用户名: 密码: 验证码:
前列腺癌患者血清microRNA表达特点及miR-21在前列腺癌细胞中的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:
     一、microRNA广泛表达于多种肿瘤组织内,血清microRNA的研究报道不多,在前列腺癌中更是罕有报道。本研究根据已有的microRNA差异表达谱筛选在前列腺癌中高表达的microRNA(主要有miR-20a, miR-21, miR-125b, miR-141),在前列腺癌患者血清中检测这些microRNA的表达情况,比较不同microRNA在前列腺癌的不同疾病阶段的表达情况及其与骨转移、预后和治疗有效性的相关性。
     二、根据第一部分的研究结果,通过检测血清microRNA的表达情况,发现miR-21在激素抵抗性前列腺癌患血清者中的表达显著高于激素敏感性前列腺癌患者,而且miR-21随着血清PSA的升高而升高,提示miR-21可能对前列腺细胞的生长增殖有一定作用,而抑制细胞内miR-21表达有望抑制前列腺癌细胞的生长,甚至于逆转雄激素非依赖状态。为了探讨其中产生差异的机制,本课题进一步研究miR-21反义寡核苷酸对LNCaP前列腺癌细胞的生长的抑制作用及其内在分子机制。
     材料和方法:
     一、采用特异性TaqMan探针的实时定量PCR方法检测56例患者(包括局限性前列腺癌20例,激素敏感性骨转移前列腺癌20例,激素抵抗性骨转移前列腺癌10例,良性前列腺增生6例)血清中的miR-20a, miR-21, miR-125b, miR-141, U6 snRNA作为内参。方差检验比较以上4类患者血清中miR-20a, miR-21, miR-125b, miR-141表达差异,探寻诊治方案选择及预后判断的新指标。
     二、将特异性miR-21反义寡核苷酸,通过脂质体2000转染LNCaP前列腺癌细胞,观察前列腺癌细胞在转染后的增殖情况,绘制肿瘤细胞增殖曲线;转染48小时后分别提取肿瘤细胞胞浆和胞核内的蛋白,采用western-blotting方法分别检测胞浆、胞核内PTEN、mTOR、AKT、AR、PSA等蛋白的表达情况。比较转染特异性miR-21寡核苷酸对LNCaP前列腺癌细胞增殖的影响和肿瘤细胞内蛋白的影响。
     结果:
     一、miR-21在激素抵抗性骨转移前列腺癌患血清者中的表达显著高于激素敏感性骨转移前列腺癌患者,p=0.016。分层分析显示,激素敏感性前列腺癌患者中,PSA小于4ng/ml的患者的血清miR-21表达显著低于PSA大于4ng/ml的患者;对多西他赛化疗抵抗的前列腺癌患者的血清miR-21表达明显高于对多西他赛化疗敏感的患者,p=0.032。而miR-20a和miR-125b在4组患者中未显示存在差异表达。miR-141在骨转移前列腺癌患者血清中的表达显著高于无骨转移的前列腺癌和良性前列腺增生患者,p=0.006;并且miR-141的表达水平与骨转移灶个数呈正相关性,p<0.001。血清miR-21和miR141与前列腺癌Gleason评分呈正相关,Gleason评分>7分的患者的血清microRNA表达水平显著高于Gleason评分<=7分的患者,p值分别为0.001和<0.001。
     二、细胞生长曲线显示,在特异性miR-21反义寡核苷酸转染后,前列腺癌LNCaP细胞的增殖受到明显抑制。转染后,细胞核内的雄激素受体(AR)蛋白表达水平明显下调,细胞浆中无AR蛋白表达;胞浆内的前列腺特异抗原(PSA)蛋白的表达也明显下降,细胞核中无PSA蛋白的表达。此外,在转染后,细胞核内的AKT蛋白表达水平明显下调,而细胞浆中的AKT蛋白表达变化不明显;mTOR蛋白在细胞核内的表达也明显下降,但细胞核中的mTOR蛋白的表达反而升高。
     结论:
     在前列腺癌患者血清中检测microRNA是可行的,miR-21高表达于雄激素非依赖的骨转移前列腺癌患者,并对多西他赛化疗有效性具有预测价值;miR-141高表达于骨转移前列腺癌患者。miR-21可以作为雄激素非依赖前列腺癌的分子标记物,而miR-141可作为骨转移性前列腺癌的分子标记物。
     抑制LNCaP前列腺癌细胞内的miR-21表达对细胞的增殖有明显抑制作用,其内在机制可能是miR-21有上调AKT表达的作用,进而使mTOR发生从胞浆到胞核的转运重分布;同时miR-21还可能具有上调AR的作用。而抑制细胞内的miR-21表达,胞核内的AR、mTOR和AKT蛋白的表达均下降,最终导致细胞增殖的抑制。因此,miR-21是一个潜在的基因治疗新靶点。
Purpose:
     (1) McroRNAs are widely expressed in various tumor tissues, nevertheless serum microRNA is seldom reported, especially in prostate cancer. According to the existing expression profile of microRNA, miR-20a, miR-21, miR-125b, and miR-141 have been documented to overexpress in prostate cancer. We designed to detect these four microRNAs in the serum of patients with prostate cancer, and to compare different expression pattern in different stage of prostate cancer, to achieve an overview of the expression profile of these microRNAs and validate their role in predicting treatment efficacy and prognosis of patients.
     (2) According to the findings in the first part of our study, the levels of serum miR-21 were significantly higher in hormone refractory prostate cancer patients than those in hormone-sensitive prostate cancer patients, and also correlating to serum PSA levels, which indicated that miR-21 might play an important role in the proliferation of prostate cancer cells. Inhibiting the expression of miR-21 might slow down the growth of tumor cells, even reversing the androgen-independent status. In order to investigate the intrinsic molecular mechanism, we further studied the effect of specific miR-21 antisense oligonucleotides on the growth of LNCap prostate cancer cells. MiR-21 is a potentially novel target of gene therapy.
     Materials and methods:
     (1) Specific TaqMan probes for real-time quantitative PCR were employed to detect serum miR-20a, miR-21, miR-125b, and miR-141 in 56 patients (including 20 cases of localized prostate cancer,20 cases of hormone sensitive prostate cancer with bone metastasis,10 cases of hormone refractory prostate cancer with bone metastasis, and 6 patients of benign prostatic hyperplasia). U6 snRNA was used as an inner standard. One-Way ANOVA test was applied to compare the differences of serum miR-20a, miR-21, miR-125b, miR-141 in the above 4 groups of patients, to find out the novel predictors for the diagnosis, treatment and prognosis of patients with prostate cancer.
     (2) The specific miR-21 antisense oligonucleotides were transfected to LNCaP prostate cancer cells through Lipofectamine 2000. Growth curves were drawn to observe effect of miR-21 antisense oligonucleotides on the proliferation of tumor cells. Forty-eight hours after transfection, proteins were extracted from both the cytoplasm and nucleus of tumor cells. Protein levels of PTEN, mTOR, AKT, AR, and PSA were detected by western-blotting method in the cytoplasm and nuclear proteins, seperately.
     Results:
     (1) The levels of serum miR-21 were significantly higher in hormone refractory prostate cancer patients than in hormone-sensitive prostate cancer patients, p =0.016. Stratified analysis in patients with hormone sensitive prostate cancer showed that levels of serum miR-21 were lower in patients with PSA levels of less than 4ng/ml than in those with PSA levels of more than 4ng/ml. Furthermore, Serum miR-21 levels were higher in patients who were resistant to docetaxel-based chemotherapy when compared to those sensitive to chemotherapy, p=0.032. The expressions of serum miR-20a and miR-125b showed no statistical differences between the 4 groups of patients. Serum miR-141 expressed higher in patients with bone metastases than in those with localized prostate cancer and those with benign prostatic hyperplasia, p=0.006, and its level even correlated to the number of bone lesions, p<0.001. What's more, serum miR-21 and miR-141 were also found to be positively related to Gleason Score, and patients with higher Gleason Score had higher serum miR-21 and miR-141 levels, p=0.001and p<0.001, respectively.
     (2) The cell growth curve showed that the specific miR-21 antisense oligonucleotides could inhibit the growth of LNCaP prostate cancer cells. After transfection, the AR in nucleus was down regulated, which induced the reduction of cytoplasm PSA expression. Furthermore, the nuclear AKT level also decreased after the transfection of specific miR-21 antisense oligonucleotides, which might cause the mTOR protein traslocating from nucleus to cytoplasm.
     Conclusion:
     (1) It is feasible to detect MicroRNAs in the serum of prostate cancer patients. Serum miR-21 was highly expressed in hormone refractory prostate cancer patients with bone metastases, and it might have predictive value for the efficacy of docetaxel-based chemotherapy. Serum miR-141 overexpressed in patients with bone metastasis. Thus, serum miR-21 can be a potential predictor for hormone-refractory prostate cancer, and serum miR-141 be used as a biomarker for bone metastasis.
     (2) The proliferation of LNCaP prostate cancer cells can be significantly inhibited by down regulating the expression of miR-21 in tumor cells. MiR-21 may have the function of up-regulating AR and AKT in prostate cancer cells, and the expression of mTOR protein might traslocate from the cytoplasm to the nucleus. Therefore, after inhibition of miR-21, expressions AR, mTOR and AKT proteins in the nucleus decreased, leading to the restriction of cell proliferation.
引文
1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin 2009;59(4):225-249.
    2.上海市疾病控制预防中心.2006年上海市恶性肿瘤发病率.上海预防医学杂志,2010,22(1):54-55.
    3. Heidenreich A, Aus G, BollaM, Joniau S, Matveev VB, Schmid HP, Zattoni F; European Association of Urology. EAU guidelines on prostate cancer. Eur Urol.2008 Jan;53(1):68-80.
    4. Schroder Fh, Bangma Ch, Roobol MJ. Is it necessary to detect all prostate cancers in men with serum PSA levels< 3 ng/ml? A comparison of biopsy results of PCPT and outcome-related information from ERSPC. Eur Urol 2008;53(5):901-8.
    5. Schmid h-P, Riesen W, Prikler L. Update on screening for prostate cancer with prostate-specific antigen. Crit Rev Oncol hematol 2004;50(1):71-8.
    6. Stamey TA, Yang N, hay AR, McNeal JE, Freiha FS, Redwine E. Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. N Engl J Med 1987;317(15):909-16.
    7. Catalona WJ, Richie JP, Ahmann FR, hudson MA, Scardino PT, Flanigan RC, deKernionJB, RatliffTL, Kavoussi LR, Dalkin BL, et al. Comparison of digital rectal examination and serum prostate specific antigen in the early detection of prostate cancer:results of a multicenter clinical trial of 6,630 men. J Urol 1994;151(5):1283-90.
    8. Semjonow A, Brandt B, Oberpenning F, Roth S, hertle L. Semjonow A, Brandt B, Oberpenning F, Roth S, hertle L. Discordance of assay methods creates pitfalls for the interpretation of prostate-specific antigen values. Prostate Suppl 1996;7:3-16.
    9. Heidenreich A. Identification of high-risk prostate cancer:role of prostate-specific antigen, PSA doubling time, and PSA velocity. Eur Urol 2008;54(5):976-7.
    10. Freedland SJ, PartinAW. Prostate-specific antigen:Update 2006. Urology 2006;67(3):458-460.
    11. Schroder FH, van der Cruijsen-Koeter I, de Koning HJ, Vis AN, Hoedemaeker RF, Kranse R. Prostate cancer detection at low prostate specific antigen. J Urol 2000; 163(3):806-812.
    12. Sung MT, Lin h, Koch MO, Davidson DD, Cheng L. Radial distance of extraprostatic extension measured by ocular micrometer is an independent predictor of prostate-specific antigen recurrence:A new proposal for the substaging of pT3a prostate cancer. Am J Surg Pathol 2007;31(2):311-8.
    13. Shariat SF, Karam JA, Margulis V, Karakiewicz PI. New blood-based biomarkers for the diagnosis, staging and prognosis of prostate cancer. BJU Int 2008;101(6):675-683.
    14. Bussemakers MJ, van Bokhoven A, Verhaegh GW, Smit FP, KarthausHF, Schalken JA, Debruyne FM, RuN, IsaacsWB. DD3:A new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res 1999:59(23):5975-5979.
    15. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, SunXW, Varambally S, CaoX, Tchinda J, KueferR, LeeC, Montie JE, Shah RB, Pienta KJ, Rubin MA, Chinnaiyan AM. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005:310(5748):644-648.
    16. Wozny W, Schroer K, Schwall GP, Poznanovic S, Stegmann W, Dietz K, Rogatsch H, Schaefer G, Huebl H, Klocker H, Schrattenholz A, CahillMA. Differential radioactive quantification of protein abundance ratios between benign and malignant prostate tissues:Cancer association of annexin A3. Proteomics 2007;7(2):313-322.
    17. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, ChinnaiyanAM. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 2009:457(7231):910-914.
    18. He L, Hannon GJ. MicroRNAs:small RNAs with a big role in gene regulation. Nat Rev Genet.2004;5:522-531.
    19. Ambros V. microRNAs:tiny regulators with great potential. Cell. 2001;107:823-826.
    20. Miska EA. How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev.2005;15:563-568.
    21. Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell.2004;116:281-297.
    22. Esquela-Kerscher A, Slack FJ. Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer.2006;6:259-269. doi:10.1038/nrc1840. [PubMed] [Cross Ref]
    23. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer.2006:6:857-866.
    24. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y. et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res.2004:64:3753-3756.
    25. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ. RAS is regulated by the let-7 microRNA family. Cell.2005:120:635-647.
    26. Rosenfeld N, Aharonov R, Meiri E, Rosenwald S, Spector Y, Zepeniuk M, Benjamin H, Shabes N, Tabak S, Levy A. et al. MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol.2008:26:462-469.
    27. Chen CZ. MicroRNAs as oncogenes and tumor suppressors. N Engl J Med. 2005;353:1768-1771.
    28. Caldas C, Brenton JD. Sizing up miRNAs as cancer genes. Nat Med. 2005;11:712-714.
    29. Wu W, Sun M, Zou GM, Chen J. MicroRNA and cancer:current status and prospective. Int J Cancer.2007; 120:953-60.
    30. Cimmino A, Calin GA, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA.2005; 102: 13944-9.
    31. Sassen S, Mi ska EA, Caldas C. MicroRNA-implications for cancer. Virchows Arch.2008;452:1-10.
    32. Tsang JC, Lo YM. Circulating nucleic acids in plasma/serum. Pathology. 2007;39:197-207.
    33. Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K, Banham AH, PezzellaF, Boultwood J, Wainscoat JS. et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol.2008;141:672-675.
    34. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O'Briant KC, Allen A. et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA.2008;105:10513-10518.
    35. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X. et al. Characterization of microRNAs in serum:a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18:997-1006.
    36. Swarup V, Rajeswari MR. Circulating (cell-free) nucleic acids--promising, non-invasive tool for early detection of several human diseases. FEBS Lett.2007;581:795-799.
    37. Fleischhacker M, Schmidt B. Circulating nucleic acids (CNAs) and cance--a survey. Biochim Biophys Acta.2007; 1775:181-232.
    38. Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008;110:13-21.
    39. Gilad S, Meiri E, Yogev Y, Benjamin S, Lebanony D, Yerushalmi N, Benjamin H, Kushnir M, Cholakh H, Melamed N. et al. Serum microRNAs are promising novel biomarkers. PLoS ONE.2008;3:e3148.
    40. Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL and Visakorpi T. MicroRNA expression profiling in prostate cancer. Cancer Res 2007,67:6130-6135.
    41. Ozen M, Creighton CJ, Ozdemir M and Ittmann M. Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 2008,27: 1788-1793.
    42. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F and Visone R, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006,103: 2257-2261.
    43. Shi XB, Xue LR, Yang J, Ma All, Zhao JJ, Xu M and Tepper CG, et al. An androgen-regulated miRNA suppresses Bakl expression and induces androgen-independent growth of prostate cancer cells. Proc Natl Acad Sci USA 2007,104:19983-19988.
    44. Schaefer A, Jung M, Miller K, Lein M, Kristiansen G, Erbersdobler A, Jung K. Suitable reference genes for relative quantification of miRNA expression in prostate cancer. Exp Mol Med.2010 Nov 30;42(11):749-58.
    45. Shi XB, Xue L, Ma AH, Tepper CG, Kung HJ, White RW. miR-125b promotes growth of prostate cancer xenograft tumor through targeting pro-apoptotic genes. Prostate.2011 Apr;71(5):538-49.
    46. Pang Y, Young CY, Yuan H. MicroRNAs and prostate cancer. Acta Biochim Biophys Sin (Shanghai).2010 Jun 15;42(6):363-9.
    47. Bubley GJ, Carducci M, Dahut W, et al. Eligibility and response guidelines for phase II clinical trials in androgen-independent prostate cancer:recommendations from the Prostate-Specific Antigen Working Group. J Clin Oncol.1999;17(11):3461-3467.
    48. Ken MM, Creech RH, Tormey DC, et al. Toxicity And Response Criteria Of The Eastern Cooperative Oncology Group. Am J Clin Oncol,1982,5: 649-655.
    49. Ng EK, Chong WW, Jin H, Lam EK, Shin VY, Yu J, Poon TC, Ng SS, Sung JJ. Differential expression of microRNAs in plasma of patients with colorectal cancer:a potential marker for colorectal cancer screening. Gut.2009 Oct;58(10):1375-81.
    50. Wong TS, Liu XB, Wong BY, Ng RW, Yuen AP, Wei WI. Mature miR-184 as Potential Oncogenic microRNA of Squamous Cell Carcinoma of Tongue. Clin Cancer Res.2008 May 1;14(9):2588-92.
    51. Brase JC, Johannes M, Schlomm T, Falth M, Haese A, Steuber T, Beissbarth T, Kuner R, Sultmann H. Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer.2011 Feb 1:128(3):608-16.
    52. Heneghan HM, Miller N, Lowery AJ, Sweeney KJ, Newell J, Kerin MJ. Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann Surg.2010;251:499-505.
    53. Kelly WK, Scher hl, Mazurmdar M, et al.Prostate-specific antigen as a measure of disease outcome in metastatic hormone-refractorv prostate cancer. J Clin Oncol 1993;11(4):607-615.
    54. Ribas J, Ni X, Haffner M, et al. miR-21:an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth. Cancer Res.2009;69(18):7165-7169.
    55. Yoshino T, Shiina H, Urakami S, etal. Bcl-2 expression as a predictive marker of hormone-refractory prostate cancer treated with taxane-based chemotherapy. Clin Cancer Res.2006;12(20 Pt 1):6116-6124.
    56. Pachynski R K, King C, Srinivas S. Prostate specific antigen doubling time (PSADT) in patients with hormone refractory prostate cancer (HRPC) undergoing docetaxel chemotherapy as a predictor of overall survival. ASCO Meeting Abstracts J Clin Oncol.2007;25(18s):15556.
    57. Oudard S, Banu E, Scotte F, et al. Prostate-specific antigen doubling time before onset of chemotherapy as a predictor of survival for hormone-refractory prostate cancer patients. Ann Oncol. 2007:18(11):1828-1833.
    58. Kovalchuk 0, Filkowski J, Meservy J, Ilnytskyy Y, Tryndyak VP, Chekhun VF, Pogribny IP. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther.2008 Jul;7(7):2152-9.
    59. Chen GQ, Zhao ZW, Zhou HY, Liu YJ, Yang HJ. Systematic analysis of microRNA involved in resistance of the MCF-7 human breast cancer cell to doxorubicin. Med Oncol.2010 Jun;27(2):406-15.
    60. Xia L, Zhang D, Du R, Pan Y, Zhao L, Sun S, Hong L, Liu J, Fan D. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer.2008 Jul 15;123(2):372-9.
    61. Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY. miR-21-mediated tumor growth. Oncogene.2007 Apr 26;26 (19):2799-803.
    62. Wickramasinghe NS, Manavalan TT, Dougherty SM, Riggs KA, Li Y, Klinge CM. Estradiol downregulates miR-21 expression and increases miR-21 target gene expression in MCF-7 breast cancer cells. Nucleic Acids Res.2009 May;37(8):2584-95.
    63. Shi GH, Yc DW, Yao XD, Zhang SL, Dai B, Zhang HL, Shen YJ, Zhu Y, Zhu YP, Xiao WJ, Ma CG. Involvement of microRNA-21 in mediating chemo-resistance to docetaxel in androgen-independent prostate cancer PC3 cells. Acta Pharmacol Sin.2010 Jul;31(7):867-73.
    64. Roodman GD. Mechanisms of bone metastasis. N Engl J Med.2004, Apr, 15;350(16):1655-1664.
    65. Pratap J, Lian JB, Stein GS. Metastatic bone disease:role of transcription factors and future targets. Bone.2011 Jan 1;48(1):30-36.
    66. Barshack I, Meiri E, Rosenwald S, Lebanony D, Bronfeld M, Aviel-Ronen S, Rosenblatt K, Polak-Charcon S, Leizerman I, Ezagouri M, Zepeniuk M, Shabes N, Cohen L, Tabak S, Cohen D, Bentwich Z, Rosenfeld N. Differential diagnosis of hepatocellular carcinoma from metastatic tumors in the liver using microRNA expression. Int J Biochem Cell Biol. 2010 Aug;42(8):1355-62.
    67. Baffa R, Fassan M, Volinia S,O'Hara B, Liu CG, Palazzo JP, Gardiman M, Rugge M, Gomella LG, Croce CM, Rosenberg A. MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets. J Pathol.2009 Oct;219(2):214-21.
    68. Cheng H, Zhang L, Cogdell DE, Zheng H, Schetter AJ, Nykter M, Harris CC, Chen K, Hamilton SR, Zhang W. Circulating Plasma MiR-141 Is a Novel Biomarker for Metastatic Colon Cancer and Predicts Poor Prognosis. PLoS One.2011 Mar 17;6(3):el7745.
    69. Epstein JI, Allsbrook WC Jr, AminMB, Egevad LL; ISUP grading committee. The 2005 International Society of Urologic Pathology (ISUP) Consensus Conference on Gleason grading of Prostatic Carcinoma. Am J Surg Pathol 2005:29(9):1228-42.
    70. Brase JC, Johannes M, Schlomm T, Haese A, Steuber T, Beissbarth T, Kuner R, Sultmann H. Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer.2011 Feb 1;128(3):608-16.
    1.叶定伟.前列腺癌的流行病学和中国的发病趋势.中华外科杂志2006,44:362-4.
    2. Tannock IF, deWit R, Berry WJ, et al:Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 2004:351:1502-1512.
    3. Petrylak DP, Tangen CM, Hussain MH, Lara PN Jr, Jones JA, Taplin ME, Burch PA, Berry D, Moinpour C, Kohli M, Benson MC, Small EJ, Raghavan D, Crawford ED. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med. 2004 Oct 7:351(15):1513-20.
    4. Cohen MB, Rokhlin OW. Mechanisms of prostate cancer cell survival after inhibition of AR expression. J Cell Biochem.2009 Feb 15:106(3):363-71.
    5. DevlinHL, Mudryj M. Progression of prostate cancer:multiple pathways to androgen independence. Cancer Lett.2009 Feb 18;274(2):177-86.
    6. Taplin ME, Bubley GJ, Shuster TD, Frantz ME, Spooner AE, Ogata GK, Keer HN, Balk SP. Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med.1995 May 25:332(21):1393-8.
    7. Veldseholte J, Berrevoets CA, Ris—talpers C, et al. The androgen recptor in LNCaP cells contains a mutation in the ligand binding domain which affects steroid binding characteristics and response to anti-androgens. J Steroid Biochem Mol Biol,1992,41:665-669.
    8. Gregory CW, He B, Johnson RT, et al. A mechanism for androgen receptor mediated prostate carlcer recurrence after androgen deprivation therapy. Cancer Res,2001,61:4315-4319.
    9. Taplin ME, Balk SP. Androgen receptor:A key molecule in the progression of prostate callcer to hormone independence. J Cell Biochem.2004, 91:483-490.
    10. Wang G, Sadar MD. Amino—terminus domain of the androgen receptor: a molecular target to prevent the hormanalprogression of prostate cancer. J Cell Biochem,2006,98:36-53.
    11. Griffiths K, Morton MS, Nicholson RI. Androgens, androgen receptors, antiandrogens and the treatment of prostate cancer. Eur Urol.1997;32 Suppl 3:24-40.
    12. Sobel RE, Sadar MD. Cell lines used in prostate cancer research:a compendium of old and new line--spart 1. J Urol.2005 Feb;173(2):342-59.
    13. Sobel RE, Sadar MD. Cell lines used in prostate cancer research:a compendium of old and new lines--part 2. J Urol.2005 Feb;173(2):360-72.
    14. Homszewicz JS, Leong SS, Chu TM, Wajsman ZL, et al. The LNCaP cell line:a new model for studies on human prostatic carcinoma. Prog Clin Biol Res,1980;37:115-132.
    15. Nora MN, Christophe J, Andrew CE. Model systems of prostate cancer: uses and limitations. Cancer and metastasts reviews,1999;17:362-371.
    16. Berchem GJ, Bosseler M, Sugars LY, et al. Androgens induce resistance to bcl-2 mediated apoptosis in LNCaP prostate cancer cells. Cancer Res,1995;55:735-738.
    17. Van Steenbrugge GJ, Van Uffelen CJ, Bolt J, et al. The human prostatic cancer cell line LNCaP and its derived sublines:an in vitro model for the study of androgen sensitivity. J Steroid Biochem Mol Biol, 1991;40:207-214.
    18. Lu S, Tsai SY, Tsai MJ. Molecular mechanisms of androgen—ndependent growth of human prostate caficer LNCaP-AI celles. Endocrinology,1999; 140:5054-5059.
    19. Thalmann GN, Sikes RA, Wu TLet al. LNCaP progression model of human prostate cancer:androgen-Independence and OSSEOUS metastasis. Prostate,2000;44:91-103.
    20. Granville CA, Memmott RM, Gills JJ, Dennis PA. Handicapping the race to develop inhibitors of the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin pathway. Clin Cancer Res 2006;12:679-89.
    21. Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 2006;441:424-30.
    22. Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell 2007 ;12:9-22.
    23. Zhou X, Tan M, Stone Hawthorne V et al. Activation of the Akt/mammalian target of rapamycin/4E-BPl pathway by ErbB2 overexpression predicts tumor progression in breast cancers. Clin Cancer Res 2004; 10: 6779-88.
    24. Lang SA, Gaumann A, Koehl GE et al. Mammalian target of rapamycin is activated in human gastric cancer and serves as a target for therapy in an experimental model. Int J Cancer 2007; 120:1803-10.
    25. Sahin F, Kannangai R, Adegbola 0, Wang J, Su G, Torbenson M. mTOR and P70, S6 kinase expression in primary liver neoplasms. Clin Cancer Res 2004; 10:8421-5.
    26. SchmitzM, Grignard G, Margue C et al. Complete loss of PTEN expression as a possible early prognostic marker for prostate cancer metastasis. Int J Cancer 2007; 120:1284-92.
    27. Yoshimoto M, Cutz JC, Nuin PA et al. Interphase FISH:analysis of PTEN in histologic sections shows genomic deletions in 68% of primary prostate cancer and 23% of high-grade prostatic intra-epithelial neoplasias. Cancer Genet Cytogenet 2006; 169:128-37.
    28.朱一平,叶定伟,姚旭东,等.鱼藤素诱导人前列腺癌细胞凋亡及其机制研究.中华实验外科杂志,2008,25:1329-1331.
    29. Dai B, Kong YY, Ye DW, et al. Activation of the mammalian target of rapamycin signalling pathway in prostate cancer and its association with patient clinicopathological characteristics. BJU Int. 2009:104:1009-1016.
    30. Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell 2004,116:281-297.
    31. Santarpia L, Nicoloso M and Calin GA. MicroRNAs:a complex regulatory network drives the acquisition of malignant cell phenotype. Endocr Relat Cancer 2009,17:51-75.
    32. Sun RP, Fu XP, Li Y, Xie Y and Mao YM. Global gene expression analysis reveals reduced abundance of putative microRNA targets in human prostate tumours. BMC Genomics 2009,10:93.
    33. Kloosterman WP and Plasterk RH. The diverse functions of micro RNAs in animal development and disease. Dev Cell 2006,11:441-450.
    34. Xie XH, Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-Toh K and Lander ES, et al. Systematic discovery of regulatory motifs in human promotersand 3'UTRs by comparison of several mammals. Nature 2005, 434:338-345.
    35. Iorio MV and Croce CM. MicroRNAs in cancer:small molecules with a huge impact. J Clin Oncol 2009,27:5848-5856.
    36. Baranwal S and Alahari SK. miRNA control of tumor cell invasion and metastasis. Int J Cancer 2009,126:1283-1290.
    37. Brennecke J, Stark A, Russell RB and Cohen SM. Principles of microRNA-target recognition. PLoS Biol 2005,3:e85.
    38.\Filipowicz W, Bhattacharyya SN and Sonenberg N. Mechanisms of posttranscriptional regulation by microRNAs:are the answers in sight? Nat Rev Genet 2008,9:102-114.
    39. Liang RQ, Bates DJ and Wang E. Epigenetic control of microRNA expression and aging. Curr Genomics 2009,10:184-193.
    40. Shyu AB, Wilkinson MF and van Hoof A. Messenger RNA regulation:to translate or to degrade. EMBO J 2008,27:471-481.
    41. Schaefer A, Jung M, Kristiansen G, Lein M, Schrader M, Miller K and Stephan C, et al. MicroRNAs and cancer:current state and future perspectives in urologic oncology. Urol Oncol 2009,28:4-13.
    42. Rigoutsos I. New tricks for animal microRNAS:targeting of amino acid coding regions at conserved and nonconserved sites. Cancer Res 2009, 69:3245-3248.
    43. Esquela-Kerscher A, Slack FJ. Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer.2006:6:259-269. doi:10.1038/nrc1840. [PubMed] [Cross Ref]
    44. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer.2006;6:857-866.
    45. Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, Meister G, Hermeking H. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing:miR-34a is a p53 target that induces apoptosis and Gl-arrest. Cell Cycle.2007 Jul 1;6(13):1586-93.
    46. Dillhoff M, Liu J, Frankel W, et al. MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. J Gastrointest Surg,2008,12(12):2171-2176.
    47. Chan SH, Wu CW, Li AF, et al. miR-21 microRNA expression in human gastric carcinomas and its clinical association. Anticancer Res,2008, 28 (2A):907-911.
    48. Chart JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res,2005,65(14): 6029-6033.
    49. Iorio MV, Ferracin M, Liu CG, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res,2005,65(16): 7065-7070.
    50. Lira LP, Lau NC, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 2005,433(7027):769-773.
    51. Lu Z, Liu M, Stribinskis V, et al. MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene, 2008,27(31):4373-4379.
    52. Zhu S, Si ML, Wu H, et al. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem,2007,282(19):14328-14336.
    53. Frankel LB, Christoffersen NR, Jacobsen A, et al. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem,2008,283(2):1026-1033.
    54. Yang HS, Jansen AP, Komar AA, et al. The transformation suppressor Pded4 is a novel eukaryotie translation initiation factor 4A binding protein that inhibits translation. Mol Cell Biol,2003,23(1):26-37.
    55. Goke R, Barth P, Schmidt A, et al. Programmed cell death protein 4 suppresses CDK1/cdc2 via induction of p21 (Waf1/Cip1). Am J Physiol Cell Physiol,2004,287(6):C1541-C1546.
    56. Si ML, Zhu S, Wu H, et al. miR-21-mediated tumor growth. Oncogene, 2007,26(19):2799-2803.
    57. Cheng AM, Byrom MW, Shehon J, et al. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res,2005,33(4):1290-1297.
    58. Wickramasinghe NS, Manavalan TT, Dougherty SM, Riggs KA, Li Y, Klinge CM. Estradiol downregulates miR-21 expression and increases miR-21 target gene expression in MCF-7 breast cancer cells. Nucleic Acids Res.2009 May;37(8):2584-95.
    59. Ziyan W, Shuhua Y, Xiufang W, Xiaoyun L. MicroRNA-21 is involved in osteosarcoma cell invasion and migration. Med Oncol.2010 May 18.
    60. Li T, Li D, Sha J, Sun P, Huang Y. MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem Biophys Res Commun.2009 Jun 5:383(3)280-5.
    61. Ribas J, Ni X, Haffner M, Wentzel EA, Salmasi AH, Chowdhury WH, Kudrolli TA, Yegnasubramanian S, Luo J, Rodriguez R, Mendell JT, Lupold SE. miR-21:an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth. Cancer Res.2009 Sep 15;69(18):7165-9.
    62. Beck T, Hall M N. The TOR signaling pathway controls nuclear localization of nutrient regulated transcription factors. Nature, 1999,402(6762):689-692.
    63. Fingar D C, Richardson C J, Tee A R, et al. mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BPl/eukaryotic translation initiation factor 4E. Mol Cell Biol, 2004,24(1):200-216.
    64. Foster D A. Targeting mTOR-mediated survial signals in anticancer therapeutic strategies. Expert Rev Anticancer Ther,2004,4 (4): 691-701.
    65. Vezina C, Kudelski A, Sehgal S N. Rapamycin(AY-22,989), a new antifungal antibiotic Taxonomy of the producing streptomycin and isolation of the active principle. J Antibiot (Tokyo),1975,28(10): 721-726.
    66. Zhang X W, Shu L L, Hosoi H, et al. Predominant nuclear localization of mammalian target of rapamycin in normal and malignant cells in culture. J Biol Chem,2002,277 (31):28127-28134.
    67. Drenan R M, Liu X Y, Bertram P G, et al. FKBP12-rapamycin-associated protein or mammalian target of rapamycin (FRAP/mTOR) localization in the cndoplasmic reticulumand the golgi apparatus. J Biol Chem,2004, 279(1):772-778.
    68. Kim J E, Chen J. Cytoplasmic-nuclear shuttling of FKBP12-rapamycin associated protein is involved in rapamycin-sensitive signaling and translation initiation. Proc Natl Acad Sci USA,2000,97(26): 14340-14345.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700