的多项重要参数,并成功运行了该反应器
     利用正交优化实验的直观分析、极差分析及方差分析对前两级白腐真菌反应器的三项重要参数T、DO及pH进行确定,从方差分析得知T、DO和pH三因素的FA=190.37,FB=41.82,Fc=0.8530,也就是对实际染料废水脱色效果的影响依次为T>DO>pH,试验表明T为30℃、DO为5mg/L和pH为5时所获得的脱色率为最高。构建的组合式白腐真菌反应器的主体反应器P.C.—组合填料反应器在处理实际染料废水时,其色度和CODCr在0~24 h内降低较为迅速,二者的去除率分别可达53.41%和29.50%,据此确定组合式系统的HRT为24h。组合式白腐真菌反应器的染料废水与培养基的配比为4∶1时,系统对CODCr及BOD5的去除效果为最佳,其对NH3-N的去除平均可达到国家一级排放标准即<15mg/L,对实际染料废水的色度也达到了国家排放标准的50以下,经检测,出水的生物毒性仅相当于平均浓度为0.058mg/L HgCl2的毒性,为低毒水平。对应的真菌微生物群落的多样性指数基本稳定在5.60左右,反应器内P.C.始终为优势菌种,其中白腐真菌—组合填料反应器在运行期间其微生物群落结构基本稳定。对染料废水稀释并不能有效提高系统的CODCr、BOD5去除率以及对实际染料废水生物毒性的削减。对系统内微生物群落结构进行解析发现当该系统采用稀释染料废水时,反应柱内微生物群落多样性指数波动不大,基本稳定在5.48左右。但低温下系统对CODCr、BOD5、生物毒性及脱色率的去除效果较常温下要低,反应器内微生物群落多样性指数也较常温下低,其平均值为5.20,而随着系统的运行,在低温工况后期其多样性指数呈上升趋势,说明系统运行后期有其他菌的侵染,它们并不是优势种,同DGGE图谱分析结果相一致。DGGE测序结果显示,三种工况下Neosartorya fischeri、Sordaria macrospora、Penicillium chrysogenum及P.C.四种菌均存在,而其他几种菌均较少,不属于优势种。
     (4)组合式白腐真菌反应器用于实际染料废水的中试研究
     现场中试研究得知,表明该组合系统对NH3-N、CODCr及BOD5均有良好的去除效果,该组合系统对可生化性差的实际染料废水仍然具有一定的生化降解能力。同时该组合系统对实际染料废水的生物毒性物质也有良好的去除效果,出水毒性检测表明其对应的HgCl2平均浓度已降至0.08 mg/L,属于低毒水平。
     本论文通过对白腐真菌菌株的优化、黄孢原毛平革菌产酶固定化载体的筛选、组合式白腐真菌反应器工艺技术参数选择及应用该反应器进行的小试及中试等方面的研究结果,为该组合式白腐真菌反应器处理染料废水并保障其稳定、高效运行提供了可靠的依据,具有一定的理论意义和应用价值。
White rot fungi is capable of oxidizing persistent organic pollutants (POPs) including dyes because of their strong biodegradability and unique metabolic type. However, It's hard to promote the comprehensive ability of treating actual dye wastewater, which will affect its applications and effectiveness. In addition, there are many factors influencing the growth and ligninases production of white rot fungi, as well as the enzymatic reaction, which raise new challenge to the technical process of white rot fungi applied to treating actual dye wastewater.
     This thesis is based on the project of effective microorganism techniques in wastewater treatment supported by Chinese National Programs for High Technology Research and Development (863Program). In the current study, the ligninases production of four white rot fungi was studied. The six carriers for immobilization of P. C. were also researched. Then the small-scale of integrated white rot fungi reactor was constructed and the performance of this reactor was researched with different conditions. And finally, the pilot-scale field tests were carried by Shanghai No.8 Dyestuff Chemistry Plant. The purpose of this thesis is to provide certain scientific references for the construction of white rot fungi integrated reactor and its stable and effective running.
     Four white rot fungi, G. Sinense, C. versicolor, G. lucidum HG and P.C., were significant different in enzyme activity of MnP and LiP. Both MnP and LiP of P.C. had the highest enzyme activity, for the peak activities of MnP and Lip were 225.67 U/L (detected at 5th day) and 110.35 U/L (detected at 6th day) respectively. The enzyme activities of P. C. under N-limited culture condition were much higer than under C-limited culture condition. Statistical analysis using spss18.0 indicated that the MnP and LiP enzyme activities of P. C. under Nitrogen and Carbon limited culture conditions exhibited significant differences, which p value less than 0.05.
     The enzyme activities of MnP and LiP of P.C. were comparatively high under pH value 4.0 to 4.5, and the two enzyme activities reached peak at pH value 4.5. MnP (more than 240 U/L) and LiP (more than 110 U/L) were at the peak activites when medium volume was 250mL. MnP and LiP reached the peak of 180 U/L and 130 U/L respectively when inoculation amount of spore suspension was 1.3×106 cell/mL. Speed between 120r/min and 140r/min was favorable for higher activities of MnP and LiP. Consequently, with respect to the four white rot fungi, MnP and LiP produced by P.C. had the highest enzyme activities.
     P.C. immobilized on bagasse and corn cob which was two agricultral wastes exhibited higher activities of MnP and LiP than on other four immobilized carriers. Through analysis by spss18.0, the activities of MnP and LiP produced on bagasse and corn cob were dramatically different from the situations of others, with corresponding p=0.000<0.01. The activites of LiP on bagasse were all higher than those on corn cob, despite the activities of MnP on bagasse were slightly less than those on corn cob. Taken these factors into consideration, bagasse was employed as immobilized carrier for the following lab-scale and pilot-scale experiments. When the immobilized carrier bagasse was 6 g/L, the maximum MnP could be 157.1U/L. Meanwhile, its decoloration was optimal, reaching 99.6%at the end of the experiment. Accroding to spss analysis, the dosage of bagasse and decoloration rate were extremely significant correlated, with correlation coefficient r is 0.373, p value less than 0.01. In addition, other bacterials were inhibited effectively under the above bagasse dose. SEM observation indicated that bagasse could be used well as carriers for P. C. adherence and growth.
     Using the orthogonal optimization test to determine the three important parameters (T, DO and pH) of intergrated white rot fungi reactor. The variance analysis showed that T has the grwatest impact on reactor performance, followed by DO, pH. When T, DO and pH was respectively 30℃,5 mg/L and 5, the system obtained the highest decolorization efficiency. However, when integrated white rot fungi treating the dyestuff wastewater, the colority and CODCrwas reduced rapidly within 24 h. According to the analysis, the HRT was determined 24 h.
     The removal efficiency of CODCr and BOD5 was the best when the ratio of dyestuff wastewater and the N-limited liquid medium was 4:1. The average removal of NH3-N can reach the national top standard, lower than 15 mg/L. The colority of the actual dyestuff wastewater was also reach the national standard lower than 50. Meanwhile, the average concentration of HgCl. was 0.058 mg/L, belonging to low toxicity level. The corresponding fungal microbial community diversity index stabilized around 5.60 and the P.C. is the dominant species all the time. Whether diluting or not, the reactor can't effectively improve the removal efficiency of CODCr, BOD5 and reduce the biotoxicity of the actual dyestuff wastewater. Microbial community diversity index of the reactor was stable at around 5.48. Under the condition of low temperature, the removal efficiency of CODcr, BOD5, biotoxicity and decolorization rate was lower than normal. Microbial community diversity index of the reactor was lower than normal temperature about 5.20. Meanwhile, with the system running, microbial community diversity index was increasing in the latter of the condition of low temperature. In accordance with DGGE profiles, it indicated that other bacteria intruded the system in the latter run, but not the dominant species.
     The pilot study indicated that the intergrated system have good removal efficiency of NH3-N, CODCr and BOD5. Meanwhile, the intergrated system also had good removal efficiency on the actual toxicity of wastewater. The average concentration of HgCl2 in the effluent had been reduced to 0.08 mg/L, of low toxicity level.
引文
[1]余刚,杨志华,祝万鹏,等.染料废水物理化学脱色技术的现状与进展[J].环境科学,1994,15(4):75-79.
    [2]Libra J A, Borchert M, Banit S. Competition strategies for the decolorization of a textile reactive dye with the white rot fungi Trametes versicolor under non-sterile conditions [J]. Biotechnology and Bioengineering,2003,82(6):736-744.
    [3]Gao D W, Wen X H, Qian Y. Decolorization of reactive brilliant red K-2BP with the white rot fungi under non-sterile conditions [J]. Chinese Science Bulletin,2004,49(9):981-982.
    [4]Glenn J K and Gold M H. Decolorization of several polymeric dyes by lignin degrading basidiomycete phanerochaete chrysosporium [J]. Applied Environmental Microbiology,1983, 45(6):1741-1747.
    [5]Heinfling A, Bergbauer M, Szewzyk U. Biodegradation of azo and phthalocyanine dyes by Trametes versicolor and Bjerkandera adusta [J]. Applied Microbiology Biotechnology,1997, 48(2):261-266.
    [6]徐海娟,粱文芷.白腐菌处理漂白废水工艺及脱色机理探讨[J].广东造纸,1999.(5):121-125.
    [7]王宏勋,张晓昱,陈建伟,等.四株产酸白腐菌应用于碱性造纸黑液生物治理的研究[J].工业水处理,2002,22(9):32-34.
    [8]高航,徐宏勇,刘勇弟.白腐菌附着式生物膜反应器处理垃圾渗沥液技术研究[J].环境科学学报,2004,24(2):309-315.
    [9]王庆生,李捍东,席北斗,等.利用白腐菌处理含硝基苯类化工废水的研究[J].环境科学研究.2002,15(2):19-21.
    [10]邹世春,张展霞.改进的PVA-H3BO3包埋白腐菌法处理污水[J].中山大学学报,1998,37(增刊):58-61.
    [11]高大文,文湘华,钱易.白腐真菌在非灭菌条件下对活性艳红染料的脱色研究[J].科学通报,2004,49(10):1009-1010.
    [12]黄俊,周申范.白腐真菌生物降解TNT装药废水的研究[J].环境科学与技术,1999,(3):17-19.
    [13]王亚耀,袁彦肖,田仁生.白腐真菌降解焦化废水的试验研究[J].工业水处理,2004,24(2):26-29.
    [14]Heinfling A, Martinez M J, Martinez A T, et al. Transformation of industrial dyes by manganese peroxidases from Bjerkandera adusta and Pleurotus eryngii in a manganese-independent reaction [J]. Applied Environmental Microbiology,1998,64(8): 2788-2793.
    [15]Leidig E, Prusse U, Vorlop K D, et al. Biotransformation of Poly R-478 by continuous cultures of PVAL-encapsulated Trametes versicolor under non-sterile conditions [J]. Bioprocess Engineering,1999,21(1):5-12.
    [16]Libra J A, Borchert M, Banit S. Competition strategies for the decolorization of a textile-reactive dye with the white-rot fungi Trametes versicolor under non-sterile conditions [J]. Biotechnology Bioengineering,2003,82(6):736-744.
    [17]Campbell A G, Gerrard E D, Joyce T W. The MyCoR process for color removal from bleach plant effluent:bench-scale studies [C]. In:Proceedings of the 1982 Tappi Research and Development Conference. Atlanta:Tappi Press,1982,209-214.
    [18]安世杰,黄民生,江敏.白腐真菌膜生物反应器处理复配染料废水营养源调控研究[J].水处理技术,2005,31(8):44-47.
    [19]Zhang F M, Knapp J S, Tapley K N. Development of bioreactor systems for decolorization of Orange II using white rot fungus [J]. Enzyme and Microbial Technology,1999,24:48-53.
    [20]Eaton D, Chang H M, Kirk T K. Fungal decolorization of kraft bleach plant effluent [J]. Tappi J,1980,63:103-109.
    [21]Nigam P, Armour G, Banat IM, Singh D, et al. Physical removal of textile dyes from effluents and solid state fermentation of dye adsorbed agricultural residues [J]. Bioresource Technology,2000,72(3):219-226.
    [22]Pointing S B, Bucher VVC, Vrijmoed LLP. Dye decolorization by subtropical basidiomycetous fungi and the effect of metals on decolorizing ability [J]. World Journal of Microbiology and Biotechnology,2000,16(2):199-205.
    [23]张朝晖,夏黎明,林建平,等.黄孢原毛平革菌对染料和印染废水的降解[J].应用与环境生物学报,2001,7(4):382-387.
    [24]黄民生,安世杰,张晶,等.白腐真菌对活性染料废水脱色实验研究[J].华东师范大学学报,2005,(1):139-143.
    [25]高大文,文湘华,钱易.白腐真菌培养条件对其分泌木质素降解酶的影响[J].中国环境科学,2005,25(5):572-575.
    [26]高大文,文湘华,钱易.自然(非灭菌)环境白腐真菌降解活性艳红染料[J].中国科学,2007,37(4):402-407.
    [27]Suthersan S. Remediation Engineering Design Concepts [M], CRC Press, Boca Raton, FL. 1997.
    [28]高大文,文湘华,周晓燕,等.pH值对白腐真菌液体培养基抑制杂菌效果的影响研究[J].环境科学,2005,26(6):173-179.
    [29]Zadrazil F. Screening of fungi for lignin decomposition and conversion of straw into feed [J]. Angew. Bot.1985,59:433-452.
    [30]Asther M, Capdevila C, Corrieu G. Control of lignin peroxidase production by Phanerochaete chrysosporium INA-2 by temperature shifting [J]. Applied Environmental Microbiology, 1988,54(12):3194-3196.
    [31]Dosoretz C G and Grethlein H E. Physiological aspects of the regμLation of extracelluar enzymes of Phanerochaete chrysosporium [J]. Applied Biochemistry Biotechnology,1991, 28/29:253-265
    [32]Barlev S and Kirk T K. Effect of oxygen on lignin degradation by Phanerochaete chrysosporium [J]. Biochemistry Biophysical Research,1981,99(2):373-378
    [33]柯世省,夏黎明,张朝晖,等.氧浓度对固定化黄孢原毛平革菌合成过氧化物酶的影响[J].林产化学与工业,2000,20(3):40-45.
    [34]郑裕国,薛亚平,金利群.生物加工过程与设备[M].北京:化学工业出版社,2004.
    [35]Bonnarme P and Jeffries T W. Selective production of extracellular peroxidases from Phanerochaete chrysosporium in an airlift bioreactor [J]. Journal of Fermentation and Bioengineering,1990,70(3):158-163.
    [36]范伟平,曹惠君,张俊.微电解-白腐菌生物降解-絮凝沉降系统用于染料废水的处理[J].南京化工大学学报,2001,23(4):28-32.
    [37]Kang G and Stevens D K. Degradation of pentachlorophenol in bench scale bioreactors using the white rot fungus Phanerochaete chrysosporium [J]. Hazardous Waste and Hazardous Materials,1994,11(3):397-410.
    [38]Zhang F M and Knapp J S. Development of bioreactor systems for decolorization of Orange Ⅱ using white rot fungus [J]. Enzyme Microbial Technology,1999,24(1):48-53.
    [39]Zhang F M and Yu J. Decolourisation of Acid Violet 7 with complex pellets of white rot fungus and activated Carbon [J]. Bioprocess Engineering,2000,23(3):295-301.
    [40]张朝晖,邵红,周晓云,等.三相鼓泡塔生物反应器培养黄孢原毛平革菌合成木素过氧化物酶系[J].应用与环境生物学报,2003,9(3):288-292.
    [41]Zhao L H, Zhou J T, Lv H, et al. Decolorization of cotton pulp black liquor by Pleurotus ostreatus in a bubble-column reactor [J]. Bull Environ Contam Toxicol,2008,80:44-48.
    [42]黄民生,程永前.白腐真菌生物膜反应器的脱色降解实验研究[J].上海环境科学,2000,21:73-76.
    [43]程永前,黄民生,张国莹.白腐真菌煤渣生物膜反应器对染料的脱色实验研究[J].水处理技术,2001,27(6):322-325.
    [44]寇晓芳,安立超,左志芳,等.白腐真菌-活性污泥联用降解染料废水[J].精细化工,2007,24(5):500-503.
    [45]赵丽红,金若菲,孙洪军,等.白腐真菌-活性污泥联合处理棉浆黑液的研究[J].生态环境学报,2009,8(2):422-425
    [46]Emrah A E, Ali U, Halil K. Decolorization of synthetic dyes by white rot fungi, involving laccase enzyme in the process [J]. Process Biochemistry,2007,42:1429-1435.
    [47]Couto S R, Sanroman M A, Hofer D, et al. Stainless steel sponge:a novel carrier for the immobilization of the white rot fungus Trametes hirsuta for decolourization of textile dyes [J]. Bioresource Technology,2004,95:67-72.
    [48]Zhao X H, Hardin I R, Hwang H Min. Biodegradation of a model azo disperse dye by the white rot fungus Pleurotus ostreatus [J]. International Biodeterioration and Biodegradation, 2006,57:1-6.
    [49]Zheng Z M and Obbard J P. Oxidation of polycyclic aromatic hydrocarbons (PAH) by the white rot fungus, Phanerochaete chrysosporium [J]. Enzyme and Microbial Technology, 2002,31:3-9.
    [50]Benoit V A, Laurent M G, Caroline M P, et al Eralization of 14C-U-ring labeled 4-hydroxylamino-2,6-dinitrotoluene by manganese dependent peroxidase of the white rot basidiomycete Phlebia radiate [J]. Journal of Biotechnology,1999,68(2-3):159-169.
    [51]Ruiz-Aguilar G M L, Fernandez-Sanchez J M, Rodriguez-Vazquez R, et al. Degradation by white rot fungi of high concentrations of PCB extracted from a contaminated soil [J]. Advances in Environmental Research,2002,6:559-568.
    [52]李慧蓉.白腐真菌生物学和生物技术[M].北京:化学工业出版社,2005.
    [53]Couto S R, Dominguez A, Sanroman A. Utilisation of lignocellulosic wastes for lignin peroxidase production by semi-solid-state cultures of Phanerochaete chrysosporium [J]. Biodegradation,2001,12:283-289.
    [54]范伟平,曹惠君,张俊,等.稻草末固定白腐真菌用于染料废水处理的研究[J].工业水处理,2001,21(2):19-21.
    [55]Verma P and Madamwar D. Production of Ligninolytic enzymes for dye decolorization by cocultivation of white rot fungi Pleurotus ostreatus and Phanerochaete chrysosporium under solid-state fermentation [J]. Applied Biochemistry Biotechnology,2002, 102-103(1-6):109-118.
    [56]Shin M, Nguyen T, Ramsay J. Evaluation of support materials for the surface immobilization and decoloration of amaranth by Trametes versicolor [J]. Applied Microbiology and Biotechnology,2002,60(1-2):218-223.
    [57]Kasinath A, Novotny C, Svobodova K, et al. Decolorization of synthetic dyes by Irpex lacteus in liquidcuhures and packed bed bioreactor [J]. Enzyme and Microbial Technology, 2003,32(1):167-173.
    [58]Libra J A, Borchert M, Banit S. Competition strategies for the decolorization of a textile reactive dye with the white rot fungi Trametes versicolor under non-sterile conditions [J]. Biotechnology and Bioengineering,2003,82(6):736-744.
    [59]Cinthia G B, Larissa O, Cristina G M S, et al. Decolorization of synthetic dyes by solid state cultures of Lentinula edodes producing [J]. Bioresource Technology,2004,94(2):107-112.
    [60]安世杰,孙宜敏.甘蔗渣对染料废水的吸附试验研究[J].工业用水与废水,2007,38(6):81-83.
    [61]马丽华.白腐真菌生物反应器处理染料过程中微生物分子生态学初步研究[D].华东师范大学硕士论文.
    [62]武琳慧,黄民生,施华宏.染料浓度和盐度对白腐真菌同工酶的电泳分析[J].环境科学与技术,2007,30(11):7-9.
    [63]Gao S, Tao F, Wu Linhui, et al. Evaluation of the Damage by Dyestuffs and NaCl on Phanerochaete chrysosporium [J]. Environmental Progress and Sustainable Energy,2010, 29(4):428-434.
    [64]Victor L P and Flavia F. Modification of malachite green by Fomes sclerodermeus and reduction of toxicity to Phanerochaete chrysosporium [J]. FEMS Microbiology Letters,2004, 231(2):205-209.
    [65]喻云梅.白腐真菌降解酶系及活性黑KN-B生物毒性研究暨对一种担子菌变异株的初步探讨[D].华东师范大学硕士论文.2005.
    [66]Ivana E, Ladislav H, Oldfich B, et al. Decolorization of Orange G and Remazol Brilliant Blue R by the white rot fungus Dichomitus squalens:Toxicological evaluation and morphological study [J]. Chemosphere,2007,69:795-802.
    [67]武琳慧,黄民生,施华宏.白腐真菌处理染料废水过程中生物过氧化损伤效应研究进展[J].净水技术,2007,26(3):57-59.
    [68]Bumpus J A and Aust S D. Biodegradation of environmental pollutants by the white rot fungus Phanerochaete chrysosporium:involvement of the lignin degrading system [J]. BioEssays,1987,6:166-170
    [69]Bumpus J A, Tien M.Wright M, et al. Oxidation of persistent environmental pollutants by white rot fungus [J]. Science,1985,228:1434-1436
    [70]David P B. Mechanisms white rot fungi use to degrade pollutants [J]. Environmental Science Technology.1994,28(2):78A-87A
    [71]Tien M and Kirk T K. Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium [J]. Science,1983,221:661-663.
    [72]Kuwahara M, Glenn J K, Morgan M A, et al. Separation and characterization of two extracellular H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium [J]. FEBS Letters,1984,169:247-259.
    [73]Dinmer J K, Patel N J, Dhawale S W. et al. Production of multiple laccase isoforms by Phanerochaete chrysosporium grown under nutrient sufficiency [J]. FEMS Microbiology Letters,1997,149(1):65-90.
    [74]Srinivasan C, D'Souza T M, Boominathan K, et al. Demonstration of Laccase in the white rot basidiomycete Phanerocharte chrysosporium BKM-F1767 [J]. Applied and Environmental Microbiology,1995,61 (12):4274-4277.
    [75]Rodriguez Couto S, Moldes D, Sanroman M A. Optimum stability conditions of pH and temperature for ligninase and manganese-dependent peroxidase from Phanerochaete chrysosporium. Application to in vitro decolorization of Poly R-478 by MnP [J]. World Journal of Microbiology Biotechnology,2006(22):607-612.
    [76]徐淑霞,张跃灵,张世敏,等.黄孢原毛平革茵过氧化物酶的分离、纯化和酶学特性研究[J].农业环境科学学报,2007,26(1):295-300.
    [77]赵红霞,詹勇,杨建军.白腐真菌降解秸秆作物研究及应用[J].中国饲料,2003,15:25-27.
    [78]Kirk T K, Schultz E, Connors W J, et al. Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium [J]. Arch Microbiology,1978,117:277-285.
    [79]高大文,文湘华,钱易.白腐真菌培养条件对其分泌木质素降解酶的影响[J].中国环境科学,2005,25(5):572-575.
    [80]张晶.外源调控下白腐真菌处理染料废水关键酶活的研究[D].华东师范大学,2005.
    [81]王灿,席劲瑛,胡洪营,等.气液环境下白腐真菌在载体表面的附着性能研究[J].环境科学学报,2007,27(1):53-58.
    [82]李慧蓉.白腐真菌的固定化技术[M].北京:化工出版社,2005.
    [83]Ruchkestein E, Wang X B. Production of lignin peroxidase by Phanerochaete chrysosporium immobilized on porous poly (styrenedivinylbenzene) carrier and its application to the degrading of 2-chlorophenol [J]. Biotechnology Bioengineering,1994,44(1):79-86.
    [84]Rogalski J, Szczodrak J, Janusz G. Manganese peroxidase production in submerged cultures by free and immobilized mycelia of Nematoloma frowardii [J]. Bioresource Technology, 2006,97(3):469-476.
    [85]Sayadi S, Zorgani F, Ellouz R. Decolorization of olive mill wastewaters by free and immobilized Phanerochaete chrysosporium cultures effect of the high-molecular-weight polyphenols [J]. Biotechnology Bioengineering,1996,56(3):265-276.
    [86]Alleman R C, Logan B E, Gilbertson R L. Degradation of pentachlorophenol by fixed film of white rot fungi in rotating tube bioreactors [J]. Water Research,29(1):61-67.
    [87]Venkatadri R and Irvine R L. Cultivation of Phanerochaete chrysosporium and production of lignin peroxidase in vovel biofilm reactor system:hollow fiber reactor and silicone membrane reactor [J]. Water Research,1993,27(4):591-596.
    [88]李学翔,汪玉娟,薛正莲,等.两株微生物絮凝剂产生菌筛选与复合培养研究[J].生物技术,2007,17(1):29-32.
    [89]阎逊初.放线菌的分类和鉴定[M].北京,科学出版社,1992.
    [90]董新姣.无花果曲霉菌丝球脱色培养基选择及培养条件优化[J].海南大学学报(自然科学版),2009,19(1):80-82.
    [91]李慧蓉,谭晓莲,凌瑞锋.黄孢原毛平革菌细胞固定化技术的比较研究[J].环境科学研究,2001,14(1):41-44.
    [92]安世杰,孙宜敏.甘蔗渣对染料废水的吸附试验研究[J].工业用水与废水,2007,38(6):81-83.
    [93]程永前,蒋大和,陆雍森.白腐真菌对活性艳红染料X-3B的脱色实验研究[J].2007,33(4):25-29.
    [94]Kotterman M J J and Heessels E. The physiology of anthrane biodegradation by the white rot fungus Bjerkandera sp. strain BOS55 [J]. Appllied Microbiology,1994,42:179-186.
    [95]曾永刚.非灭菌环境下固定化白腐真菌抑菌策略的研究[D].东北林业大学,2007.
    [96]Venkatadri R and Irvine R. Cultivation of Phanerochaete chrysosporium and production of lignin peroxidase in novel biofilm reactor systems:Hollow fiber reactor and silicone membrane reactor [J]. Water Research,1993,27(4):591-596.
    [97]Lopez C, Moreira M T, Feooo G, et al. Dye decolorization by manganese peroxidase in an enzymatic membrane bioreactor [J]. Biotechnology Progress,2004,20(1):74-81.
    [98]黄民生,吴苑,黄异.白腐真菌生物膜反应器处理染料生产废水实验研究[J].上海环境科学,2003,22(7):451-455.
    [99]王忠华.白腐真菌生物反应器降解染料的效果及机理分析研究[D].华东师范大学,2006.
    [100]国家环境保护总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [101]李云雁,胡传荣.试验设计与数据处理[M].化学工业出版社,2005.
    [102]Armenanle P M, Pal N, Lew G, et al. Role of mycelium and extracellular protein in the biodegradation of 2,4,6-trichlorophenol by Phanetochaete chrysosprium [J]. Applied and Environmental Microbiology,1994,60(6):1711-1718.
    [103]Kullmnan S W and Matsumura F. Metabolic pathways utilized by Phanerochaete chrysosprium for degradation of the cyclodiene pesticide endosulfan [J]. Applied and Environmental Microbiology,1996,62:593-600.
    [104]Bumpus J A and Aust S D. Biodegradation of DDT [1,1,1,-Trichlom-2,2-Bis(4-chlorphenyl) ethanel] by white rot fungus Phanerochaete chrysosprium [J]. Applied and Environmental Microbiology,1987,53:2001-2008.
    [105]Kahraman S, Asma D, Erdemoglu S, et al. Biosorption of copper (Ⅱ) by live and dried biomass of the white rot fungi Phanerochaete chrysosporium and Funalia trogii [J]. Engineering in Life Sciences,2005,5(1):72-77.
    [106]Pazarlioglu N K, Urek R O, Ergun F, et al. Biodecolourization of derect blue 15 by immobilized Phanerochaete chrysosporium [J]. Process Biochemistry,2005, 40(5):1923-1929.
    [107]朱文杰,郑天凌,李伟民.水发光细菌与环境毒性检测[M].北京:中国轻工业出版社.2009.
    [108]马丽华.白腐真菌组合工艺系统处理实际染料废水过程中微生物群落结构动态变化分析研究[D].华东师范大学,2006.
    [109]Bumpus J A, Tien M, Wright D, et al. Oxidation of persistent environmental pollutants by a white rot fungus [J]. Science,1985,228:1434-1436.
    [110]David P B and Steven D A. Mechanisms white rot fungi use to degradate pollutants [J]. Environmental Science and Technology,1994,28(2):78-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700