用户名: 密码: 验证码:
RSD开关特性及重频和间隙负载放电特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开关连接着脉冲压缩系统与负载,它的性能在一定程度上直接决定了系统输出脉冲功率的等级、形状和稳定程度等。RSD(Reversely Switched Dynistor),由于其特殊的结构及工作原理,很适合用作脉冲功率开关。目前在器件本身及其应用方面还存在一些亟待解决的问题。在几个国家自然科学基金的支持下,本学位论文对RSD器件及其应用进行了研究。
     首先研究了RSD的通态峰值压降。通态峰值压降是表征器件损耗的一个重要参数。软件仿真分析了RSD通态峰值压降的影响因素,发现在外电路条件相同的情况下,器件的通态峰值压降随着n基区长度的增大和掺杂浓度的减小而增大。论文在RSD及磁开关相关理论的基础上,提出给RSD并联均压电阻以减少器件初始电压的方法来检测器件的通态峰值压降。通过理论推导和电路仿真,优化了电路参数,得到了保证电路可靠工作的参数,在一定开通电压下,得到器件的通态峰值压降。论文还研究了预充电流和RSD开通主电压对器件通态峰值压降的影响,发现预充越充足和开通主电压越小,RSD的通态峰值压降越小。
     研究了RSD的重复频率运行。基于单片机控制触发晶闸管,RSD为谐振式预充,电容在自然充电的条件下,得到了RSD的重复运行特性,但该频率较低,分析发现电容的充电速度是限制器件运行频率提高的一个重要因素。为提高电容的充电速度,将倍压整流电路引入脉冲功率系统中,其原理是大电容给小电容充电,缩短了电容的充电时间。基于倍压整流电路充电,在主放电电压为1.2kV下得到了RSD在500Hz频率下的运行特性,电流电压波形均匀平滑,RSD运行可靠。随着RSD运行频率的不断提高,其关断时间必须加以考虑,后文进行了RSD关断时间的检测。
     关断时间是决定器件运行上限频率的一个重要因素。为估算RSD运行的上限频率,论文研究并测得了RSD的关断时间。设计了RSD的关断检测平台,根据平台对主回路放电波形的要求,对电路结构和电路参数进行了改进和优化。在RSD传统开通电路的基础上,给RSD二次加电压,通过检测RSD上有无电流来判断器件是否关断,如有电流流过,说明器件未关断,反之器件已关断。单片机触发晶闸管控制平台工作,RSD基于谐振式触发。在1kV主放电电压下,得到RSD的关断时间约为49μs,且RSD的关断时间随着体内少子寿命的变长和放电主电压的增大而呈变长的趋势。
     结合北京某工程应用,研究了RSD在间隙负载放电中的应用。首先研究了间隙负载的击穿特性,便与RSD配合使用。实验发现间隙负载的击穿需要一段时间延迟,在12kV电压下,负载的击穿时间约为30μs,负载的这个特性与磁开关非常相似,在电路中用负载代替部分或全部磁开关以隔离主电压,而磁开关在电路中的作用是阻碍预充电流分流,使其主要从RSD支路流过,以给RSD提供尽可能多的预充电荷。通过给变压器原边的晶闸管反并联二极管,给隔离电容上的电荷提供了即时泄放回路。论文在12kV的主放电电压下,得到峰值为5.5kA、脉宽为5μs的负载电流。该设计减少了主回路中磁开关的使用量,从而减少了主回路中由于磁开关引入的寄生电感。
Pulsed power switch is connects the pulse compression and load, so in a way the performance of switch directly determines the level of the output power, shape and stability, etc. RSD-Reversely Switched Dynistor, because of its special structure and working principle, is very suitable for pulse power switch. Still there are some urgent problems to be solved on the device itself and its application. So this thesis maked a series of related researches on RSD and its application under the help of several National Natural Science Foundation.
     Firstly, the peak on-state voltage drop of RSD was studied in this thesis. The peak on-state voltage drop is an important parameter to characterizate device losses. The influence fator of peak on-state voltage drop of RSD was analysed through software simulation, and we found the peak on-state voltage drop of RSD increases as the n base area length increasing and n base area doping concentration decreasing. The thesis put forward to reduce the initial voltage on RSD device so as to detect the peak on-state voltage drop of RSD by paralleling the resistance to RSD based on the basis theory of RSD and magnetics switch. This thesis optimized the circuit parameters and the parameters which guarantees the circuit's reliable operation were received through theoretical analysis and circuit simulation, and the peak on-state voltage drop was received under a certain voltage level finally. The thesis also studied the relation of pre-charge current and main voltage between peak on-state voltage drop of RSD, and we found the peak on-state voltage drop of RSD decreases as the pre-charge current increasing and main voltage decreasing.
     The thesis also studied the repetitive frequency operation of RSD. The repetitive operation characteristics of RSD was received under the conditions of thyristor triggered based on MCU, RSD pre-charged syntonically and capacitor charging in nature. However, this frequency is low. We found the charging rate of capacitor is an importance factor to limit the operation frequency to improve by analysis. To improve the charging rate of capacitor, we introduced the double voltage rectifier circuit to the pulsed power system. It's principle is to charge large capacitor to a small capacitor, reducing charging time. Based on the double voltage rectifier circuit charging, we received operating characteristics of RSD under 500Hz in the main discharge voltage of 1.2kV. The waveform is symmetrical and smooth, which shows RSD operates reliably. With the continuous improvement of operating frequency of RSD, the turn-off time of RSD and the speed of capacitor discharge must be considered, so we studied the turn-off characteristics of RSD later.
     Off-time is an important factor to determine the maximum operating frequency of device. To estimate the maximum operating frequency of RSD, we studied the turn-off time of RSD by experiment in thesis. The turn-off testing platform was designed in this thesis and the circuit structure and circuit parameters were improved and optimized according to turn-off testing platform's demand to discharge waveform of the main circuit. On the basis of the traditional circuit of RSD, we gave the second applied voltage to RSD, then we can determine whether RSD shutdowns by detecting whether the current flows through RSD, if the current flows through RSD, indicating RSD is not turned off, otherwise RSD is turned off. The testing platform was controlled by thyristor trigged by MCU and RSD was pre-charged syntonically. The turn-off time of RSD is about 49μs under the main voltage of 1kV, and we found the turn-off time of RSD becomes longer as minority carrier lifetime increases and discharge voltage increases.
     With an application requirement of Beijing project, we studied the application of RSD in the discharge of gap-load in this thesis. Firstly, the breakdown process of gap-load was studied so as to be used in conjunction with RSD. We found by experiments that the breakdown of gap-load takes some time delay, and the gap-load takes about 30μs to be brokendown, which is very similar to magnetic switch characteristics. So we consider using the load in the circuit instead of part or all of magnetic switch in order to achieve the purpose of isolating the main voltage and magnetic switch in the circuit is used to hinder pre-charge current to flow through main capacitor, which makes the pre-charge current mainly flow through RSD as to provide RSD as much as possible pre-charge charge. To provide the charge on the isolating capacitor immediate relief circuit, a diode was anti-paralleled with the thyristor on the transformer primary side. Finally, we got the load current with the peak value of 5.5kA, the current pulse width of 5μs under the main voltage of 12kV. The main circuit designed reduces the use of magnetic switch, thereby reducing the inductance introduced by magnetic switch in main circuit.
引文
[1]曾正中.实用脉冲功率技术引论.西安:陕西科学技术出版社,2003.
    [2]王莹.高功率脉冲电源.北京:原子能出版社,1991.
    [3] Smith, I. The early history of western pulsed power. IEEE Transactions on Plasma Science, 2006, 34(5): 1585-1609.
    [4] Ph.G. Rutberg, G.A. Shvetsov, and A.F. Savvateev. Reults of Recent Research on Electromagnetic Launch Technology in Russia. IEEE Transactions on Magnetics, 2003, 39(1): 29-34.
    [5] Gundersen M, Schamiloglu E, Barker R J. Compact pulsed power: physics and applications. Second European Pulsed Power Symposium, 2004: 3-6.
    [6] Martin T J, Guenther A H, Kristiansen M.J.C. Martin on pulsed. New York: Plenum Press, 1996.
    [7] Schamiloglu E, Barker R J. Special issue on pulsed power. Technology and applications. Proceedings of the IEEE, 2004, 92(7): 1011-1013.
    [8] Takata I. High-speed, large-current power semiconductors for pulse power generation. Journal of Plasma and Fusion Research, 2005, 81(5): 367-374.
    [9]江伟华.基于固态器件的高重频脉冲功率技术.强激光与粒子束. 2010, 22(3): 561-564.
    [10] Akiyama H, Sakugawa T, Namihira T, et al. Industrial applications of pulsed power technology. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(5): 1051-1064.
    [11] Smulders E H W M, van Heesch B E J M, van Paasen S S V B. Pulsed power corona discharge for air pollution control. IEEE Transactions on Plasma Science, 1998, 26(5): 1476-1484.
    [12] Christopher, J.Nanosecond pulse techniques. Proceedings of the IEEE. 1992, 80(6): 934-945.
    [13] Samaranayake W J M, Miyahara Y, Namihira T, et al. Pulsed streamer discharge characteristics of ozone production in dry air. IEEE Transactions on Dielectrics and Electrical Insulation, 2000, 7(2): 254-260.
    [14] Gauderau M P, Hawkey T, Petry J, et al. A Pulsed Power System for Food Sterilization. Pulsed Power Plasma Science, 2001 IEEE Conference RecordAbstracts, 2001: 323.
    [15] Mcdonald C J. Effects of pulsed electric fields on microorganisms in orange juice using electric fields strengths of 30kV. Journal juice food scienced, 2000, 65(6): 984.
    [16] Chaussy C, Schmiedt E, Detal J. First clinical experience with extracorporeally induced destruction of kidney stones by shock waves. J. Uril, 1982, 12(7): 417.
    [17]余岳辉,梁琳.脉冲功率器件及其应用.北京:机械工业出版社,2010.
    [18] Davanloo F, C B, Agee F J. Ultra-fast flash X-ray pulses produced by Beamlein devices. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2005, 241(1-4): 276-280.
    [19]谢瑞,刘军,何湘宁.脉冲功率技术在环境保护中的应用.电力电子技术,2010,44(4): 59-61.
    [20]李冬黎,曹丰文.脉冲功率技术在环境工程领域的应用.高电压技术,2002,28(10): 35-38.
    [21] Mcdonald C J. Effects of pulsed electric fields on microorganisms in organge juice using electric fields strengths of 30kV/cm. Joural of food scienced, 2000, 65(6): 984.
    [22]吴为民,黄双喜.高功率脉冲水中放电的应用及其发展.现代电子技术,2003,5(148): 85-89.
    [23] Mankowski, J., Kristiansen, M. A review of short pulse generator technology. IEEE Transactions on Plasma Science, 2000, 28(1): 102-108.
    [24]梁琳.脉冲功率开关RSD理论与关键技术研究[博士学位论文].武汉:华中科技大学图书馆,2008.
    [25]郑建毅,何闻.脉冲功率技术的研究现状和发展趋势综述.机电工程,2008,25(4):1-4.
    [26] Schamiloglu, E., Barker, R. J., Gundersen, M., Neuber, A. A. Modern pulsed power: Charlie Martin and Beyond. Proceedings of the IEEE. 2004, 92(7): 1014-1020.
    [27]谢敏,马成刚,丁伯南等.用磁开关产生重复频率多路同步高压脉冲.强激光与离子束,2003,15(6):621-624.
    [28] Choi P. Inductive line energy storage generator. IEEE Colloguium on Pulsed Power. 1997.
    [29] Heesch E J M, Yan K, Pemen A J M, et al. Matching repetitive pulsed power to industrial processes. IEEE Trans. FM. 2004, 124(7): 607-609.
    [30] Weihua Jiang, Yatsui K, Takayama K, et al. Compact solid-state switched pulsed power and its applications. Proceedings of the Institute of Electrical and Electronics Engineers, 2004, 92(7): 1180-1196.
    [31] Liang Lin, Yu Yue-Hui, Peng Ya-Bin. Analysis on Power Dissipation Characteristics of Great Power and Super High Speed Semiconductor Switch. Chinese Physics B, 2008, 17(7): 2627-2632.
    [32] Scharnholz S, Schneider R, Spahn E, et al. Investigation of IGBT-device for pulsed power applications. 14th IEEE International Pulsed Power Conference Digest of Technical Papers, 2003, 349-352.
    [33]袁建强,谢卫平,周良骥,等.光导开关研究进展及其在脉冲功率技术中的应用.强激光与粒子束,2008,20(1): 171-176.
    [34] Nunnally W C. Critical component requirements for compact pulse power system architectures. Conference Record of the International Power Modulator Symposium and High Voltage Workshop, Proceedings of the 26th International Power Modulator Symposium and 2004 High Voltage Workshop, 2004,64-67.
    [35] Geun-Hie Rim, Hong-Sik Lee, Evgueni Pavlovitch Pavlov, et al. Fast high-voltage pulse generation using nonlinear capacitors. IEEE Transactions on Plasma Science, 2000, 28(5): 1362-1367.
    [36]刘锡三.高功率脉冲技术.北京:国防工业出版社,2005.
    [37] Gaudet J A, Barker R J, Buchenauer C J, et al. Research issues in developing compact pulsed power for high peak power applications on mobile platforms. Proceedings of the IEEE, Pulsed Power: Technology and Applications, 2004, 92(7): 1144-1162.
    [38] Dolgachev G I, Ushakov A G. Microsecond plasma opening switches in externally applied magnetic field. IEEE Transactions on Plasma Science, 2006, 34(1): 28-35.
    [39] Sarkar P, Smith I R, Novac B M, et al. A high-average power self-break closing switch for high repetition rate applications. IET Seminar Digest, IET Pulsed Power Symposium 2006, 2006(11585): 62-65.
    [40] Liu Z, Yan K, Pemen A J M, et al. Investigation on a Novel Multiple-Switch Pulsed Power Technology. 2005 IEEE Pulsed Power Conference, 2005: 1081-1084.
    [41] Fair H D. Progress in electromagnetic launch science and technology. IEEE Transactions on Magnetics, 2007, 43(1): 93-98.
    [42] D. Alferov, V.Ivanov, V.Sidorov. High-current vacuum triggered switching devices. The 11th EML Symp, Saint Louis, France, May, 2002: 14-17.
    [43] O'Brien H, Shaheen W, Thomas Jr R L, et al. Evaluation of Advanced Si and SiC Switching Components for Army Pulsed Power Applications. IEEE Transactions on Magnetics, 2007, 43(1): 259-264.
    [44] Jiang C, Kuthi A, Gundersen M A. Small pseudospark switches. IEEE Conference Record, 31th IEEE International Conference On Plasma Science, 2004: 273.
    [45]孙凤举,邱爱慈,邱毓昌,等.多级多通道低电感火花气体开关.高压电器,2001,27(5): 37-41.
    [46] Soung Soo Park, Sang Hoon Nam, Yeong Jin Han, et al. Characterization of a 30kV, 75C triggered vacuum switch. IEEE Trans. on Plasma, 2005, 33(1): 192-196.
    [47] Alferov D, Ivanov V P, Sidorov V A. High-current vacuum triggered switching devices. IEEE Trans. on Magnetics, 2003, 39(1): 406-409.
    [48] Hvo H, Park S S, Nam S H. Experiments with a radial multi-channel pseudospark switch for extremely high Coulomb transfer. IEEE Transactions on Plasma Science, 2004, 32(1): 196-202.
    [49] Schumer J W, Swanekamp S B, Ottinger P F, et al. MHD-to-PIC Transition for Modeling Conduction and Opening in a Plasma Opening Switch. IEEE Trans on Plasma Science, 2001, 29(3): 479-493.
    [50] Glidden S C, Sanders H D. High peak power solid state switches. IET Seminar Digest, IET Pulsed Power Symposium 2006, 2006(11585): 36-39.
    [51]张为佐.与时俱进的电力电子.北京:机械工业出版社,2008.
    [52]赵军平,章林文,李劲.基于MOSFET的固体开关技术试验研究.强激光与粒子束,2004,16(11): 1482-1484.
    [53] Heesch V, Yan E J M, Pemen K, et al. Repetitive pulsed power to serve nono technology, sustainability and hydrogen production. Digest of Technical Papers-IEEE International Pulsed Power Conference, Dallas, TX, United States, 2003, 16(1): 441-444.
    [54] Wang Fei, Kuthi A, Gundersen M A. Compact high repetition rate pseudospark pulse generator. IEEE Transactions on Plasma Science, 2005, 33(4): 1177-1181.
    [55] Podlesak T F. Single shot and burst repetitive operation of thystors for electric launch applications. IEEE Tran. on Magnetic, 2001, 37(1):385-388.
    [56] Wen Jialiang, Fu Peng, Liu Zhengzhi, et al. Theory analysis and parameters optimize design of reliability turn-off of high power DC bi-directional DC fast thyristor switch in east tokamak. Proceedings of the CSEE, 2005, 25(14): 62-67.
    [57] Singh H, Hummer C R. Advanced semiconductor switches for EM launchers. IEEE Trans. on Magnetic, 2001, 37(1): 394-397.
    [58] Jiang W, Oshima N, Yokoo T, et al. Development of repetitive pulsed power generators using power semiconductor devices. Proceedings of the 17th International Symposium on Power Semiconductor Devices&IC's, Santa Barbara, 2005: 21-26.
    [59] Shi Wei, Zhao Wei, Zhang Xianbin, et al. Investigation of high-power sub-nanosecond GaAs photoconductive switches. Acta Physical Sineca, 2002, 51(4): 867-872.
    [60] Yu. V. Aristov, V. B. Voronkov, I. V. Grekhov et al. Reverse Switch-On Dynistor Switches of Gigawatt-Power Microsecond Pulses. 2007, 50(2): 228-232.
    [61] S. Ibuka, T. Osada, K. Jingushi et al. Pulsed power generator utilizing fast Si-thyristors for environmental applications. Proceeding of 12th IEEE International Conference, 1999.
    [62] K. Okamura, H. Shimumara, N. Kobayashi et al. Development of a semiconductor switch for high power copper varop lasers. Proceeding of 11th IEEE International Pulsed Power Conference, 1997.
    [63] Steimer P K, Gruning H E, Werninger J. IGCT a new emerging technology for high power low cost inverters. IEEE IAS Annual Meeting, 1997: 1592-1599.
    [64] Yongsug Suh, Steimer P. Application of IGCT in High Power Rectifiers. IEEE IAS Annual Meeting, 2008: 1-8.
    [65] Lindner S, Klaka S Frecker M, et al. A new range of reverse conducting gate commutated thyristors for high voltage medium power application. Conf. Rec. EPE'97, 1997: 1117-1124.
    [66] Yamaguchi Y, Oota K, Kurachi K, et al. A 6kV/5kA reverse conducting GCT. Conference Recond-IAS Annual Meeting(IEEE Industry Applications Society), 2001, 3: 1497-1503.
    [67] Bernet S, Carroll E, Streit P, et al. 10kV IGCTs. IEEE Industry Applications Magazine, 2005, 11(2): 53-61.
    [68]王彩琳.门极换流晶闸管(GCT)关键技术的研究[博士学位论文].西安:西安理工大学图书馆,2006.
    [69] He J, Jacobs M E. Non-Dissipative Dynamic Current-Sharing Snubber for Parallel Boost Connected IGBTs in High Power Converters. IEEE APEC Conf'99, 1999, 2: 1105-1111.
    [70]孙强,王雪茹,曹跃龙.大功率IGBT模块并联均流问题研究.电力电子技术,2004,1(38): 4-6.
    [71]余岳辉,周郁明,梁琳,等.全控型功率开关器件技术新进展.电气时代,2005(3): 48-51.
    [72] Crowley T, O'Brien H, Shaheen W. Evaluation of 10kV, 80kA Si SGTO switching components for army pulsed power applications. Proceedings of the 27th International Power Modulator Symposium and 2006 High Voltage Workshop, 2006: 240-243.
    [73] Korovin S D, Rostov V V, Polevin S D, et al. Pulsed power-driven high-power microwave sources. Proceedings of the IEEE, 2004, 92(7): 1082-1095.
    [74] Xie Jianmin, Chen Jingliang, Qiu Yuchang. Semicongductor(ZnO) surface flashover triggering of pseudospark switchers. Transactions of China Electrotechnical Society, 2003, 18(4): 46-50.
    [75] Kardo-Sysoev A F, Zazulin S V, Efanov V M, et al. High repetition frequency power nanosecond pulse generation. Digest of Technical Papers-IEEE International Pulsed Power Conference, 1997, 1: 420-424.
    [76] Rukin S N. High-power nanosecond pulse generators based on semiconductor opening switches(Review). Instruments and Experimental Techniques, 1999,42(4): 439-467.
    [77] Grekhov I V, Mesyats G A. Physical basis for high-power semiconductor opening switches. IEEE Transactions on Plasma Science, 2000, 28(5): 1540-1544.
    [78] Rukin S N, Mesyats G A, Ponomarev A V, et al. Megavolt repetitive SOS-based generator. 28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference, 2001, 2:1272-1275.
    [79] Engelko A, Bluhm H. Optimal design of semiconductor opening switches for use in the inductive stage of high power pulse generators. Journal of Applied Phycisc, 2004, 95(10): 5828-5836.
    [80] Grekhov I V. New principles of high power switching with semiconductor devices.Solid-state Electronics, 1989, 32(11): 923-930.
    [81] Grekhov I V. Theory of quasi-diode operation of reversely switched dynistors. Solid-state Electrocics, 1988, 31(10): 1483-1491.
    [82] Kozlov V A, Smirnova I A, Moryakova S A, et al. New generation of drift step recovery diodes(DSRD) for subnanosecond switching and high repetition rate operation. IEEE Conference Record of Power Modulator Symposium, 2002: 441-444.
    [83] Rukin S N, Mesyats G A, Darznek S K, et al. SOS-based pulsed power: development and applications. Digest of Technical Papers, 12th IEEE International Pulsed Power Conference, 1999, 1: 153-156.
    [84] Grekhov I V, Kozlov A K, Korotkov S V, et al. High-voltage RSD switches of submegaampere current pulses of microsecond duration. Instruments and Experimental Techniques, 2003, 46(1): 48-53.
    [85]余岳辉,梁琳,颜家圣,等.大功率超高速半导体开关的换流特性研究.中国电机工程学报,2007,27(30): 38-42.
    [86]周郁明.基于RSD开关的高功率窄脉冲发生与特性研究[博士学位论文].武汉:华中科技大学图书馆,2007.
    [87] Shenai, K., Hodge, D., Feuer, M. D. and Cunningham, J. Novel Ultralow Ron MBE GaAs MESFETs for High-Frequency High-Temperature Switched-Mode Power Converter Applications, Proc, ISPSD'94: 53-149(Davos, Switzerlang, 1994).
    [88] Anderson, S. GaAs Rectification-An Enabling Technology for High Frequency Operation of Power MOS-Gated Transistors, Proc. ISPSD'96: 9-33(Hawaii, USA, 1996).
    [89] Palmour, J. W., Singh, R., Glass, R. C., Kordina, O. and Carter, C. H. Jr., Silicon Carbide for Power Devices, IEEE Proc. ISPSD'97: 25-32(1997).
    [90]维捷斯拉夫·本达、约翰·戈沃、邓肯A.格兰特.功率半导体器件-理论及应用.北京:化学工业出版社,2005.
    [91]杜如峰、余岳辉、胡乾等.预充电荷对RSD开通特性的影响.电力电子技术,2003,37(5): 84-89.
    [92] Bezuglo V G. On the Possible Use of Semiconductor RSD-based Switch for Flashlamps Drive Circuits in a Nd-glass Laser Amplifier of LMJ Facility. Pulsed Power Conference, 12th IEEE International. 1999, 12: 914-918.
    [93] I.V.Grekhova. New principles of high power switching with semiconductor devices. Elsevier Ltd Publisher, 1988.
    [94]米伦. 200kV脉冲变压器的研制.变压器,2004,41(11): 21-23.
    [95]李永忠,张建德,李传胪等.高压强流脉冲脉冲变压器.国防科技大学学报,2001,23(1): 110-113.
    [96] Korotkov S V. Switching possibilities of reverse switched-on dynistors and principles of RSD circuit. Instruments and Experimental Techniques, 2002, 45(4): 437-470.
    [97] Li Weibo, Yu Hongwei. Model and Simulation of the Instrumentation System Used to Test the Transient Current of the High-speed and High-power RSD Switch. High Voltage Engineering, 2006, 32(11): 87-90.
    [98] Pentrante C. Pollution control applications of pulsed power technology. Proc of 9th IEEE International Pulsed Power Conference. Albuquerque, USA: IEEE, 1993, 6(14): 1248-1257.
    [99] Pokryvailo A, Yankelevich Y, Wolf M, et al. A 1kW pused corona system for pollution contro applications. Proc of 14th IEEE International Conference on Pulsed Power. Dallas, USA: IEEE, 2003, 1: 225-228.
    [100] Drukman I, Gabay S, Smilanski I. A new algorithm for the design of magnetic pulse compressors. 1992 Conf Record of the 20th Power Modulator Symposium. Myrtle Beach, SC, South Carolina: IEEE, 1992: 213-216.
    [101] Smith C H, Barberi L. Dynamic magnetization of metallic glasses. 5th Pulsed Power Conf Proc IEEE. Arlington, USA: IEEE, 1985.
    [102] Barrett D.M. Magnetic Pulse Compression Techniques for Non-thermal Plasma Discharege Applications. Industry Applications Conference, 1996, 10:2065-2070.
    [103] Nunnally W C. Magnetic Switches and Circuits: USA. A779833, 1982.
    [104] Melville W S. The use of saturable reactor as discharge devices for pulse generators. Proc IEEE, 1951, 9(3): 185-205.
    [105] Pokryvailo A, Yankelevich Y, Wolf M, et al. A High-power pulsed corona source for pollution control applications. IEEE Trans on Plasma Science, 2006, 32(5): 2045-2054.
    [106]王又青,郭振华.准分子激光器脉冲磁压缩开关的设计分析.激光技术,1996,20(1): 9-13.
    [107]邓林峰,余岳辉,彭亚斌.方向开关复合管的物理模型与数值方法实现.半导体学报,2007,28(6): 931-937.
    [108] Du Rufeng, Yu Yuehui, Hu Qian, et al. Influence of pre-charge upon RSD turn-on character. Power Electronics, 2003, 37(5): 84-86.
    [109] Bezuglov V G, Galakhov I V, Garanim S G, et al. The 5MJ, 25kV capacitor bank with semiconductor closing switches based on reverse switched dynistors to drive the xenon fashlamps of Nd-glass laser for LUCH facility. 2007 IEEE Pulsed Power Plasma Science Conference, 2007: 235.
    [110] Fridman B E, Belyakov V A, Bondarchuk E N, et al. Energy storage capacitor cell with semiconductor switches. 2007 IEEE Pulsed Power Plasma Science Conference, 2007: 108.
    [111] S.Schneider, T.F. Podlesak. Reverse Switching Dynistor Pulsers, in Digest of Technical Papers, 12th IEEE International Pulsed Power Conf. Monterey, CA, 1999: 214-218.
    [112] Palmer P R, Santi E, Hudgings J L, et al. Circuit simulator models for the diode and IGBT with full temperature dependent features. IEEE Transactions on Power Electronics, 2003, 18(5): 1220-1229.
    [113]朱家果,李朝阳.高压断路器.北京:水利电力出版社,1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700