用户名: 密码: 验证码:
SBBR单级自养脱氮工艺性能与氮转化途径研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单级自养脱氮工艺是指在一个系统内由自养菌实现NH4+至N2全部转化过程的一类工艺,在处理低C/N比废水方面极具潜力。由于该工艺在控制运行和机理方面有很多难点没有得到很好解决,限制了其在实际工程中的应用。本论文系统地研究了构建单级自养脱氮系统的方法,探讨了运行控制条件对单级自养脱氮工艺的影响机制和单级自养脱氮系统运行的适宜组合工况,并通过对比系统内生物膜和悬浮污泥的单级自养脱氮特性,分析了单级自养脱氮系统内起主导脱氮作用的污泥形式,同时深入研究了单级自养脱氮系统的氮素平衡和NH4+的去除途径。
     采用4组SBBR(Sequence Batch Biofilm Reactor)反应器构建单级自养脱氮系统,并研究了构建单级自养脱氮系统的适合条件和方法,结果表明:构建单级自养脱氮系统的过程可分为亚硝化启动和单级自养脱氮实现两个阶段。亚硝化启动阶段中系统内的NO2-积累率较高,但系统的脱氮性能较差。单级自养脱氮实现阶段中,系统内的NH4+迅速被转化,NO2-和NO3-基本无积累,单级自养脱氮性能得到提高;间歇曝气和连续曝气两种曝气方式均可构建单级自养脱氮系统,但间歇曝气系统所需的DO(Dissolved Oxygen)浓度高于连续曝气系统;DO过高(连续曝气条件下DO超过1.5mg/L)易导致系统内发生全程硝化反应,不利于构建自养脱氮系统;过低的DO(连续曝气条件下DO低于0.8mg/L)则将延长构建单级自养脱氮系统的时间;单级自养脱氮系统的HRT(Hydraulic Retention Time)应根据一个运行周期内DO和NO3-浓度的突升点来确定,随系统的曝气方式和DO等运行条件进行调节;软性组合填料和弹性立体填料均较多面空心球填料有利于快速挂膜,且软性组合填料较弹性立体填料更有利于微生物的附着,以构建稳定运行的SBBR单级自养脱氮系统;通过T-A克隆的方法,在单级自养脱氮系统中发现2类不同的AOB序列,一类与氨氧化菌标准菌株Nitrosomonas有98%的较高相似性,另一类则与其它一种未得到纯培养的AOB接近,相似性为99%。存在的NOB比较单一,与Nitrospira相似性达到100%。AMAMMOX种类丰富,检测到11种不同ANAMMOX基因序列,与典型的厌氧氨氧化菌具有较高的相似性,相似性分别达到97~99%,主要归属于Candidatus Kuenenia stuttgartiensis及Candidatus Brocadia fulgida两个属。
     利用已建立的SBBR单级自养脱氮系统,调节其运行控制条件至不同水平,研究了曝气方式、DO、温度和pH值对单级自养脱氮工艺的影响机制及单级自养脱氮系统运行的最适组合工况,结果表明:间歇曝气条件下,单级自养脱氮系统的曝气时间与停曝气时间基本相当时较有利于提高系统的脱氮性能;单级自养脱氮系统的DO浓度应根据曝气方式进行调节。连续曝气和间歇曝气(曝停比为2h:2h)的单级自养脱氮系统的最适DO浓度分别为1.5mg/L和2.0mg/L;DO过低将降低亚硝化反应速率,并导致ANAMMOX(Anaerobic Ammonium Oxidation)反应因缺乏足够的反应物质而无法快速进行,从而降低单级自养脱氮系统的脱氮性能。过高的DO则会破坏生物膜内部的厌氧区,降低ANAMMOX的反应速率,在O2存在的条件下,剩余的NO2-则进一步被氧化为NO3-,不利于NH4+的有效去除;间歇曝气SBBR单级自养脱氮系统的最适温度为30℃。在一定温度范围内(不大于30℃),温度的升高有助于提高系统的NH4+转化速率和脱氮效能。但温度达到35℃时,ANAMMOX反应速率较低而不能把亚硝化反应生成的NO2-全部转化为N2,在系统内DO浓度(2.0mg/L)较高的条件下,部分NH4+将通过全程硝化反应被氧化为NO3-;间歇曝气SBBR单级自养脱氮系统的最适pH值为8。pH值为8左右时,系统内亚硝化和ANAMMOX的反应速率较快,且二者反应速率相当,有利于亚硝化反应和ANAMMOX反应的联合脱氮,单级自养脱氮系统的脱氮性能较好。
     以单级自养脱氮系统内的生物膜(包括填料上的生物膜和反应器内壁上的生物膜)和悬浮污泥为研究对象,研究了生物膜和悬浮污泥的亚硝化反应、好氧NO2-氧化反应、ANAMMOX反应和单级自养脱氮活性,对比了生物膜和悬浮污泥的自养脱氮特性,并深入分析了造成其自养脱氮性能差别的根本原因及起主导脱氮作用的污泥形式。结果表明:单级自养脱氮系统内填料上生物膜的最大亚硝化反应活性、好氧NO2-氧化活性、ANAMMOX反应活性和单级自养脱氮活性分别为0.153±0.0064 gN·gVSS-1·d-1、0.0087±0.0016 gN·gVSS-1·d-1、0.282±0.0086 gN·gVSS-1·d-1和0.207±0.0045 gN·gVSS-1·d-1;单级自养脱氮系统反应器内壁上生物膜的最大亚硝化反应活性、好氧NO2-氧化活性、ANAMMOX反应活性和单级自养脱氮活性分别为0.167±0.0087 gN·gVSS-1·d-1、0.0045±0.0016 gN·gVSS-1·d-1、0.313±0.014 gN·gVSS-1·d-1和0.298±0.0060 gN·gVSS-1·d-1;单级自养脱氮系统内悬浮污泥的最大亚硝化反应活性、好氧NO2-氧化活性、ANAMMOX反应活性和单级自养脱氮活性分别为0.137±0.0080 gN·gVSS-1·d-1、0.045±0.0038 gN·gVSS-1·d-1、0.095±0.0052 gN·gVSS-1·d-1和0.099±0.011gN·gVSS-1·d-1;填料上生物膜和反应器内壁上生物膜的亚硝化反应活性、ANAMMOX反应活性和单级自养脱氮活性均高于悬浮污泥,好氧NO2-氧化活性则低于悬浮污泥。生物膜比悬浮污泥更有利于形成好氧与厌氧共存的微环境使亚硝化和ANAMMOX反应顺利进行,在单级自养脱氮系统内起主导脱氮作用。
     利用现代物质分析测试手段,监测了密闭单级自养脱氮系统内,气相和液相中生成的氮化合物的种类及其含量,研究了系统的氮素平衡和NH4+去除的主要形式,结果表明,单级自养脱氮系统内62%的NH4+在微生物的作用下被转化为NO2-、NO3-、NH2OH、N2H4、NO、NO2、N2O和N2等多种氮化合物,其中N2占90.07%,是NH4+转化的主要产物形式。
     根据单级自养脱氮工艺的几种机理假说及脱氮反应,配制不同的模拟含氮废水,监测不同进水条件下,系统内氮化合物种类及其含量的变化,研究了单级自养脱氮系统内氨氮的去除途径。结果表明:单级自养脱氮系统内6.72%的氨氮是通过吹脱等物化作用去除的,不超过6.02%的氨氮是通过传统硝化反硝化途径去除的,87.26%左右的氨氮是由自养脱氮途径去除的,自养脱氮反应起主要脱氮作用;在足够NO2存在且缺氧的条件下,单级自养脱氮系统内的出水氨氮浓度与空白反应器相当,NH4+并没有被亚硝化单胞菌以NO2为电子受体氧化为NO2-和N2等化合物而得以去除,可能是因为系统内不存在该代谢功能的亚硝化功能菌;单级自养脱氮系统内存在两条ANAMMOX反应途径:其中一条途径即NH4+在好氧条件下被氧化为NH2OH后,生成的NH2OH与系统内的NO2-在缺氧条件下被转化为N2O,N2O则进一步被转化为N2而实现氮的去除;另外一条途径即NO2-首先被还原为NH2OH,生成的NH2OH则与系统内的NH4+反应生成N2H4,N2H4继续被转化为N2而实现氮的去除。
One-stage completely autotrophic nitrogen removal process could realize the conversion of ammonium to denitrogen gas by autotrophic bacteria in one reactor, and it has remarkable potential to treat low C/N ratio wastewaters. Many problems of the control method and mechanism of the process have not been well resolved, which restrict its application of the process in engineering. In this paper, the rapid start-up methods of one-stage completely autotrophic nitrogen removal system were studied , the influencing mechanism of control factors and suitable combination work conditions of the process were discussed , in addition, comparing the characteristics of one-stage autotrophic nitrogen removal of biofilm and suspended sludge in the system, the sludge form playing dominant roles in nitrogen removal was analyzed, and the nitrogen balance and the NH4+ conversion pathways were studied in depth.
     Four SBBRs (Sequence Batch Biofilm Reactors) were employed to start up one-stage completely autotrophic nitrogen removal system and proper conditions and methods of setting up the system were studied, results showed that: (1) The start up process could be divided into two periods. In the first period NO2- accumulation rate was high but nitrogen removal efficiency was low. In the second period, NH4+ was converted quickly and there was little accumulation of NO2- and NO3-, with increasing efficiency of nitrogen removal in the system. (2) Both intermittent aeration mode and continuous aeration mode could be used for starting up one-stage completely autotrophic nitrogen removal system, but higher DO concentration (Dissolved Oxygen) was needed in the intermittently aerated system. (3) Too high DO concentrations (higher than 1.5mg/L in continuous aeration mode) could result in aerobic NO2- oxidation in the whole process, which was not good for the start up of one-stage completely autotrophic nitrogen removal system. However, too low DO concentration (lower than 0.8mg/L in continuous aeration mode) could extend the start-up time. (4) HRT (Hydraulic Retention Time) of one-stage completely autotrophic nitrogen removal system should be determined by“elevation point”of DO and NO3- concentrations in one operation cycle, and adjusted with aeration mode and DO concentration of the system. (5) Both soft combination packing and elastic solid packing were more beneficial for rapid biofilm attachment than globular packing, and soft combination packing was more useful for biofilm adherence and stable operation of one-stage completely autotrophic nitrogen removal system than elastic solid packing. (6) Functioning bacteria in the system was identified through T-A cloning. Two sequences of AOB, one sequences of NOB and eleven sequences of AAOB were found in the system.
     Conditions of the SBBR one-stage completely autotrophic nitrogen removal system were adjusted to study the influence of aeration mode, DO concentration, temperature and pH and the optimal combination work conditions of the system. Results indicated that nitrogen removal efficiency could be improved in intermittent aeration mode when aeration time was equal to non-aeration time in one aeration cycle; Too high DO concentration could reduce the nitrification reaction rate, which led to relatively low ANAMMOX (Anaerobic Ammonium Oxidation) reaction rate and the poor performance of one-stage autotrophic nitrogen removal system. However, too high DO concentration could damage the anaerobic zone in the biofilm, reduce ANAMMOX reaction rate, and the remaining NO2- could be further oxidized to NO3-, which was not conducive to the effective removal of NH4+; DO concentration should be adjusted according to aeration mode of the system. The optimal DO concentrations of the one-stage completely autotrophic nitrogen removal system in intermittent aeration mode (with aeration/non-aeration ratio of 2h: 2h) and continuous aeration mode were 2.0mg/L and 1.5mg/L, respectively. The optimal temperature of intermittent aeration mode SBBR one-stage autotrophic nitrogen removal system was 30℃. The increased temperature (not higher than 30℃) would improve ammonium conversion and nitrogen removal efficiency. But when temperature reached 35℃, reaction rate of ANAMMOX was too low to convert NO2-, which come from nitrification to N2 thoroughly, under the condition of 2.0mg/L of DO concentration, part of NH4+ was oxidized to NO3- through nitrification. With pH=8, the reaction rate of nitrification and ANAMMOX increased, and would be equivalent, which was helpful for combination nitrogen removal of nitrification and ANAMMOX, thus one-stage autotrophic nitrogen removal performed very well.
     Taking the biofilm (including biofilm on the packing and biofilm on the reactor inner wall) and suspended sludge in one-stage completely autotrophic nitrogen removal system as the research objects, the nitrification of the biofilm and suspended sludge, aerobic NO2- oxidation, AMAMMOX reaction and one-stage completely autotrophic nitrogen removal activity were investigated. And the causes of the denitrification differences and the dominant sludge playing roles in nitrogen removal were in depth analyzed, by comparing the autotrophic denitrification activity of biofilm and suspended sludge. Results showed that nitrification activity, ANAMMOX activity, aerobic NO2- oxidation activity and one-stage completely autotrophic nitrogen removal activity of biofilm on the packing were 0.153±0.0064 gN·gVSS-1·d-1, 0.0087±0.0016 gN·gVSS-1·d-1, 0.282±0.0086 gN·gVSS-1·d-1 and 0.207±0.0045 gN·gVSS-1·d-1, respectively, and that of biofilm on the reactor inner wall were 0.167±0.0087 gN·gVSS-1·d-1, 0.0045±0.0016 gN·gVSS-1·d-1, 0.313±0.014 gN·gVSS-1·d-1 and 0.298±0.0060 gN·gVSS-1·d-1, respectively, and that of suspended sludge were 0.137±0.0080 gN·gVSS-1·d-1, 0.045±0.0038 gN·gVSS-1·d-1, 0.095±0.0052 gN·gVSS-1·d-1 and 0.099±0.011gN·gVSS-1·d-1, respectively. Nitrification activity, ANAMMOX activity and one-stage completely autotrophic nitrogen removal activity of two kinds of biofilm were higher than that of suspended sludge, but aerobic NO2- oxidation activity of biofilm were lower than that of suspended sludge, which indicate that biofilm is more beneficial for the formation of aerobic-anaerobic micro-environment to make nitrification and ANAMMOX reaction perform well, and biofilm played dominant parts in one-stage completely autotrophic nitrogen removal system.
     The varieties and contents of the intermediate products in the gas phase and fluid phase in the airtight one-stage completely autotrophic nitrogen removal system were determined by modern matter analysis measurement method, the nitrogen balance and the NH4+ removal ways of the system were studied. Results showed that 62% of NH4+ was converted to NO2-, NO3-, NH2OH, N2H4, NO, NO2, N2O and N2 under the microbial performance, N2 accounted for 90.07%, which was the main form of NH4+ removal.
     According to several mechanism hypothesis and denitrification reaction of one-stage autotrophic nitrogen removal process, different artificial nitrogen wastewaters were prepared, types and contents variations of compounds under different water conditions were monitored, and NH4+ removal pathways in one-stage autotrophic denitrification system were studied.Results showed that 6.72% of ammonia nitrogen was removed in the physical-chemical way, no more than 6.02% of ammonia nitrogen was converted by the conventional nitrification denitrification process, and about 87.26% of ammonia nitrogen was removed by the completely autotrophic nitrogen removal in one reactor process. But the effluent ammonium in the anoxic reactor, where enough NO2 were present, was equal to the blank system, and no ammonium was converted to such nitrogen compounds as NO2- and N2 by Nitrosomonas eutropha using NO2 as electron acceptor, which maybe caused by lack of the function bacteria. There were two ANAMMOX reaction pathways in the one-stage autotrophic nitrogen removal system. One way was that after part of NH4+ was oxidized to NH2OH under aerobic conditions, NH2OH and NO2- were converted to N2O under anaerobic conditions, at last N2O was further converted to N2 which realized the nitrogen removal; Another way was that at first NO2- was reduced to NH2OH, NH2OH reacted with NH4+ to form N2H4, which was further converted to N2 subsequently, realizing the nitrogen removal.
引文
董良飞,Salzgeber D, Seigrist H,等.2008.单级自养SBR处理消化污泥上清液研究[J].中国给水排水,24(13):96-99.
    方芳,杨国红,郭劲松,等.2007.DO和曝停比对单级自养脱氮工艺影响试验研究[J].环境科学, 28(9): 1975-1980.
    高大文,彭永臻,王淑莹. 2005.短程硝化生物脱氮工艺的稳定性[J].环境科学, 26(1):63-67.
    宫正,刘思彤,杨凤林,等. 2008.启动炭管曝气膜生物反应器实现全程自养脱氮[J].环境科学, 29(5):1221-1226.
    郭劲松,方芳,罗本福,等. 2006.生物膜SBR反应器中低氨氮浓度废水亚硝化启动试验研究[J].环境科学, 27(4):686-690.
    国家环保局编. 2002.水和废水监测分析方法[M].第四版.北京:中国环境科学出版社.
    郝晓地, van Loosdrecht M. 2003.荷兰鹿特丹DOKJAVEN污水处理厂介绍[J].给水排水,29(10):19-25.
    郝晓地,朱景义,曹秀琴,等. 2008.硝化细菌AOB与NOB衰减速率实验测定[J].环境科学学报,28(12):2499-2502.
    胡宝兰,陈旭良,郑平,等.2005.两种Anammox反应器性能的对比研究[J].环境科学学报,25(4):545-551.
    胡宝兰,郑平,冯孝善.1999.新型生物脱氮技术的研究[J].应用与环境生物学报,S1:68-73.
    胡林林,王建龙,文湘华,等.2003.低溶解氧条件下生物脱氮研究中的新现象[J].应用与环境生物学报, 9(4):444-447.
    廖德祥,李小明,曾光明,等.2005.单级SBBR生物膜中全程自养脱氮的研究[J].中国环境科学,25(2): 222-225.
    刘亚为.浸没式膜生物反应器处理高浓度氨氮废水的试验研究[D].湖南:湖南大学, 2006.
    孟了,陈永,陈石.2004.CANON工艺处理垃圾渗滤液中的高浓度氨氮[J].给水排水, 30(8):24-29.
    欧阳科,刘俊新.2008.不排泥运行条件下膜生物反应器污泥活性的研究[J].给水排水,34(7):46-51.
    阮文权,邹华,陈坚. 2002.厌氧氨氧化混培物的获得及其运行条件[J].重庆环境科学, 24(6):30-33.
    王颖,缺氧/好氧生物膜反应器处理高浓度含碳和氮工业废水的研究[D].北京:北京工业大学, 2003.
    吴广华. SBMBBR脱氮除磷工艺特性研究[D].大连:大连理工大学, 2006.
    杨虹,李道棠,朱章玉.2001.全程自养脱氮新技术处理污泥脱水液的研究[J].环境科学, 22(5):105-107.
    杨麒,李小明,曾光明,等.2004.同步硝化反硝化的形成机理及影响因素,环境科学与技术,27(3):102-104.
    杨洋,左剑恶,沈平,等. 2006.温度、pH值和有机物对厌氧氨氧化污泥活性的影响[J].环境科学,27(4):691-695.
    张辉,白向玉,李敬,等.2005.间歇曝气短程硝化控制新途径的初步试验研究[J].新疆环境保护,27(4):28-32.
    张小玲,王志盈,彭党聪,等.2003.低溶解氧下活性污泥法的短程硝化研究[J].中国给水排水,19(7):1-4.
    郑平,胡宝兰,徐向阳.2000.厌氧氨氧化菌好氧代谢特性的研究[J].浙江大学学报(农业与生命科学版),26(5):521-526.
    郑平,胡宝兰.2001.厌氧氨氧化菌混培物生长及代谢动力学研究[J].生物工程学报, 17(2):193-197.
    Abeling U, Seyfried C F. 1992. Anaerobic-aerobic treatment of high-strength ammonia wastewater-nitrogen removal via nitrite [J]. Water Science and Technology, 26(5-6): 1007-1015.
    Ahn Y H, Choi H C. 2006. Autotrophic nitrogen removal from sludge liquids in upflow sludge bed reactor with external aeration [J]. Process Biochemistry, 41(9): 1945-1950.
    Ahn Y H. 2006. Sustainable nitrogen elimination biotechnologies: A review [J]. Process Biochemistry, 41 (8): 1709-1721.
    Anthonisen A C, Loehr R C, Prakasam T B S, et al. 1976. Inhibition of nitrification by ammonia and nitrous acid [J]. Journal of Water Pollution Control Federation, 48(5): 835-852.
    Antoniou P, Hamilton J, Koopman B, et al. 1990. Effect of temperature and pH on the effective maximum specific growth rate of nitrifying bacteria [J].Water Research, 24 (1): 97-101.
    Arciero D M and Hooper A B. 1993. Hydroxylamine oxidoreductase from Nitrosomonas is a multimer of an octaheme subunit [J]. J Biol Chem, 268(20):14645-14654.
    Bergmann D J, Arciero D M, Hooper A B. 1994. Organization of the bao gene cluster of Nitrosomonas europaea: genes for two tetraheme c cytochromes [J]. J Bacteriol, 176:3148-3153.
    Bernet N, Peng D C, Delgenes J P, et al. 2001. Nitrification at low oxygen concentration in biofilm reactor [J]. Journal of Environment and Engineering, 127 (3): 266-271.
    Broda E. 1977. Two kinds of lithotrophs missing in nature [J]. Z Allg Mikrobio1, 17(6): 491-493.
    Castignetti D, Gunner H B. 1982. Differential tolerance of hydroxylamine by an Alcaligenes sp., a heterotrophic nitrifier, and by Nitrobacter agilis [J]. Canadian Journal of Microbiology, 28(1), 148-150.
    Chen H H, Liu S T, Yang F L, et al. 2009. The development of simultaneous partial nitrification, ANAMMOX and denitrification (SNAD) process in a single reactor for nitrogen removal [J].Bioresource Technology, 100(4): 1548-1554.
    Christian F, Marc B, Philipp H, et al. 2002. Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant [J]. Journal of Technology, 99(3):295-306.
    Dalsgaard T, Canfield D E, Petersen J, et al. 2003. N2 production by the Anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica[J]. Nature , 422(6932): 606-608.
    Dalsgaard T, Thamdrup B. 2002. Factors controlling anaerobic ammonium oxidation with nitrite in marine sediments [J]. Applied & Environmental Microbiology, 68(8): 3802-3808.
    Daniel S Hagopian, John G Riley. 1998. A closer look at the bacteriology of nitrification [J], Aquacultural Engineering, 18(4):223-244.
    Dapena-Mora A, Campos J L, Mosquera-Corral A, et al. 2004. Stability of the ANAMMOX process in a gas-lift reactor and a SBR [J], Biotechnology, 110(2):159-170.
    Domenic C and Thomas C. 1984. Hollocher Heterotrophic nitrification a mong denitrifiers [J]. Appl.Environ.Microbiol, 47(4):620-623.
    Dong X, Tollner E W. 2003. Evaluation of anammox and denitrification during anaerobic digestion of poultry manure [J]. Bioresource Technology, 86(2):139-145.
    Egli K, Fanger U, Alvarez P J J, et al. 2001. Enrichment and characteization of an anammox bacterium from a rotating biological contactor treating ammonium rich leachate [J]. Archives of Microbiology, 175(3): 198-207.
    Egli K, Bosshard F, Werlen C, et al. 2003. Microbial composition and structure of a rotating biological contactor biofilm treating ammonium-rich wastewater without organic carbon[J]. Microbiology Ecology, 45 (4):419-432.
    Egli K, Fanger U, Alvarez P J J, et al. 2001. Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate [J]. Archive of Microbiology, 175(3), 198-207.
    Eilersen A M, Henze M, Kloft L 1994. Effect of volatile fatty acids and trimethylamine on nitrification in activated sludge [J]. Water Research, 28(6): 1329-1336.
    Feng Y J, Tseng S K, Hsia T H, et al. 2008. Aerated membrane-attached biofilm reactor as an effective tool for partial nitrification in pretreatment of anaerobic ammonium oxidation (ANAMMOX) process [J]. Journal of Chemical Technology and Biotechnology, 83(1):6-11.
    Fernandez I, Vazquez-Padin J R, Mosquera-Corral A, et al. 2008. Biofilm and granular systems to improve Anammox biomass retention [J]. Biochemical Engineering Joural, 42(3):308-313.
    Frear D S, Burrel R C. 1955. Spectrophotometric method for determining hydroxylamine reductase activity in higher plants [J]. Analytical Chemistry, 27(10):1664-1665.
    Fux C, Boehler M, Huber P, et al. 2002. Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant [J]. Journal of Biotechnology, 99(3):295-306.
    Fux C. 2003. Biological nitrogen elimination of ammonium-rich sludge digester liquids. PhD thesis, ETH-Zürich, Switzerland.
    Gupta S K, Sharma R. 1996. Biological oxidation of high strength nitrogenous wastewater [J].Water Research, 30 (3): 593-600.
    Hanaki K, Waantawin C, Ohgaki S. 1990. Nitrification at low levels of DO with and without organic loading in a suspended-growth reactor [J]. Water Research, 24 (3): 297-302.
    Hao X D, Heijnen J J, Van Loosdrecht. 2002(a). Model-based evaluation of temperature and inflow variations on a partial nitrification-ANAMMOX biofilm process [J]. Water Research, 36(19):4839-4849.
    Hao X D, Heijnen J J, Van Loosdrecht M C M. 2002(b). Sensitivity analysis of a biofilm model describing a one-stage completely autotrophic nitrogen removal (CANON) process [J]. Biotechnology and Bioengineering, 77(3): 266-277.
    Hellinga C, Schellen A, M ulder J W, et al. 1998. The Sharon process: an innovative method for nitrogen removal from ammonium rich waste water [J].Water Science and Technology, 37 (9): 135-142.
    Helmer C, Kunst S, Juretschko S, 1999. Nitrogen loss in a nitrifying biofilm system[J]. Wat. Sci. Tech., 39 (7) :13-21.
    Helmer C, Tromm C, Hippen A, et al. 2001. Single stage biological nitrogen removal by nitritation and anaerobic ammonium oxidation in biofilm systems. Water Science and Technology, 43(1):311-320.
    Hippen A, Helmer C, Kunst S, et al. 1999. Sludge liquor treatement with aerobic deammonification. Conference Proceedings of“wastewater 1999”. 3rd International Conference of ACECR, Teplice, 18-20 May.
    Hippen A, Rosenwinkel K H, Baumgarten G, et al. 1997. Aerobic deammonification:a new experience in the treatment of wastewater[J]. Water Science and Technology, 38(10):111-120.
    Hu S S. 1990. Acute substrate-intermediate-product related inhibition of nitrifiers. MSc Thesis, School of Civil Engineering, Purdue University, West Lafayette, Indiana, USA.
    Hunik J H, Tramper J, Wijffels R H. 1994. A strategy to scale up nitrification processes with immobilized cells of Nitrosomonas europaea and Nitrobacter agilis [J]. Bioprocess Eng, 11(2): 73-82.
    Hyungseok Y, Ahn K H, Lee H J, et al. 1999. Nitrogen removal from synthetic wastewater bysimultaneous nitrification and denitrification (SND) via nitrite in an intermittently-aerated reactor [J]. Water Research, 33(1):145-154.
    Innerebner G, Insam H, Franke-whittle I H, et al. 2007. Idetification of anammox bacteria in a full-scale deammonification plant making use of anaerobic ammonia exudation [J]. Systematic and Applied Microbiology, 30(5):408-412.
    Jetten M S M, Horn S J, van Loosdrecht M C M. 1997. Towards a more sustainable municipal wastewater treatment system [J]. Water Science and Technology, 35(9):171-180.
    Jetten M S M, Strous M, Van de Pas-Schoonen K T, et al. 1999. The anaerobic oxidation of ammonium[J]. FEMS Microbiol Rev, 22: 421-437.
    Jose V P, Issac F, Monica F, et al. 2009. Applications of Anammox based processes to treat anaerobic digester supernatant at room temperature [J]. Bioresource Technology, In Press.
    Kazuaki H, Akihiko T, Satoshi T. 2003. Simultaneous nitrification and denitrification by controlling vertical and horizontal microenvironment in a membrane aerated biofilm reactor[J]. Journal of Biotechnology, 100(1) :23-32.
    Kuai L P, Verstrate W. 1998. Ammonium removal by the oxygen-limited autotrophic nitrification- denitrification system [J]. Applied and Environmental Microbiology, 64(11): 4500-4506.
    Kuenen J G, Robertson L A. 1994. Combined nitrification denitrification process [J]. FEMS Microbiol Rev, 15(2): 109-117.
    Kuypers M M M, Sliekers A O, Lavik G, et al. 2003. Anaerobic ammoniumoxidation by Anammox bacteria in the Black Sea[J]. Nature, 422 (6932): 608-611.
    Laanbroek H J, Bodelier P L E, Gerards S. 1994. Oxygen consumption kinetics of Nitrosomonas europaea and Nitrobacter hamburgensis grown in mixed continuous cultures at different oxygen concentrations [J]. Arch. Microbiol, 161: 156-162.
    Lee H J, Bae J H, Cho K M. 2001. Simultaneous nitrification and denitrification in a mixed methanotrophic culture [J]. Biotech Letters, 23 (12): 935-941.
    Li Y Z, He Y L, Ohandja D J, Ji J, et al. 2008. Simultaneous nitrification-denitrification achieved by an innovative internal-loop airlift MBR: Comparative Study [J]. Bioresource Technology, 99(13):5867-5872
    Liu S T, Yang F L, Xue Y, et al. 2008. Evaluation of oxygen adaptation and identification of functional bacteria composition for anammox consortium in non-woven biological rotating contactor [J]. Bioresource Technology, 99(17): 8273-8279.
    Lowry D H, Roseborough N J, Farr A L, et al. 1951. Protein measurement with Folin phenol reagent [J]. Joural of Biological Chemistry, 193(1):265-275.
    Maurer M, Gujer W. 1998. Dynamic modeling of enhanced biological phosphorus and nitrogenremoval in activated sludge system [J]. Water Science and Technology, 38 (1): 203-210.
    Mulder A, Van de Graaf A A, Robertson L A, et al. 1995. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor [J]. FEMS Microbiology Ecology, 16(3):177-183.
    Mulder J W, van Loosdrecht M C M, Hellinga C, et al. 2001. Full-scale application of the Sharon process for the treatment of rejection water of digested sludge dewatering [J]. Water Science and Technology, 43(11):27-134.
    Muller E B. 1995. Simultaneous NH3 oxidation and N2 production at reduced O2 tension by sewage sludge subcultured with chemolitrophic medium[J]. Biodegradation, 6(4): 339-349.
    Nakajima J, Sakka M, Kimura K, et al. 2008. Enrichment of anammox bacteria from marine environment for the construction of a bioremediation reactor, App Microbiol Biotechnol, 77(5):1159-1166.
    Nielsen M, Bollmann A, Sliekers O, et al. 2005. Kinetics, diffusional limitation and microscale distribution of chemistry and organisms in a CANON reactor[J]. FEMS Microbiology Ecology, 51(2): 247-256.
    Nowak O, Svardal K, Kroiss H. 1996. The impact of phosphorus deficiency on nitrification - Case study of a biological pretreatment plant for rendering plant effluent [J]. Water Science & Technology 34(1-2): 229-236.
    Pathak B K, Kazama F, Saiki Y, et al. 2007. Presence and activity of anammox and denitrification process in low ammonium-fed bioreactors [J]. Bioresource Technology, 98(11): 2201-2206.
    Peng Y, Song X, Peng C, et al. 2004. Biological nitrogen removal in SBRs bypassing nitrate generation accomplished by chlorination and aeration time control [J]. Water Science & Technology, 49(5-6): 295-300.
    Pollice A, Tandoi V, Lestingi C. 2002. Influence of aeration and sludge retention time on ammonium oxidation to nitrite and nitrate [J]. Water Research, 36 (10): 2541-2546.
    Priyali S, Dentel S K. 1998. Simultaneous nitrification-denitrification in a fluidized bed reactor [J]. Water Science and Technology, 38(1):247-254.
    Pynaert K. 2003. Nitrogen removal in wastewater treatment by means of oxygen-limited autotrophic nitrification-denitrification [D]. PhD thesis, Ghent University, Faculty of Applied Biological Sciences, 179.
    Pynaert K, Smets B F, Wyffels S, et al. 2003. Characterization of an autotrophic nitrogen-removing biofilm from a highly loaded labscale rotating biological contactor [J]. Applied & Environmental Microbiology, 69(6):3626-3635.
    Pynert K, Wyffels S, Sprengers R, et al. 2002. Oxygen-limited nitrogen removal in a lab-scalerotating biological contactor treating an ammonium-rich wastewater[J]. Water Science and Technology, 45(10): 357-363.
    Rattray, J E, van de Vossenberg J, Hopmans E C, et al. 2008. Ladderane lipid distribution in four genera of anammox bacteria [J]. Archives of Microbiology, 190(1):51-66.
    Regan J B, Harrington G W, Noguera D R. 2002. Ammonia and nitrite oxidizing bacterial communities in a pilot scale chloraminated drinking water distribution system [J]. Appl Environ Microbiol, 68:73-82.
    Rich J J, Dale O R, Song B, et al. 2008. Anaerobic Ammonium Oxidation (Anammox) in Chesapeake Bay Sediments [J]. Microb Ecol, 55(2):311-320.
    Robertson L A, van Nie E W J, Torremans R A M, et al. 1988. Simultaneous Nitrification and Denitrification in Aerobic Chemostat Cultures of Thiosphaera pantotropha [J]. Appl. Environ. Microbiol, 54(11):2812-2818.
    Rysgaard S, Glud R N, Risgaard-Petersen N, et al. 2004. Denitrification and Anammox activity in Arctic marine sediments [J]. Limnology & Oceanography, 49(5), 1493-1502.
    Sayavedra-soto L A. 1966. Incorporation of atmospheric oxygen into nitrite formed during ammonia oxidation by Nitrosomonas europaea [J]. Biochim Biophys Acta, 113(2):398-401.
    Schmid M C, Walsh K, Webb R. 2003. Candidatus“Scalindua brudae”,sp nov.Candidatus“Scalindua wagnen”.sp nov.two new species anaerobic ammonium oxidizing bacteria[J].Syst Appl Microbiol, 26(4): 529-538.
    Schmidt I, Bock E. 1997. Anaerobic ammonia oxidation by Nitrosomonas eutropha [J]. Arch. Microbiol., 167(2-3):106-111.
    Schmidt I, Zart D, Bock E. 2001. Gaseous NO2 as a regulator for ammonia oxidation of Nitrosomonas eutropha [J]. Antonie van Leeuwenhoek , 79(3-4) :311-318.
    Schmidt I, Bock E, Jetten M S M. 2001. Ammonia oxidation by Nitrosomonas eutropha with NO2 as oxidant is not inhibited by acetylene[J]. Microbiology, 147(8): 2247-2253.
    Schmidt I, Sliekers O, Schmid M, et al. 2002. Aerobic and anaerobic ammonia oxidizing bacteria -competitors or natural partners? [J]. Microbiology Ecology, 39(3):175-181.
    Siegrist H, Reithaar S, Koch G, et al. Nitrogen removal loss in a nitrifying rotating contactor treating ammonium-rich wastewater without organic carbon [J]. Water Science and Technology, 1998, 38(8/9): 241-248.
    Sliekers A O, Derworth N, Campos Gomez J L, et al. 2002. Completely autotrophic nitrogen removal over nitrite in one single reactor[J]. Water Res. 36 (10) : 2475-2482.
    Sliekers A O, Third K A, Abma W, et al. 2005. CANON and Anammox in a gas-lift reactor [J]. FEMS Microbiology Letters, 218(2):339-344.
    Strous M, Heijnen J J, Kuenen J G, et al. 1998. The sequenceing batch reactor as a powful tool for the study of slowly growing anaerobic ammonium oxidizing microorganisms[J]. Appllied Microbiology Biotechnology 50(5):589-596.
    Strous M, Kuenen J G, Jetten M S M. 1999. Key physiology of anaerobic ammonium oxidation [J]. Appl. Environ. Microbiol., 65(7): 3248-3250.
    Strous M. 2000. Microbiology of anaerobic ammonium oxidation, PhD Thesis, Department of Microbiology, Delft, TU Technical University, The Netherlands. ISBN 90-9013621-5.
    Strous M, Van Gerven E, Kuenen J G, et al. 1997a. Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (Anammox) sludge [J]. Applied & Environmental Microbiology, 63, 2446-2448.
    Stuven R, Vollmer M, Bock E. 1992. The impact of organic matter on nitric oxide formation by Nitrosomonas europaea [J]. Archives of Microbiology, 158(6):439-443.
    Suzuki I, Dular U, Kwok S C. 1974. Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas europaea cells and extracts [J]. J. Bacteriol. 120(1):556-558.
    Thauer R K, Jungermann K, Decker K. 1977. Energy conversation in chemotrophic anaerobic bacteria [J]. Bacterial. Rev. 41(1):100-180.
    Third K A, Sliekers A O, et al. 2001. The CANON System (Completely Autotrophic Nitrogen-removal Over Nitrite) under Ammonium Limitation: Interaction and Competition between Three Groups of Bacteria[J]. FEMS Microbiology Lettters, 24(4):588-596.
    Toh S K, Ashbolt N J. 2002. Adaption of anaerobic ammonium-oxidizing consortium to synthetic coke-oven watewaters [J]. Appl Microbiol Biotechnol, 59(1-3):344-352.
    Tomlinson T G, Boon A G, Trotman C N A. 1966. Inhibition of nitrification in the activated sludge process of sewage disposal [J]. Journal of Applied Bacteriology, 29(2): 266-291.
    Turk O. Mavinic D S. 1989. Maintaining nitrite buildup in a system acclimated to free ammonia [J]. Water Research, 23: 1383-1388.
    van de Graaf A A, de Bruijin P, Robertson L A, et al. 1997. Metabolic pathway of anaerobic ammonium oxidation on the basis of 15N studies in a fluidized bed reactor [J]. Microbiology, 143(7):2415-2421.
    van de Graaf A A, de Bruijin P, Robertson P, et al. 1996. Autotrophic growth of anaerobic ammonium- oxidizing microorganisms in a fluidized bed reactor [J]. Microbiology, 142(8): 2187-2196.
    van de Graaf A A, Mulder A, de Bruijin P, et al. 1995. Anaerobic oxidation of ammonia is a biologically mediated process [J]. Applied and Environmental Microbiology, 61(4):1246 -1251.
    van der Star W R L, Abma W R, Blommers D, et al. 2007. Startup of reactors for anoxic ammoniumoxidation: experience from the first full-scale anammox reactor in Rotterdam [J]. Water Research, 41(18):4149-4163.
    van Dongen U, Jetten M S M, van Loosdrecht M C M. 2001. The SHARON-Anammox process for treatment of ammonium rich wastewater [J]. Water Science and Technology, 44(1):153-160.
    Vazquez-padin J R, Pozo M J, Jarpa M, et al. 2008. Treatment of anaerobic sludge digester effluents by the CANON process in an air pulsing SBR [J]. Journal of Hazardous Materials, In Press
    Wagman D D, Evans W H, Parker V B, et al. 1968. Selected values of chemical thermodynamic properties. Tables for the first thirtyfourelements. Technical Note 270-273. U.S.Department of Commerce, National Bureau of Standards, Washington, D.C.
    Wagner M, Loy A, Nogueira R, et al. 2002. Microbial community composition and fuction in wastewater treatement plant [J]. Antonie van Leeuwenhoek, 81(1-4):665-680.
    Wiesmann U. 1994. Biological nitrogen removal from wastewater [J]. Advances in Biochemical Engineering Biotechnology, 51: 113-154.
    Wood P M. 1986. Nitrification as a bacterial energy source [C]. In Nitrification, IRL Press, Oxford, UK, 39-62.
    Wyffels S, Van Hull S W H, Boeck P, et al. 2004. Modelling and simulation of oxygen-limited partial nitritation in a membrane-assisted bioreactor [J]. Biotechnology and Bioengineering, 86(5):531-542.
    Yatslmlrsky A K, Yatslmlrskaya N T, Kashina S B. 1994. Micellar catalysis and product stabilization in hydrazone formation reactions and micellar-modified determination of hydrazine and phenylhydrazine [J]. Analytical Chemistry, 66(14):2232-2237.
    Zart D, Bock E. 1998. High rate of aerobic nitrification and denitrification by Nitrosomonas eutropha grown in a fermenter with complete biomass retention in the presence of gaseous NO2 or NO [J]. Arch Microbiol 169(4):282-286.
    Zart D, Shmidt I, Bock E. 2000. Significance of gaseous NO for ammonia oxidation by Nitrosomonas eutropha. Antonie Leeuwenboek, 77(1):49-55.
    Zhao H W, Mavinic D S, Oldham W K, et al. 1999. Controlling factors for simultaneous nitrification and denitrification in a two-stage intermittent aeration process treating domestic sewage [J]. Wat Res, 33 (4): 961-970.
    Zheng G, Yang F L, Liu S T, et al. 2007. Feasibility of a membrane-aerated biofilm reactor to achieve single-stage autotrophic nitrogen removal based on Anammox [J]. Chemosphere, 69:776-784

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700