用户名: 密码: 验证码:
超硬材料树脂磨具高温结合剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以磨料磨具为工具的磨削加工,是机械加工方法中非常重要的一类方法,而且是精密加工和超精加工最基本的和首选的加工方法,在工业上得到广泛的应用。磨料磨具制品的性能优劣与现代工业发展有着密不可分的关系。超硬材料树脂磨具低温固化,生产周期短,所需设备和制造工艺流程简单;这种磨具磨削效率高,自锐性好,不易堵塞,因此被加工对象表面不易烧伤;磨具有一定的弹性,抛光性能好。它主要适合于硬质合金及各种耐磨难加工材料的精磨、半精磨及抛光工序。
     但是树脂磨具中大量使用的酚醛树脂结合剂耐热性相对较差,磨削过程中放出大量的热会导致树脂分解或软化,使磨料在磨钝前过早的大量脱落,也影响了磨具的磨削效率和工件加工质量。为改善酚醛树脂耐热性不足的缺点,在调阅大量文献资料的基础上,本文提出了关于酚醛树脂及双马来酰亚胺树脂的改性研究思路,合成了两种适用于超硬材料树脂磨具的高温树脂结合剂。
     首先合成了4,4′-二苯甲烷型双马来酰亚胺(BMI)/4,4′-二氨基二苯甲烷(DDM)齐聚物,然后在110~120℃左右与环氧树脂反应合成了BMI/DDM/EPOXY改性树脂。文中选用了E—44、E—51及F—51三种不同的环氧树脂合成此改性树脂。对合成的树脂进行了傅立叶红外光谱分析、拉伸强度、冲击强度及软化点测定、差示热分析法(DTA)、热重分析(TG)等性能表征方法。比较BMI/DDM齐聚物与固化后BMI/DDM/EPOXY改性树脂的傅立叶红外光谱可以表明BMI/DDM齐聚物的生成,同时证明了环氧基与BMI/DDM齐聚物间确实发生了反应。比较三种不同的环氧树脂改性得到的固化树脂性能表明,由F—51改性的BMI/DDM/EPOXY树脂25℃时无缺口冲击强度为8.02kJ·m~(-2),比E—44,E—51得到的8.76 kJ·m~(-2),8.42kJ·m~(-2)略低,但其DTA—TG分析显示,由F—51改性的BMI/DDM/EPOXY树脂热分解温度为366℃,高于E—44,E—51得到的316℃和320℃,其失重50%时的DTA温度为450℃左右,具有优良的耐热性;并且DTA图谱表明第一放热峰起止温度在148~222℃,此固化温度适宜于超硬材料树脂磨具的热压成型工艺;BMI/DDM/EPOXY改性树脂中DDM配比的增加以及F—51配比的增加均会使得树脂的拉伸强度下降而冲击强度上升,并且这种配比的变化对拉伸强度的影响远远大于对冲击强度的影响。测定了六种不同BMI、DDM、EPOXY配比得到的改性树脂软化点在59~65℃,较适宜于树脂磨具混料、压制成型工艺。应用该树脂制造的金刚石树脂磨具拉伸强度都大于20MPa,相比于普通树脂结合剂制造的金刚石树脂磨具具有优良的磨削
    
    性能,显示了树脂结合剂良好的粘结与把持能力。
     本文同时由热塑性酚醛树脂与烯丙基氯低温溶液法合成了烯丙基醚化酚
    醛树脂(AEF),而后由AEF和4,4‘一二苯甲烷双马来酞亚胺反应制备了双马
    来酞亚胺改性酚醛树脂(AEF/BMI共聚树脂),对合成的树脂进行了傅立叶红
    外光谱分析、轻值测定、拉伸强度、冲击强度及软化点测定、差示热分析法
     (DTA)、热重分析(TG)等性能表征方法。本文采用乙酞化法测定树脂轻值的
    方法,对比未进行醚化反应的纯酚醛树脂的经基含量和进行烯丙基醚化的酚醛
    树脂的经基含量来计算烯丙基醚化酚醛树脂的醚化率。实验发现随着烯丙基氯
    对酚醛树脂的配比的增加,得到的AEF树脂醚化率逐渐增大而AI:F树脂的产率
    逐渐减小;得到的AEF树脂不仅在醇类溶剂中可溶解,也可溶解于甲苯、二甲
    苯等非极性溶剂。合成的AEF树脂经甲苯溶解提纯,用澳化钾涂片经傅立叶红
    外光谱分析,可以证明生成物中存在有烯丙基团。在AEF/BMI共聚树脂的DTA
    曲线上165~228℃处有一个较大的放热峰,峰顶温度194℃,TG曲线上此共聚
    树脂起始热分解温度在419℃,比纯酚醛树脂高70℃左右。用环球法测得的AEF
    /BMI配比为1 .08:l、1 .5:1及2:l的共聚树脂的软化点分别为1 05℃、1 000C
    与98℃,具有与酚醛树脂基本相当的软化温度。AEF与BMI摩尔比为1 .08:1
    得到的共聚树脂无缺口试样25℃时冲击强度为8.skJ·m一,,用此共聚树脂在不同
    配方下得到的“8”字块拉伸强度达23.6MPa,并且随此摩尔比的增大,拉伸强
    度减小,冲击强度增大。采用该树脂制备超硬材料树脂磨具具有与酚醛树脂相
    似的工艺参数,适合超硬材料树脂磨具混料及热压成型工艺。
Grinding process is a very important technique for machining and it is essential for precision finishing and super finishing. So it is widely used in many industries. The characteristics of abrasive tools are closed to the improvement of modern industry. Resin bond super abrasive tools have the merit of low-temperature curing, short-time of producing period, uncomplicated equipment and product procedure. The characteristics of abrasive tools are of high grinding efficiency, self-sharpening, not easy to block up work surface. So the work surface can be processed very well. This kind of abrasive tools have certain elasticity and polish property , mainly used to the precision finishing and polish process for the hard alloy and various materials difficult to process.
    But the thermal property of phenolics resin commonly used in resin bond abrasive tools is poor comparatively. A lot of heat given out during grinding process can result in resin decomposition ,then abrasive materials would come off before they had been blunt. The grind efficiency of the tools and the work quality can be affected. To improve phenolics thermal property, two ideas about modified phenolics and bismaleimide resin are introduced based on many documents. Two high temperature resistant polymers are synthesized, suitable for resin bond superabrasive tools.
    First bismaleimide(BMI)/4,4'-diamino diphenyl methane(DDM) oligemor was synthesized, then was carried out in melt at 110120癈 with epoxy . The resultant modified resin BMI/DDM/epoxy was obtained. Three epoxy were used as the BMI/DDM modifier, namely E-44, E-51and F-51.the resultant resin was characterized by FT-IR spectral studies, tensile strength, impact strength and softening point, differential thermal analysis (DTA), thermogravimetry (TG). Comparing FT-IR spectral of the oligemor and the cured BMI/DDM/epoxy modified resin, the reaction between the epoxy and the BMI/DDM oligemor can be confirmed. The charpy impact strength of the BMI/DDM/epoxy resin used F-51 as the modifier was 8.02kJ-m-2, slight lower than E-44 and E-51, which charpy impact strength was 8.76kJ-m-2 and 8.42kJ-m-2 respectively. But heat decomposition temperature of the former was 366? much higher than two latter which heat decomposition temperature were 316? and 320? respectively. TG showed that the temperature of losing half weight on B
    MI/DDM/epoxy resin modified by F-51 was 450 癈. These indicated modified resin have good thermal properties. The curing process was identified recording to exothermic peak temperature 148-222? of the DTA curve. It indicated that cured temperature was suitable for hot-forming process. The resin softening point with different ratios of BMI, DDM and Epoxy was about 59-65 癈. Tensile strength of modified resin decreased with increase in molar ratio of DDM to BMI and mass ratio of F-51 to BMI/DDM oligomer and impact strength was contrary to that. While the influence of ratio variation on
    
    
    
    tensile strength was more greater than its on impact strength. Tensile strength of diamond abrasive tools used modified resin as its bond was all over 20MPa and grinding property was superior to unmodified resin bond diamond abrasive tools.
    Ally] ether phenolic resin(AEF) was synthesized in solution at low temperature from novolak and allyl chloride, then AEF/BMI copolymer was produced in melt. The resultants were characterized by FTIR spectral studies, hydroxyl contents, tensile strength, impact strength and softening point, different thermal analysis, TG . The hydroxyl contents were determined by acetylization method, then ether ratio were obtained by comparing hydroxyl contents of pre-reaction and post-reaction. The ether ratio of AEF was 71.5%, 46.7%and 24.8% with the ratio of phenolics to allyl chloride was 1:1,2:1 and 3:1 respectively while the productivity was 61.4%,79.2% and 82.4% respectively. AEF resin can be dissolved in the non-polar solvent such as toluene and xylene as well as alcohol. FT-IR spectral of the AEF resin can testify allyl group in the resultant. There was a exothermic peak at 165-22
引文
[1] 王光祖,院兴国.超硬材料.第一版.郑州:河南科学技术出版社,1996.1-7.
    [2] 邹文俊.有机磨具制造.第一版.北京:中国标准出版社,2001.226.
    [3] 薄霄.磨工实用技术手册.第一版.南京:江苏科学技术出版社,2002.515—518.
    [4] 黄法荣,焦杨声.酚醛树脂及其应用.第一版.北京:化学工业出版社,2003.8—13.
    [5] 梁国正,顾媛娟.双马来酰亚胺树脂.第一版.北京:化学工业出版社,1997.1—8
    [6] 殷荣忠.酚醛树脂及其应用.第一版.北京:化学工业出版社,1990.
    [7] 李子东.现代胶粘技术手册.第一版.北京:新时代出版社,2002.580.
    [8] Zampini, Anthony. Aromatic novolak resins and blends. USP, 5,216,111,1993.
    [9] Horiki Seinosuke. Structural material, production of structural material and interior material for vehicle. JP, 08,109,309, 1996.
    [10] 任增茂.摩擦材料用酚醛胶粘剂的改性及其性能研究.中国胶粘剂,1996,5(1):19—21.
    [11] 张洋,马榴强.硼酸、腰果油双改性酚醛树脂的合成及其耐热性研究.热固性树脂,1998,(1):9—11.
    [12] 李长彪,李荫泉.新酚Ⅱ型树脂复合材料的性能及其应用.玻璃钢/复合材料,1990,(2):5—10.
    [13] 高良倡.芳烷基醚—苯酚树脂的改性研究.玻璃钢/复合材料,1994,(1):14—16.
    [14] 邹文俊.有机磨具制造.第一版.北京:中国标准出版社,2001.
    [15] 张多太.FB酚醛树脂及所固化环氧树脂基本性能的研究.宇航材料工艺,1994,(2):26—29.
    [16] 闫联生,姚冬梅,杨学军.硼酚醛烧蚀材料的研究.固体火箭技术,2000,(2):69—71.
    
    
    [17] 杜杨,吉法洋,刘祖亮,吕春绪.含硅硼酚醛树脂BSP的合成和性能.高分子材料科学与工程,2003,19(4):44—47.
    [18] 狄西岩,梁国正,秦华宇.烯丙基硼酚醛树脂的合成.高分子材料科学与工程,2000,16(2):44—50.
    [19] 罗红军,桂红星.有机硅树脂及其应用.第一版.北京:化学工业出版社,2002.9—12.
    [20] 周重光,李桂芝,巩爱军.有机硅改性酚醛树脂热稳定性的研究.高分子材料科学与工程,2000,16(1):164—165.
    [21] 车剑飞,肖迎红,陆怡平,宋晔.纳米粒子改性硼酚醛树脂的研究.塑料工业,2001,29(6):15—16.
    [22] Das, Sajal, Prevorsek, Dusan C. Cyanato group containing phenolic resins, phenolic triazines derived therefrom. USP, 4,831,086, 1989.
    [23] Das, Sajal, Prevorsek, Dusan C. Thermosettable modified phenolic imide resins. USP, 4,650,839, 1989.
    [24] Grenier-Loustalot M F, Christine Lartigau, Franck Metras, Philippe Grenier. Mechanism of Thermal Polymerzation of Cyanate Systems:Chromatographic and Spectroscopic Studies. J. Polym. Sci. Part A:Polym. Chem., 1996, 34(14): 2955—2966.
    [25] 肖东政,吴振耀.新型摩阻材料—酚醛树脂改性及应用.塑料工业,1996,24(2):73—76.
    [26] Carduner KR. Carbon-13 NMR Investigation of the Oligomerization of Bismaleimidodiphenylmethane with Diallylbisphenol A. Polym. Mater. Sci. Eng. , 1987, 56: 660—664.
    [27] King J.J, Chaudari M.A, Zahir S. A New Bismaleimide System for High Performance Application. Int. SAMPE.Symp.Exhib..1984. 392—408.
    [28] Phelan J.C, Sung C.S.P. Cure Characterization in Bis(maleimide) / Diallybisphenol A Resin by Fluorescence, FT-IR and UV-Reflection Spectroscopy.
    
    Macromolecules, 1997, 30(22): 6845—6851.
    [29] Kanagawa, Shuichi, Kamio, Kunirnasa, Hozumi, Shigeo, Nakamura, Hiroshi, Yamagiwa, Masao. Thermosetting resin composition composed of a polymaleimide compound, a phenolic novolac resin and an epoxy resin. USP, 5,041,507, 1991.
    [30] Kanagawa, Shuichi, Hozumi, Shigeo, Kamio, Kunimasa. Thermosetting resin composition comprising a partly allylated novolac epoxy resin and bismaleimide. USP, 4,755,569, 1988.
    [31] 梁国正,顾媛娟,蓝立文.BMI改性剂—烯丙基系列化合物.化工新型材料,1996,(3):27—30.
    [32] Ou Aijuan, Liang Ouozheng, Lan Liwen. Modification of polyaralkyl-phenolic resin and its copolymer with bismaleimides. J. Appl. Polym. Sci., 1996, 59 (6): 975—979.
    [33] 赵三平,刘润山.二苯甲烷双马来酰亚胺的合成与性能.高分子材料科学与工程,2002,18(1):102—106.
    [34] 梁国正,顾媛娟.双马来酰亚胺树脂.第一版.北京:化学工业出版社,1997.11—14.
    [35] Grundschober F., Sambeth J. Reticulated polyimides and method of producing same from N,N'-bis-imides. USP, 3,380,964, 1968.
    [36] Chaudari M.A. A new bismaleimides in system for high performance composite. SME Technical Paper, 1985: 34—45.
    [37] Phelan J.C, Sung C.S.P. Fluorescence Characterization of Cure Products in Bis(maleimide)/Diallybisphenol A Resin. Macromolecules, 1997, 30(22): 6837—6844.
    [38] K.A. Barrett, M.A.Chaudhari, B.H.Lee. Bismalemide Resins-chemistry and Performance Characteristics. 33rd Interntional SAMPE Symposium, 1988, 398—406.
    [39] M. Chaudari., T.Galvin, J.King. Characterization of Bismaleimide System,
    
    XU 292. SAMPE Journal, 1985, (7/8): 17—21.
    [40] 顾嫒娟,梁国正.双马来酰亚胺树脂的改性及应用.高分子材料,1995,(1):37—44.
    [41] Sheremeteva T.V., et al. Influence of the Structure of Unsaturated Imides on their Polymerizability and on the Polymer Properties. J. Poly. Sci. Part C, 1967, 22(1): 185—194.
    [42] Grundschober F, Geneva G, Sambeth J. Prepartion of crosslinked polyimides from N,N'-bis-imides. USP, 3,533,996, 1970.
    [43] Grenier-Lousalot MF, Da Cunha L. Influence of Sterichindrance on the Reactivity and Kinetics of Molten-stateradical Polymerization of Binary Bismaleimide-diamine System. Polymer, 1998, 39 (10): 1799—1814.
    [44] Hasmukh S.P, Vipul J Shah. Epoxy-modified Polyimides:part 1. High Perform. Polym. , 1993, (5): 145—153.
    [45] 刘润山.亚胺—环氧耐热结构胶粘剂的研究.粘接,1998,19(5):1—4.
    [46] Saraf M N. An Aromatic Amine as a Co-Curing Agent in Epoxy-Bisimide Blend. Appl. Polym.Sci., 1993, 49: 1131—1144.
    [47] 刘润山,李友清,汪小华.含聚氨基双马来酰亚胺耐热固化剂的环氧—亚胺胶液.热固性树脂,2003,18(5):13—15.
    [48] Takao Iijima, Tsutomu Nishina, Wakichi Fukuda, Masao Tomoi. Modification of Bismaleimide Resin by Poly(phthaloyl diphenyl ether) and the Related Copolymers. J.Appl.Polym.Sci., 1998, 67 (5): 769—780.
    [49] 赵渠森,王京城.高韧性高性能QY9511双马来酰亚胺树脂(Ⅰ).玻璃钢与复合材料,1999,(6):3—5.
    [50] 赵渠森,王京城.高韧性高性能QY9511双马来酰亚胺树脂(Ⅱ).玻璃钢与复合材料,2000,(1):7—11.
    [51] Zhang Baoyan., et al., Studies of Modified Bismaleimide Resin. Part Ⅰ : The
    
    Influence of Resin Composition on Thermal and Impact Properties, Journal of Materials Science, 1998, 33 (23): 5683—5687.
    [52] 潘玉良,项小宇.高频线路板基板——三嗪覆铜板.热固性树脂,1998,13(1):32—35.
    [53] C.P.Reghunadhan Nair, Tania Francis, T.M.Vijayan, K.Krishnan. Sequentialinter penetrateing polymer netwouks from bisphenol A based cyanate ester and bimaleimide:propertyes of the neat resin and composites [J].J Appl Polym Sci. 1999, 74(11): 2737—2746.
    [54] 张复盛,庄严.双马来酰亚胺树脂体系的固化反应研究.材料工程,1998,(1):22—25.
    [55] 何凯,李晓霞.新型低温固化双马来酰亚胺树脂基体研究.塑料科技,1996,112(2):27—30.
    [56] 蓝立文,顾媛娟,梁国正.引发剂对双马来酰亚胺树脂固化反应的影响.复合材料学报,1995,12(4):39—43.
    [57] 孙曼灵.环氧树脂应用原理与技术[M].第一版.北京:机械工业出版社,2002,49—50
    [58] 邹文俊.有机磨具制造[M].第一版.北京:中国标准出版社,2001,175—178.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700