用户名: 密码: 验证码:
半导体脉冲功率器件RSD的热学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
反向开关晶体管RSD(Reversely Switched Dynistor)是20世纪80年代由前苏联的科学家基于可控等离子层的换流原理提出的一种专门应用于脉冲功率领域的新型半导体开关。RSD器件独特的换流特性使其残余电压在前沿突升很小,导通时的换流损耗远小于准静态损耗,这使得该器件工作于连续振荡发生方式的频率极限得到了大幅度提高。
     RSD器件作为一种功率器件其工作环境十分恶劣,工作时它的结温会上升得非常高,这样一来对该器件功率耗散的改进和热学特性的提高就变得尤为重要。热阻是用来描述功率器件热学特性的一个重要参数,它可以衡量器件对热量传导的能力,与器件的电特性和机械特性有关。本文以结温压降的关系原理为基础,设计了RSD器件的热阻测量实验,得到了螺栓型小尺寸的RSD器件的热阻实验值约为0.63℃/W,并将该值与热阻的理论计算值进行对比分析从而验证了结果的可靠性。
     在脉冲功率应用中,RSD器件会产生类似于金属的电流沿器件边缘分布的趋肤效应现象。本文根据趋肤效应的基本理论,推导了RSD器件的趋肤深度值并用有限元软件ANSYS模拟了RSD器件在脉冲条件下的电流密度以及热量的分布情况,并将模拟得到的趋肤深度值与计算结果进行比较从而验证了该器件中趋肤效应的存在。
     RSD器件热阻和趋肤效应的研究为改善器件的热学特性,扩展器件的工作范围奠定了良好基础。
RSD(Reversely Switched Dynistor), a new type semiconductor switch proposed by Russia scientists in 1980s, which is based on the principle of current commutating of controllable plasma layer,is widely used in the power pulse field. The unique current commutating character of RSD enable residual voltage a small jump at the front edge. The current commutating loss in on-state is less than the loss in quasi-static state, and this enable the frequency acquired in a continuate resonace way in which RSD works rise extensively.
     As a power device, RSD works in bad condition and the temperature of its junction will get very high which makes the research of power dissipation and thermal character of this device very important. Thermal resistance is a parameter of thermal character of power device which describes heat conduction ability of the device. Based on the theory of relationship between junction temperature and voltage, a thermal resistance measuring experiment is designed and the experiment value of thermal resistance of RSD is obtained as 0.63℃/W which is compared to the calculation result in theory, and the reliability of the result is proved.
     In power pulse application, similar to metal, skin effect will also occur in RSD device. According to the basic theory of skin effect, skin depth is derived and the current distribution in pulse of RSD is simulated by finite element software ANSYS. Skin effect is proved to exist in RSD after comparing the simulation result and the calculation one.
     The study on thermal resistance and skin effect of RSD device is a good preparation for improving the thermal character of the device and expanding its working scale.
引文
[1] Singh H, Hummer C.R. Advanced Semiconductor Switches for EM Launchers, IEEE Transactions on MAG, 2001, 37(1): 394~397.
    [2]苏开才,毛宗源.现代功率电子技术.北京:国防工业出版社, 1995: 1~7.
    [3]何孟兵,李劲,姚宗干.高功率脉冲放电间隙开关综述.高电压技术, 2000, 26(4): 33~35.
    [4]李正瀛.脉冲功率技术.北京:水利水电出版社, 1992: 1~5.
    [5] John Mankowski, Magne Kristiansen. A review of short pulse genetator technology. IEEE Transactions on Plasma Science, 2000, 28(1): 102~108.
    [6] T. F. Podlesak. Single Shot and Burst Repetitive Operetion of Thystors for Electric Launch Applications, IEEE Transactions On MAG. 2001, 37(1): 385~388.
    [7] Dunlop, A.W. Semiconductor Devices For Pulsed Power Applications. Pulsed Power 2000, IEEE Symposium, 2000: 31~34.
    [8] E. J. M. Heesch, Yan K, Pemen A.J.M et al. Matching Repetitive Pulsed Power to Industrial Processes, IEEE Transactions FM. 2004, 124(7): 607~609.
    [9] I. V. Grekhov, A. K. Kozlov, S. V. Korotkov, et al. High-voltage RSD switches of submegaampere current pulses of microsecond duration. Instruments and Experimental Techniques, 2003, 46(1): 48~53.
    [10] S. Schneider. T. F. Podlesak. Reverse switching dynistor pulsers. IEEE Transactions on Plasma Science, 2000, 28(5): 1520~1523.
    [11]王明珠,吕长志.功率晶体管峰值结温电学测量技术中的热模型.北京工业大学学报. 1993, 19(4): 102~104.
    [12]赵桧,尹攀.功率晶体管热阻测试条件确定方法.计量与测试技术. 2008, 26(1): 52~54.
    [13] V. Kadambi and N. Abuaf, An analysis of the thermal response of power chip packages. IEEE Transactions. Electron Devices, 1973, 3(2): 1024~1033.
    [14] V. I. Kolobov, D. J. Economou. The anomalous skin effect in gas discharge plasmas. Plasma Sources Sci. Technol. 1997, 6(3): 1~17.
    [15] M. J. O. STRUTT. Skin Effect in Semiconductors. PROCEEDINGS OF THE IRE. 1959: 1272~1277.
    [16]刘刚,余岳辉,史济群.半导体器件.北京:电子工业出版社, 2000: 27~41.
    [17] Schneider Sol, Thomas F Podlesak. Reverse switching dynistor pulsers. 12th IEEE International Pulsed Power Conference Digest of Technical Papers. 1999: 214~218.
    [18] Grekhov I V. New principles of high power switching with semiconductor devices. Solid-State Electronics, 1989, 32(11): 923~930.
    [19] Bezuglov V G, Galakhov I V, Gudov S N, et al. On the possible use of semiconductor RSD-based switch for flashlamps drive circuits in a Nd-glass laser amplifier of LMJ facility. in: 12th IEEE International Pulsed Power Conference Digest of Technical Papers. 1999: 914~918.
    [20]余岳辉,梁琳,李谋涛等.超高速半导体开关RSD的开通机理与大电流特性研究.电工技术学报, 2005, 20(2): 36~40.
    [21] Grekhov I V, Mesyats G A. Physical basis for high-power semiconductor nanosecond opening switches. IEEE Transaction on Plasma Science, 2000, 28(5): 1540~1544.
    [22] Grekhov I V. Theory of quasi-diode operation of reversely switched dynistors. Solid-state Electronics, 1988, 31(10): 1483~1491.
    [23] Schneider Sol, Thomas F. Podlesak. Reverse switching dynistor pulsers. IEEE Transactions on Plasma Science, 2000, 28(5): 1520~1523.
    [24] John Mankowski, Magne Kristiansen. A review of short pulse generator technology. IEEE Transactions on Plasma Science, 2000, 28(1): 102~108.
    [25]陈海刚.基于RSD的大脉冲功率发生器的设计与研究: [硕士论文].武汉:华中科技大学图书馆, 2006.
    [26] Geun-Hie Rim, Hong-Sik Lee, Evgueni Pavlovitch Pavlov, et al. Fast high-voltage pulse generation using nonlinear capacitors. IEEE Transactions on Plasma Science, 2000, 28(5): 1362~1367.
    [27]秦贤满.热阻的概念和测量方法.半导体技术. 1996, 6(3): 32~36.
    [28] Paolo Emilio Bagnoli, Claudio Casarosa. Thermal Resistance Analysis by Induced Transient(TRAIT) Method for Power Electronic Devices Thermal Characterization.IEEE Transactions on Power Electronics. 1998, 13(6): 1208~1212.
    [29] M. N. Ozisic. Heat Conduction. New York: Wiley. 1980: 27~43.
    [30] C. Casarosa, M. Ciampi. Modello conduttivo per l’analisi termica di strutture multistrato in elettronica.in Proc. 49 ATI National Conf. Perugia, Italy, 1994: 227~245.
    [31] V. Szekely, M. Rencz and B. Courtois. Thermal transient testing. In Proc. ISHM’96 Conf. 1996: 18~23.
    [32] V. Szekely. A new evaluation method of thermal transient measurement results. In Int. Workshop on Thermal Investigations of IC’s and Microstructures, Grenoble, France, Sept. 1995: 108~114.
    [33] Francesco Profumo. Instantaneous Junction Temperature Evaluation of High-Power Diodes (Thyristors) During Current Transients. IEEE Transactions on Power Electronics, MARCH, 1999, 14(2): 292~299.
    [34]刘刚,何笑明.微电子器件与IC设计(第一版).北京:科学出版社, 2005: 51.
    [35]赵永,简维廷,张荣哲.电阻温度系数研究及其在可靠性早期监测中的应用.中国集成电路. 2009, 3(118): 62-63.
    [36] Kosta. D. Mglic.钼在400~2500K温度的比热和电阻率.高温与高压. 1997, 29(1): 97~102.
    [37] V. I. Kolobov, D. J. Economou. The anomalous skin effect in gas discharge plasmas. Plasma Sources Sci. Technol. 1997, 6(1): 1~17.
    [38]陈在锋,崔景华.电趋肤效应与电子能态关系的研究.河南师范大学学报(自然科学版), 2005, 33(3): 158~159.
    [39]陈学川,余岳辉,尚超.脉冲功率开关的趋肤效应研究.中国电工技术学会电力电子学会第十一届学术年会. 4(5): 87.
    [40]钟采池,张东壁,钟克武.电磁学[M].上海:科技文献出版社, 1990: 135~354.
    [41]梁绍荣,刘昌年,盛正华.电磁学[M].北京:高等教育出版社, 1993: 436.
    [42]尹真.电动力学[M].南京:大学出版社, 1999: 167~168.
    [43]郭硕鸿.电动力学[M].北京:高等教育出版社, 1997: 153~155.
    [44]雷桂林,曲红斌.趋肤效应的理论解释.甘肃科学学报. 2005, 17(1): 28~29.
    [45]马冰然.电磁场与微波技术(第二版).广州:华南理工大学出版社, 2001: 153.
    [46]黄昌民.关于趋肤效应的分析讨论.河南大学学报(自然科学版). 1993, 23(3): 46~47.
    [47]梁琳,余岳辉,彭亚斌.基于RSD的脉冲放电系统主回路仿真与试验.电工技术学报. 2007, 22(8): 63~66.
    [48]屈钧利,韩江水.工程结构的有限元方法[M].西安:西北工业大学出版社, 2004(9): 12~20.
    [49]王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西安:西北工业大学出版社, 1999: 1~35.
    [50]高田育紀.高速大容量半導体パワーデバス. J. Plasma Fusion Res. 2005, 81(5): 367~374.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700