用户名: 密码: 验证码:
葛根素促进小鼠胚胎干细胞源工作心肌细胞的分化及其调控机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分葛根素促进小鼠胚胎干细胞向心肌细胞分化及调控机制
     目的:干细胞源心肌细胞是再生医学中治疗心力衰竭等心脏疾病的很有前景的细胞来源。如何进一步提高干细胞源心肌细胞的分化率以确保充足的细胞来源是目前急需解决的首要问题。传统中药的活性成分葛根素已经广泛运用于临床治疗各种心血管疾病。本课题旨在研究葛根素对离体培养的小鼠胚胎干细胞(murine embryonic stem cells, mES细胞)向心肌细胞分化的作用及其调控机制。
     方法:首先采用MTT法检测不同浓度的葛根素对mES细胞增殖能力的影响,筛选适合用于诱导分化的葛根素浓度。采用经典诱导心肌分化的三步法,即“悬滴-悬浮-贴壁”,持续用1μmol/L、10μmol/L、100μmol/L葛根素诱导mES细胞分化。倒置显微镜下连续观测胚体(embryoid body, EB)大小和跳动EB(含跳动区域的EB)的比例。运用免疫荧光染色法检测心肌特异性蛋白α-肌小节辅肌动蛋白(α-sarcomeric-actinin)的表达。运用反转录PCR检测不同胚层标志物的表达。用western blot检测葛根素诱导分化后丝氨酸-苏氨酸激酶(serine-threonine kinase,Akt)和磷酸化丝氨酸-苏氨酸激酶(phosphorylation of the serine-threonine kinase,P-Akt)的表达。
     结果:葛根素促进mES细胞增殖,增加分化过程中跳动EB比例。100μmol/L葛根素为最佳实验浓度。免疫荧光结果显示葛根素明显增多分化第12天α-sarcomeric-actinin阳性细胞。半定量RT-PCR分析表明葛根素明显上调分化早期内胚层、中胚层标志性基因表达,但显著下调外胚层标志性基因。葛根素组EB的直径显著增大,P-Akt的表达上调。
     结论:葛根素促进mES细胞增殖,影响mES细胞分化方向。其作用可能与磷脂酰肌醇(-3)激酶/丝氨酸-苏氨酸激酶(phosphatidylinositol 3-kinase/serine-threonine kinase, PI3K/Akt)途径有关。
     第二部分葛根素诱导小鼠胚胎干细胞向心肌分化并促进心室样心肌细胞的发育
     目的:多能干细胞分化出的心肌样细胞包括起搏样心肌细胞,心房样心肌细胞,心室样心肌细胞。心肌梗死部位好发于心室,用心室样心肌细胞修复心肌梗死部位明显更具优势。干细胞来源的心肌细胞含有多种类型,如何在提高心肌分化率的同时,促进心室样心肌细胞的特化的研究仍然甚少。已有关于植物雌激素能够调节心肌发育调控基因生长因子β(TGF-β)、骨形成蛋白(BMP)和Wnt的报道,而且第一部分的研究也显示植物雌激素葛根素能促进鼠胚胎干细胞(mES cells)向心肌分化,所以此部分的课题主要研究葛根素对mES细胞向心肌分化的影响,检测向心室样心肌细胞分化的效率和机制。
     方法:采用经典的“悬滴-悬浮-贴壁”三步法,持续用100μmol/L葛根素诱导mESCs分化。用流式细胞术检测心肌肌小节特异性α-肌小节辅肌动蛋白(α-sarcomeric-actinin)阳性细胞的含量。RT-PCR检测心肌特异性标志物和心肌发育调控基因。采用膜片钳技术分别测定起搏样细胞,心房样心肌细胞和心室样心肌细胞的含量。
     结果:葛根素能提高跳动胚体的百分比,能提高α-sarcomeric actinin阳性细胞的百分比。在分化早期葛根素处理组T-box5 (Tbx5),心肌细胞增强因子2c (myocyte enhancer factor 2c, MEF2c)和心肌肌球蛋白重链(α-myosin heavy chain,α-MHC)的表达较阴性对照组明显提高。在进一步的分化过程中葛根素能提高心室肌特异性基因MLC2的表达,同时降低起搏样细胞的特异性基因HCN4的表达。膜片钳结果也显示葛根素诱导mES细胞分化出的心室样心肌细胞含量较阴性对照组高。在分化早期葛根素能明显上调TGF-β1,2,3,和Wnt11的表达,而对Wnt3a, BMP2和BMP 4的表达无影响。
     结论:葛根素能促进mES细胞向心肌分化,尤其是向心室样心肌细胞分化。TGF-β和Wnt信号途径可能参与介导葛根素的早期诱导效应。
Aims:Currently CMs derived from stem (ES) cells represent the most promising CMs for cardiac regenerative medicine.lt is important to screen and identify chemical compounds that induce high efficiency cardiac differentiation.Phytoestrogen puerarin is a traditional Chinese herbal medicine to treat many cardiac diseases. The aim of this study was to investigate the possible inducible effects of puerarin on embryonic stem cells differentiation and regulatory mechanism in vitro.
     Methods:Effect of puerarin on proliferation of murine ES cells were analyzed via MTT assay, then were differentiated using The classic "hanging drop-Suspension-adherent" three step differentiation protocol with or without 1μmol/L、10μmol/L、100μmol/L puerarin. Differentiating ES cells were analyzed via morphological analysis for diameter of embryonic bodys (EBs) and percentage of beating EBs, immunofluorescence staining forα-sarcomeric-actinin, RT-PCR for specific genes of different mesodern, western blot for serine-threonine kinase (Akt) and phosphorylation of the serine-threonine kinase (P-Akt).
     Results:Puerarin (100μmol/L) resulted in significantly increased number of cardiac cells and percentage of beating EBs,100μmol/L puerarin was the optimal concentration Puerarin resulted in a significantly increased the number ofα-sarcomeric-actinin positive cells on differentiation day 12. RT-PCR results showed expressions of endoderm, cardiac (mesoderm) and endothelial cells specific gene and decreased expressions of neuronal cells (ectoderm) specific gene at early differentiation stages. Furthermore, we confirmed that embryoid body (EB)-size increased by puerarin might affect the direction of differentiation. Puerarin also facilitated phosphorylation of the serine-threonine kinase (Akt).
     Conclusions:Taken together, our data suggest that PI3K/Akt pathway might mediate effects of puerarin on proliferation and differentiation of mES cells.
     Aims:Ventricular cells are obviously the best candidate for reconstructing injured ventricles. However, Cardiomyocytes derived from embryonic stem cells(ES cells) are the mixture of pacemaker-, ventricular-, atrial-like cells, which can be distinguished based on their electrophysiological properties. Therefore, it is important to screen and identify chemical compounds that induce high efficiency cardiac differentiation and specialization of ESCs. Phytoestrogen puerarin has protective effect against myocardial reperfusion injury, has been used clinically for treatment of myocardial infarction. In the present work we aimed to investigate the effects of puerarin on cardiac differentiation of ESCs and its ventricular specialization.
     Methods:Murine ES cells were differentiated using standard embryoid body-based differentiation protocol with or without 100μmol/L puerarin. Flow cytometry, semi-quantitative RT-PCR and patch clamp were employed to assess differentiating ES cells.
     Results:Puerarin resulted in a significantly increased percentage of ES cells-derived cardiomyocytes (ES-CMs), the up-regulated transcript levels of transforming growth factor-beta (TGF-β)1,2,3, and Wnt11, but not Wnt3a, bone morphogenetic protein (BMP)2 and 4. The expressions of T-box5, myocyte enhancer factor 2c, and a-myosin heavy chain are significantly increased in early differentiation stage. In advanced differentiation stage, puerarin enhanced expressions of ventricular-specific myosin light chain 2 ventricular transcrip. Patch-clamp analysis confirmed that puerarin doubled percentage of ventricular-like cells.
     Conclusions:Our results suggest that puerarin promotes cardiac differentiation and enhances specialization of mES cells into ventricular-like cells through regulating expression of multiple genes involved in cardiac development and ventricle differentiation.
引文
[1]. Asonuma K, Vacanti JP. Cell transplantation as replacement therapy for the future. Crit Care Nurs Clin North Am,1992 Jun,4(2):249-254
    [2]. Murry CE, Keller G. Differentiation of embryonic stem cells to clinically relevant populations:lessons from embryonic development. Cell,2008 Feb 22,132(4):661-680
    [3]. Passier R, van Laake LW, Mummery CL. Stem-cell-based therapy and lessons from the heart. Nature,2008 May 15,453(7193):322-329
    [4]. Laflamme MA, Chen KY, Naumova AV, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol,2007 Sep,25(9):1015-1024
    [5]. Yang D, Zhang ZJ, Oldenburg M, et al. Human embryonic stem cell-derived dopaminergic neurons reverse functional deficit in parkinsonian rats. Stem Cells, 2008 Jan,26(1):55-63
    [6]. Cho CH, Parashurama N, Park EY, et al. Homogeneous differentiation of hepatocyte-like cells from embryonic stem cells:applications for the treatment of liver failure. FASEB J,2008 Mar,22(3):898-909
    [7]. Metallo CM, Vodyanik MA, de Pablo JJ, et al. The response of human embryonic stem cell-derived endothelial cells to shear stress. Biotechnol Bioeng,2008 Jul 1,100(4):830-837
    [8]. Qiao H, Zhang H, Yamanaka S, et al. Long-term improvement in postinfarct left ventricular global and regional contractile function is mediated by embryonic stem cell-derived cardiomyocytes. Circ Cardiovasc Imaging,2011 Jan,4(1):33-41
    [9]. Lu M, Zhao S, Liu Q, et al. Transplantation With Autologous Mesenchymal Stem Cells After Acute Myocardial Infarction Evaluated by Magnetic Resonance Imaging: An Experimental Study. J Thorac Imaging,2011 Feb 17.
    [10]. Ghodsizad A, Ungerer MN, Bordel V, et al. Transplanted human cord blood-derived unrestricted somatic stem cells preserve high-energy reserves at the site of acute myocardial infarction. Cytotherapy,2011 Mar 21.
    [11]. Minatoguchi S. Granulocyte colony stimulating factor, peripheral blood stem cells and bone marrow stem cells for cardiac repair after myocardial infarction. Circ J, 2011 Mar 25,75(4):789-790
    [12]. Lin DP, Chang MY, Chen BY, et al. Male germ line stem cells:from cell biology to cell therapy. Reprod Fertil Dev,2003,15(6):323-331
    [13]. Guo HD, Cui GH, Wang HJ, et al. Transplantation of marrow-derived cardiac stem cells carried in designer self-assembling peptide nanofibers improves cardiac function after myocardial infarction. Biochem Biophys Res Commun,2010 Aug 13,399(1):42-48
    [14]. Angert D, Berretta RM, Kubo H, et al. Repair of the Injured Adult Heart Involves New Myocytes Potentially Derived From Resident Cardiac Stem Cells. Circ Res, 2011 Mar 31.
    [15]. Li J, Han Y, Yan C, et al. A novel method to inhibit apoptosis and promote differentiation of induced pluripotent stem cells in transplantation therapy for myocardial infarction. Med Hypotheses,2011 Feb,76(2):264-265
    [16]. Eschenhagen T, Zimmermann WH. Engineering myocardial tissue. Circ Res,2005 Dec9,97(12):1220-1231.
    [17]. Laflamme MA, Murry CE. Regenerating the heart. Nat Biotechnol,2005 Jul,23(7):845-856
    [18]. Menasche P. The potential of embryonic stem cells to treat heart disease. Curr Opin Mol Ther,2005 Aug,7(4):293-299
    [19]. Rubart M, Field LJ. Cardiac repair by embryonic stem-derived cells. Handb Exp Pharmacol,2006,(174):73-100
    [20]. Wiese C, Nikolova T, Zahanich I, et al. Differentiation induction of mouse embryonic stem cells into sinus node-like cells by suramin. Int J Cardiol,2011 Feb 17,147(1):95-111
    [21]. Wobus AM, Kaomei G, Shan J, et al. Retinoic acid accelerates embryonic stem cell-derived cardiac differentiation and enhances development of ventricular cardiomyocytes. J Mol Cell Cardiol,1997 Jun,29(6):1525-1539
    [22]. Pillekamp F, Reppel M, Rubenchyk O, et al. Force measurements of human embryonic stem cell-derived cardiomyocytes in an in vitro transplantation model. Stem Cells,2007 Jan,25(1):174-180
    [23]. Henning RJ. Stem cells in cardiac repair. Future Cardiol,2011 Jan,7(1):99-117
    [24]. Brenner C, Franz WM. The use of stem cells for the repair of cardiac tissue in ischemic heart disease. Expert Rev Med Devices,2011 Mar,8(2):209-225
    [25]. Pfannkuche K, Liang H, Hannes T, et al. Cardiac myocytes derived from murine reprogrammed fibroblasts:intact hormonal regulation, cardiac ion channel expression and development of contractility. Cell Physiol Biochem,2009,24 (1-2):73-86
    [26]. Mauritz C, Schwanke K, Reppel M, et al. Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation,2008 Jul 29,118(5): 507-517
    [27]. Yoshida Y, Yamanaka S. iPS cells:a source of cardiac regeneration. J Mol Cell Cardiol,2011 Feb,50(2):327-332
    [28]. Pillekamp F, Halbach M, Reppel M, et al. Physiological differences between transplanted and host tissue cause functional decoupling after in vitro transplantation of human embryonic stem cell-derived cardiomyocytes. Cell Physiol Biochem,2009,23(1-3):65-74
    [29]. Muller M, Fleischmann BK, Selbert S, et al. Selection of ventricular-like cardiomyocytes from ES cells in vitro. FASEB J,2000 Dec,14(15):2540-2548
    [30]. Ng SY, Wong CK, Tsang SY. Differential gene expressions in atrial and ventricular myocytes:insights into the road of applying embryonic stem cell-derived cardiomyocytes for future therapies. Am J Physiol Cell Physiol,2010 Dec,299(6):C1234-1249
    [31]. Watabe T, Miyazono K. Roles of TGF-beta family signaling in stem cell renewal and differentiation. Cell Res,2009 Jan,19(1):103-115
    [32]. Pandur P, Lasche M, Eisenberg LM, et al. Wnt-11 activation of a non-canonical Wnt signalling pathway is required for cardiogenesis. Nature,2002 Aug 8,418(6898): 636-641
    [33]. Nakamura T, Sano M, Songyang Z, et al. A Wnt-and beta-catenin-dependent pathway for mammalian cardiac myogenesis. Proc Natl Acad Sci U S A,2003 May 13,100(10):5834-5839
    [34]. Schroeder T, Meier-Stiegen F, Schwanbeck R, et al. Activated Notchl alters differentiation of embryonic stem cells into mesodermal cell lineages at multiple stages of development. Mech Dev,2006 Jul,123(7):570-579
    [35]. Lough J, Barron M, Brogley M, et al. Combined BMP-2 and FGF-4, but neither factor alone, induces cardiogenesis in non-precardiac embryonic mesoderm. Dev Biol,1996 Aug 25,178(1):198-202
    [36]. Schultheiss TM, Burch JB, Lassar AB. A role for bone morphogenetic proteins in the induction of cardiac myogenesis. Genes Dev,1997 Feb 15,11 (4):451-462
    [37]. Zandstra PW, Bauwens C, Yin T, et al. Scalable production of embryonic stem cell-derived cardiomyocytes. Tissue Eng,2003 Aug,9(4):767-778
    [38]. Takahashi T, Lord B, Schulze PC, et al. Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation,2003 Apr 15,107(14):1912-1916
    [39]. Wang Y, Chen G, Song T, et al. Enhancement of cardiomyocyte differentiation from human embryonic stem cells. Sci China Life Sci,2010 May,53(5):581-589
    [40]. Berkessel A, Seelig B, Schwengberg S, et al. Chemically induced cardiomyogenesis of mouse embryonic stem cells. Chembiochem,2010 Jan 25,11(2):208-217
    [41]. Wo YB, Zhu DY, Hu Y, et al. Reactive oxygen species involved in prenylflavonoids, icariin and icaritin, initiating cardiac differentiation of mouse embryonic stem cells. J Cell Biochem,2008 Apr 1,103(5):1536-1550
    [42]. Wo Y, Zhu D, Yu Y, et al. Involvement of NF-kappaB and AP-1 activation in icariin promoted cardiac differentiation of mouse embryonic stem cells. Eur J Pharmacol, 2008 May 31,586(1-3):59-66
    [43]. Ding L, Liang XG, Hu Y, et al. Involvement of p38MAPK and reactive oxygen species in icariin-induced cardiomyocyte differentiation of murine embryonic stem cells in vitro. Stem Cells Dev,2008 Aug,17(4):751-760
    [44]. Sun X, Jin X, Zhang X, et al. Icariin induces mouse embryonic stem cell differentiation into beating functional cardiomyocytes. Mol Cell Biochem,2011 Mar,349(1-2):117-123
    [45]. Wang NY, Lu CJ, Chen XH. [Study on effect of ginsenoside Rgl in promoting myocardiac vascular endothelial cell regeneration through induction on bone marrow stem cell's migration and differentiation in rabbits of myocardial infarction]. Zhongguo Zhong Xi Yi Jie He Za Zhi,2005 Oct,25(10):916-919
    [46]. Liu YR, Qu SX, Maitz MF, et al. The effect of the major components of Salvia Miltiorrhiza Bunge on bone marrow cells. J Ethnopharmacol,2007 May 22,111(3):573-583
    [47]. Fan X, Li X, Lv S, et al. Comparative proteomics research on rat MSCs differentiation induced by Shuanglong Formula. J Ethnopharmacol,2010 Oct 5,131(3):575-580
    [48]. Gao Q, Yang B, Ye ZG, et al. Opening the calcium-activated potassium channel participates in the cardioprotective effect of puerarin. Eur J Pharmacol,2007 Nov 28,574(2-3):179-184
    [49].陈悦,徐晓,鲁颖.葛根素对大鼠心室肌细胞动作电位及钾通道电流的影响. 中国应用生理学杂志,2010,(02):246-248
    [50]. Cai RL, Li M, Xie SH, et al. Antihypertensive effect of total flavone extracts from Puerariae Radix. J Ethnopharmacol,2010 Oct 7.
    [51]. Han P, Li J, Li WJ, et al. [Potential antiviral drug Pueraria crude extract and puerarin protect against ethanol-induced cytotoxicity in embryonic mouse hippocampal cultures]. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi, 2005 Sep,19(3):244-247
    [52]. Malaivijitnond S, Tungmunnithum D, Gittarasanee S, et al. Puerarin exhibits weak estrogenic activity in female rats. Fitoterapia,2010 Sep,81(6):569-576
    [53]. Marotta F, Mao GS, Liu T, et al. Anti-inflammatory and neuroprotective effect of a phytoestrogen compound on rat microglia. Ann N Y Acad Sci,2006 Nov,1089:276-281
    [54]. Wu GL, Chen J, Yu GY, et al. [Effect of puerarin on levels of TGF-betal and alpha-SMA in rats with alcoholic injury liver]. Zhongguo Zhong Yao Za Zhi,2008 Oct,33(19):2245-2249
    [55]. Jia TL, Wang HZ, Xie LP, et al. Daidzein enhances osteoblast growth that may be mediated by increased bone morphogenetic protein (BMP) production. Biochem Pharmacol,2003 Mar 1,65(5):709-715
    [56]. Kim MH, Park JS, Seo MS, et al. Genistein and daidzein repress adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells via Wnt/beta-catenin signalling or lipolysis. Cell Prolif,2010 Dec,43(6):594-605
    [57]. Guan K, Rohwedel J, Wobus AM. Embryonic stem cell differentiation models: cardiogenesis, myogenesis, neurogenesis, epitheli,30(1-3):211-226
    [58]. Walker E, Ohishi M, Davey RE, et al. Prediction and testing of novel transcriptional networks regulating embryonic stem cell self-renewal and commitment. Cell Stem Cell,2007 Jun7,1(1):71-86
    [59]. Keller G, Kennedy M, Papayannopoulou T, et al. Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol Cell Biol,1993 Jan,13(1):473-486
    [60]. Atz ME, Rollins B, Vawter MP. NCAM1 association study of bipolar disorder and schizophrenia:polymorphisms and alternatively spliced isoforms lead to similarities and differences. Psychiatr Genet,2007 Apr,17(2):55-67
    [61]. Yasuda SY, Tsuneyoshi N, Sumi T, et al. NANOG maintains self-renewal of primate ES cells in the absence of a feeder layer. Genes Cells,2006 Sep,11 (9):1115-1123
    [62]. Winkler J, Hescheler J, Sachinidis A. Embryonic stem cells for basic research and potential clinical applications in cardiology. Biochim Biophys Acta,2005 May 30,1740(2):240-248
    [63]. Zhu J, Wang X, Shang Y, et al. Puerarin reduces endothelial progenitor cells senescence through augmentation of telomerase activity. Vascul Pharmacol,2008 Aug-Sep,49(2-3):106-110
    [64]. Valamehr B, Jonas SJ, Polleux J, et al. Hydrophobic surfaces for enhanced differentiation of embryonic stem cell-derived embryoid bodies. Proc Natl Acad Sci U S A,2008 Sep 23,105(38):14459-14464
    [65]. Bratt-Leal AM, Carpenedo RL, McDevitt TC. Engineering the embryoid body microenvironment to direct embryonic stem cell differentiation. Biotechnol Prog, 2009Jan-Feb,25(1):43-51
    [66]. Choi YY, Chung BG, Lee DH, et al. Controlled-size embryoid body formation in concave microwell arrays. Biomaterials,2010 May,31(15):4296-4303
    [67]. Hwang YS, Chung BG, Ortmann D, et al. Microwell-mediated control of embryoid body size regulates embryonic stem cell fate via differential expression of WNT5a and WNT11. Proc Natl Acad Sci U S A,2009 Oct 6,106(40):16978-16983
    [68]. Tateishi K, Ashihara E, Honsho S, et al. Human cardiac stem cells exhibit mesenchymal features and are maintained through Akt/GSK-3beta signaling. Biochem Biophys Res Commun,2007 Jan 19,352(3):635-641
    [69]. Roggia C, Ukena C, Bohm M, et al. Hepatocyte growth factor (HGF) enhances cardiac commitment of differentiating embryonic stem cells by activating PI3 kinase. Exp Cell Res,2007 Mar 10,313(5):921-930
    [70]. Wang Z, Xu G, Wu Y, et al. Neuregulin-1 enhances differentiation of cardiomyocytes from embryonic stem cells. Med Biol Eng Comput,2009 Jan,47 (1):41-48
    [71]. Hwang YP, Jeong HG Mechanism of phytoestrogen puerarin-mediated cytoprotection following oxidative injury:estrogen receptor-dependent up-regulation of PI3K/Akt and HO-1. Toxicol Appl Pharmacol,2008 Dec 15,233 (3):371-381
    [72]. Zhang Y, Zeng X, Zhang L, et al. Stimulatory effect of puerarin on bone formation through activation of PI3K/Akt pathway in rat calvaria osteoblasts. Planta Med, 2007Apr,73(4):341-347
    [73]. Campbell RA, Bhat-Nakshatri P, Patel NM, et al. Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor alpha:a new model for anti-estrogen resistance. J Biol Chem,2001 Mar 30,276(13):9817-9824
    [74]. Gao N, Shen L, Zhang Z, et al. Arsenite induces HIF-1 alpha and VEGF through PI3K, Akt and reactive oxygen species in DU145 human prostate carcinoma cells. Mol Cell Biochem,2004 Jan,255(1-2):33-45
    [75]. Coffer PJ, Jin J, Woodgett JR. Protein kinase B (c-Akt):a multifunctional mediator of phosphatidylinositol 3-kinase activation. Biochem J,1998 Oct 1,335 (Pt 1):1-13
    [76]. Wiese C, Nikolova T, Zahanich I, et al. Differentiation induction of mouse embryonic stem cells into sinus node-like cells by suramin. Int J Cardiol,2009 Sep 21.
    [77].赵翠萍金郭张于.移植的心肌细胞在心梗后疤痕组织中存活的研究.哈尔滨医科大学学报,2002,(03):194-206.
    [78]. Horb ME, Thomsen GH. Tbx5 is essential for heart development. Development, 1999 Apr,126(8):1739-1751
    [79]. Olson EN. Gene regulatory networks in the evolution and development of the heart. Science,2006 Sep 29,313(5795):1922-1927
    [80]. Vong L, Bi W, O'Connor-Halligan KE, et al. MEF2C is required for the normal allocation of cells between the ventricular and sinoatrial precursors of the primary heart field. Dev Dyn,2006 Jul,235(7):1809-1821
    [81]. Takeuchi JK, Ohgi M, Koshiba-Takeuchi K, et al. Tbx5 specifies the left/right ventricles and ventricular septum position during cardiogenesis. Development,2003 Dec,130(24):5953-5964
    [82]. Ghosh TK, Song FF, Packham EA, et al. Physical interaction between'TBX5 and MEF2C is required for early heart development. Mol Cell Biol,2009 Apr,29(8):2205-2218
    [83]. Jung EM, Choi KC, Yu FH, et al. Effects of 17beta-estradiol and xenoestrogens on mouse embryonic stem cells. Toxicol In Vitro,2010 Sep,24(6):1538-1545
    [84]. Franz WM, Breves D, Klingel K, et al. Heart-specific targeting of firefly luciferase by the myosin light chain-2 promoter and developmental regulation in transgenic mice. Circ Res,1993 Oct,73(4):629-638
    [85]. O'Brien TX, Lee KJ, Chien KR. Positional specification of ventricular myosin light chain 2 expression in the primitive murine heart tube. Proc Natl Acad Sci U S A, 1993 Jun1,90(11):5157-5161
    [86]. Stieber J, Herrmann S, Feil S, et al. The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart. Proc Natl Acad Sci U S A,2003 Dec 9,100(25):15235-15240
    [87]. Zhang GQ, Hao XM, Zhou PA, et al. Puerarin blocks transient outward K+ current and delayed rectifier K+ current in mice hippocampal CA1 neurons. Acta Pharmacol Sin,2001 Mar,22(3):253-256
    [88]. Guo XG, Chen JZ, Zhang X, et al. Effect of puerarin on L-type calcium channel in isolated rat ventricular myocytes. Zhongguo Zhong Yao Za Zhi,2004 Mar,29 (3):248-251
    [89]. MacLellan WR, Schneider MD. Genetic dissection of cardiac growth control pathways. Annu Rev Physiol,2000,62:289-319
    [90]. Behfar A, Zingman LV, Hodgson DM, et al. Stem cell differentiation requires a paracrine pathway in the heart. FASEB J,2002 Oct,16(12):1558-1566
    [91]. Ueno S, Weidinger G, Osugi T, et al. Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proc Natl Acad Sci U S A,2007 Jun 5,104(23):9685-9690
    [92]. Singla DK, Sun B. Transforming growth factor-beta2 enhances differentiation of cardiac myocytes from embryonic stem cells. Biochem Biophys Res Commun,2005 Jun24,332(1):135-141
    [93]. Goumans MJ, de Boer TP, Smits AM, et al. TGF-betal induces efficient differentiation of human cardiomyocyte progenitor cells into functional cardiomyocytes in vitro. Stem Cell Res,2007 Nov,1(2):138-149
    [94]. Abdel-Latif A, Zuba-Surma EK, Case J, et al. TGF-betal enhances cardiomyogenic differentiation of skeletal muscle-derived adult primitive cells. Basic Res Cardiol, 2008 Nov,103(6):514-524
    [95]. Terami H, Hidaka K, Katsumata T, et al. Wntll facilitates embryonic stem cell differentiation to Nkx2.5-positive cardiomyocytes. Biochem Biophys Res Commun, 2004 Dec 17,325(3):968-975
    [1]. Eschenhagen T, Zimmermann WH. Engineering myocardial tissue. Circ Res,2005 Dec 9,7(12):1220-1231
    [2]. Laflamme MA, Murry CE. Regenerating the heart. Nat Biotechnol,2005 Jul,23(7):845-856
    [3]. Menasche P. The potential of embryonic stem cells to treat heart disease. Curr Opin Mol Ther,2005 Aug,7(4):293-299
    [4]. Rubart M, Field LJ. Cardiac repair by embryonic stem-derived cells. Handb Exp Pharmacol,2006,(174):73-100.
    [5]. Aagaard P, Simonsen EB, Beyer N, et al. Isokinetic muscle strength and capacity for muscular knee joint stabilization in elite sailors. Int J Sports Med,1997 Oct,18(7):521-525.
    [6]. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science,1998 Nov 6,282(5391):1145-1147
    [7]. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell,2007 Nov 30,131(5):861-872
    [8]. Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science,2007 Dec 21,318(5858):1917-1920
    [9]. Wiese C, Nikolova T, Zahanich I, et al. Differentiation induction of mouse embryonic stem cells into sinus node-like cells by suramin. Int J Cardiol,2011 Feb 17,147(1):95-111
    [10]. Wobus AM, Kaomei G, Shan J, et al. Retinoic acid accelerates embryonic stem cell-derived cardiac differentiation and enhances development of ventricular cardiomyocytes. J Mol Cell Cardiol,1997 Jun,29(6):1525-1539
    [11]. Watabe T, Miyazono K. Roles of TGF-beta family signaling in stem cell renewal and differentiation. Cell Res,2009 Jan,19(1):103-115
    [12]. Pandur P, Lasche M, Eisenberg LM, et al. Wnt-11 activation of a non-canonical Wnt signalling pathway is required for cardiogenesis. Nature,2002 Aug 8,418(6898):636-641
    [13]. Nakamura T, Sano M, Songyang Z, et al. A Wnt- and beta-catenin-dependent pathway for mammalian cardiac myogenesis. Proc Natl Acad Sci U S A,2003 May 13,100(10):5834-5839
    [14]. Schroeder T, Meier-Stiegen F, Schwanbeck R, et al. Activated Notchl alters differentiation of embryonic stem cells into mesodermal cell lineages at multiple stages of development. Mech Dev,2006 Jul,123(7):570-579
    [15]. Behfar A, Zingman LV, Hodgson DM, et al. Stem cell differentiation requires a paracrine pathway in the heart. FASEB J,2002 Oct,16(12):1558-1566
    [16]. Pal R, Khanna A. Role of hepatocyte-like cells in the differentiation of cardiomyocytes from mouse embryonic stem cells. Stem Cells Dev,2005 Apr,14(2):153-161
    [17]. Danalache BA, Paquin J, Donghao W, et al. Nitric oxide signaling in oxytocin-mediated cardiomyogenesis. Stem Cells,2007 Mar,25(3):679-688
    [18]. Pallante BA, Duignan I, Okin D, et al. Bone marrow Oct3/4+ cells differentiate into cardiac myocytes via age-dependent paracrine mechanisms. Circ Res,2007 Jan 5,100(1):e1-11
    [19]. Wang Z, Xu G, Wu Y, et al. Neuregulin-1 enhances differentiation of cardiomyocytes from embryonic stem cells. Med Biol Eng Comput,2009 Jan,47(1):41-48
    [20]. Roura S, Farre J, Hove-Madsen L, et al. Exposure to cardiomyogenic stimuli fails to transdifferentiate human umbilical cord blood-derived mesenchymal stem cells. Basic Res Cardiol,2010 May,105(3):419-430
    [21]. Behfar A, Yamada S, Crespo-Diaz R, et al. Guided cardiopoiesis enhances therapeutic benefit of bone marrow human mesenchymal stem cells in chronic myocardial infarction. J Am Coll Cardiol,2010 Aug 24,56(9):721-734
    [22]. Zandstra PW, Bauwens C, Yin T, et al. Scalable production of embryonic stem cell-derived cardiomyocytes. Tissue Eng,2003 Aug,9(4):767-778
    [23]. Wu X, Ding S, Ding Q, et al. Small molecules that induce cardiomyogenesis in embryonic stem cells. J Am Chem Soc,2004 Feb 18,126(6):1590-1591
    [24]. Takahashi T, Lord B, Schulze PC, et al. Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation,2003 Apr 15,107(14):1912-1916
    [25]. Chen M, Lin YQ, Xie SL, et al. Mitogen-activated protein kinase in endothelin-1-induced cardiac differentiation of mouse embryonic stem cells. J Cell Biochem,2010 Dec15,111(6):1619-1628
    [26]. Wang Y, Chen G, Song T, et al. Enhancement of cardiomyocyte differentiation from human embryonic stem cells. Sci China Life Sci,2010 May,53(5):581-589
    [27]. Kanno S, Kim PK, Sallam K, et al. Nitric oxide facilitates cardiomyogenesis in mouse embryonic stem cells. Proc Natl Acad Sci U S A,2004 Aug 17,101(33):12277-12281
    [28]. Jung EM, Choi KC, Yu FH, et al. Effects of 17beta-estradiol and xenoestrogens on mouse embryonic stem cells. Toxicol In Vitro,2010 Sep,24(6):1538-1545
    [29]. Chen K, Wu L, Wang ZZ. Extrinsic regulation of cardiomyocyte differentiation of embryonic stem cells. J Cell Biochem,2008 May 1,104(1):119-128
    [30]. Rajasingh J, Bord E, Hamada H, et al. STAT3-dependent mouse embryonic stem cell differentiation into cardiomyocytes:analysis of molecular signaling and therapeutic efficacy of cardiomyocyte precommitted mES transplantation in a mouse model of myocardial infarction. Circ Res,2007 Oct 26,101(9):910-918
    [31].刘雪花.淫羊藿苷药理研究进展.中国现代医生,2009,(21):49-50
    [32]. Zhu DY, Lou YJ. Inducible effects of icariin, icaritin, and desmethylicaritin on directional differentiation of embryonic stem cells into cardiomyocytes in vitro. Acta Pharmacol Sin,2005 Apr,26(4):477-485
    [33]. Zhu D, Qu L, Zhang X, et al. Icariin-mediated modulation of cell cycle and p53 during cardiomyocyte differentiation in embryonic stem cells. Eur J Pharmacol,2005 May 9,514(2-3):99-110
    [34]. Zhu DY, Lou YJ. Icariin-mediated expression of cardiac genes and modulation of nitric oxide signaling pathway during differentiation of mouse embryonic stem cells into cardiomyocytes in vitro. Acta Pharmacol Sin,2006 Mar,27(3):311-320
    [35]. Ding L, Liang XG, Hu Y, et al. Involvement of p38MAPK and reactive oxygen species in icariin-induced cardiomyocyte differentiation of murine embryonic stem cells in vitro. Stem Cells Dev,2008 Aug,17(4):751-760
    [36]. Sun X, Jin X, Zhang X, et al. Icariin induces mouse embryonic stem cell differentiation into beating functional cardiomyocytes. Mol Cell Biochem,2011 Mar,349(1-2):117-123
    [37]. Ding L, Liang XG, Zhu DY, et al. Icariin promotes expression of PGC-lalpha, PPARalpha, and NRF-1 during cardiomyocyte differentiation of murine embryonic stem cells in vitro. Acta Pharmacol Sin,2007 Oct,28(10):1541-1549
    [38]. Wo YB, Zhu DY, Hu Y, et al. Reactive oxygen species involved in prenylflavonoids, icariin and icaritin, initiating cardiac differentiation of mouse embryonic stem cells. J Cell Biochem,2008 Apr 1,103(5):1536-1550
    [39]. Wo Y, Zhu D, Yu Y, et al. Involvement of NF-kappaB and AP-1 activation in icariin promoted cardiac differentiation of mouse embryonic stem cells. Eur J Pharmacol,2008 May31,586(1-3):59-66
    [40].沈红平,王健.黄芪的研究现状.医学信息,2010,(05):1490-1490
    [41].冼绍祥,杨忠奇,汪朝晖,et al.黄芪甲苷体外诱导骨髓间充质干细胞分化为心肌样细胞的实验研究.广州中医药大学学报,2007,(01):37-40
    [42].杨庆有,冼绍祥,孙慧茹,et al.黄芪含药血清诱导骨髓间充质干细胞分化为心肌样细胞的实验研究.辽宁中医杂志,2008,(06):832-834
    [43].唐新征,张炜宁,邓鸣.黄芪注射液与5-氮杂胞苷体外诱导大鼠骨髓间充质干细胞分化为心肌细胞的研究.湖南中医药大学学报,2009,(06):43-45
    [44].李国樟,曹庸,卜晓英.丹参活性成分的药效药理作用.农技服务,2010,(07):889-893
    [45].王芳洁,易岂建,郭鹏飞.小鼠胚胎干细胞分化为心肌细胞的体外实验.第四军医大学学报,2009,(09):808-811
    [46].武重阳,孙兰军,赵英强,et al.复方丹参滴丸含药血清诱导大鼠骨髓间充质干细胞分化为心肌样细胞.中国老年学杂志,2010,(16):2328-2330
    [47].田影,何克江,朱靖博.丹酚酸b的体外抗氧化活性.大连工业大学学报,2008,(04):304-308
    [48].汪芸.丹酚酸b对心脑血管疾病药理作用的研究进展.现代中西医结合杂志,2010,(35):4634-4636
    [49].陈嘉,孙京臣,邹移海,et al.丹酚酸b诱导骨髓间充质干细胞向心肌样细胞分化.第四军医大学学报,2007,(23):2152-2155
    [50].孙连胜,徐秀梅,郭茂娟,et al.丹酚酸B体外干预骨髓间充质干细胞分化过程中cTnT的表达.天津中医药,2007,(04):49-51
    [51].华声瑜,赵桂峰,郭茂娟,et al.丹酚酸B在大鼠骨髓间充质干细胞分化过程对心肌早期基因Nkx2.5 GATA-4 mRNA表达的影响.辽宁中医杂志,2008,(08):409-412
    [52].徐秀梅,郭茂娟,赵旭,et al.丹酚酸b体外诱导骨髓间充质干细胞向心肌样细胞分化的实验研究.时珍国医国药,2008,(03):574-576
    [53].华声瑜,范英昌,马轶文,et al.丹酚酸B对大鼠骨髓间充质干细胞分化过程中Desmin、α-actinmRNA表达的影响.天津中医药,2009,(02):145-148
    [54].袁杰.竹节人参皂甙对心肌缺血再灌注损伤保护作用的研究.中国民族医药杂志,2008,(03):48-50
    [55].王宁元,吕传江,陈学海,et al.人参皂甙Rg1诱导骨髓干细胞游走分化促进家兔心肌梗死后心肌血管内皮细胞再生的研究.中国中西医结合杂志,2005,(10):916-919
    [56].庞荣清潘吴覃.三七总皂甙对兔血管平滑肌细胞核因子KappaB和细胞周期的影响.中国微循环,2004,(03):154-156
    [57].汪朝晖,冼绍祥,杨忠奇,et al.人参总皂甙诱导骨髓间充质干细胞分化为心肌样细胞的实验研究.广州中医药大学学报,2006,(02):100-103
    [58].李志泉,冼绍祥,汪朝晖,et al.三七总皂苷对骨髓间充质干细胞增殖和向心肌样细胞分化的影响.广州中医药大学学报,2007,(06):470-475
    [59].杨忠奇,冼绍祥,汪朝晖,et al.三七总皂苷对骨髓间充质干细胞分化为心肌样细胞的作用.中药新药与临床药理,2006,(04):239-242
    [60].刘卫欣,卢兖伟,杜海涛,et al.地黄及其活性成分药理作用研究进展.国际药学研究杂志,2009,(04):277-280
    [61].王新华,王士雯,李泱,et al.地黄低聚糖诱导骨髓间充质干细胞向心肌样细胞分化的实验研究.解放军医学杂志,2009,(04):412-414
    [62].李连达 张刘吴宁李.双龙方对大鼠心肌梗塞的治疗作用.中药新药与临床药理,2004,(03):149-151
    [63].王金津,钱夕元,李雪,et al.双龙方有效成分诱导干细胞分化过程中差异表达基因的筛选和聚类分析.世界科学技术-中医药现代化,2007,(03):39-42
    [64].范雪梅,李雪,梁琼麟,et al.双龙方组分诱导大鼠BMSCs分化的差异基因筛选及聚类分析.高等学校化学学报,2009,(09):1729-1932
    [65]. Fan X, Li X, Lv S, et al. Comparative proteomics research on rat MSCs differentiation induced by Shuanglong Formula. J Ethnopharmaco,l 2010 Oct 5,131(3):575-580
    [66]. Menasche P. Stem cell therapy for heart failure:are arrhythmias a real safety concern? Circulation,2009 May 26,119(20):2735-2740
    [67]. Segers VF, Lee RT. Stem-cell therapy for cardiac disease. Nature,2008 Feb 21,451(7181):937-942

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700