用户名: 密码: 验证码:
并网型风电场的自动电压控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风力发电具有间歇性、波动性特点,大规模的风电并网会引起电网电压波动,尤以接入点电压波动最为突出。如今,基于双馈感应电机的变速恒频风电机组已成为风电场选用的主流机型,其通过发电机定子磁场定向的矢量控制技术能够实现机组有功、无功输出功率的解耦控制,因而具有较灵活的无功调控能力和电压支撑能力。本文即主要研究双馈电机风电场面向接入点的自动电压控制,提出了快速控制和协调控制两种电压控制策略。其中,电压快速控制策略仅以双馈风电机群作为灵活可控的无功源,参与风电场的电压无功调控。其通过计算接入点电压的实测值与目标值的差值整定风电场的实时无功差额,进而在双馈机组间进行无功分配,以达到维持接入点电压的初始稳态运行值或追踪调度下发的整定值的控制目标。与此同时,机组间无功分配结合了节点网损/无功灵敏度的分析,在灵敏度排序基础上确定了参与电压无功调控的双馈机组,由此提高了机组无功调控的准确度并能够有效减小风电系统的网络损耗。电压协调控制策略则从双馈风电机群与风电场并联补偿电容器组之间相互配合的角度实现了风电场的电压无功调控。其基于风功率的预测数据和分段信息,采用改进遗传算法对电容器组的补偿容量进行优化计算,并依据优化结果预先进行投切控制,再由双馈机群承担风电场的实时无功差额。该控制策略解决了风电场电压无功调控中离散变量与连续变量的协调控制问题,研究表明其有助于风电场为电网提供更多的动态无功和电压支撑。
Because of the intermittence and fluctuation, the integration of large-scale wind power into the power system will cause voltage fluctuations, especially at the grid-connecting point. At present, the doubly-fed induction generator (DFIG) -based variable speed constant frequency wind turbine has become the main choice of wind farms. For the active and reactive power can be decoupling controlled through the generator stator flux oriented vector control technology, it has a flexible capacity of reactive power regulation and voltage support. This paper mainly studies on the grid-connecting point oriented automatic voltage control of a DFIG-based wind farm. And two voltage control strategies are proposed, which are the rapid control strategy and the coordinated control strategy. The rapid control strategy only uses the DFIG wind turbines as flexible and controllable source of reactive power to regulate the voltage and reactive power of the wind farm. By calculating the voltage difference of the grid-connecting point between the measured value and the target value, real-time reactive power balance of the wind farm is set and then distributed among the DFIG wind turbines, in order to achieve the initial steady state voltage value or to track the setting voltage value given by the dispatching center. At the same time, sensitivity analysis is introduced into the reactive power distribution. And based on the order of sensitivity, the DFIG wind turbines which will be involved in the regulation of voltage or reactive power are determined. Thus, the accuracy of reactive power control of the wind turbines is improved and the power loss of wind power system is effectively reduced as well. While the coordinated control strategy regulates the voltage and reactive power of the wind farm by not only DFIG wind turbines but also the shunt capacitor banks, which are switched according to the optimized results given by an improved genetic algorithm based on the wind power prediction data and its segment information. After that, the DFIG wind turbines are used to regulate and control the real-time reactive power balance. In this way, the coordinated control problem between the discrete variable and the continuous variable has been solved. And it shows that the wind farm is able to provide more dynamic reactive power and voltage support for the grid.
引文
[1]迟永宁,李群英,李琰,等.大规模风电并网引起的电力系统运行与稳定问题及对策[J].电力设备, 2008, 9(11): 16-19
    [2] Palsson M P, Toftevaag T, Uhlen K, et al. Large-scale Wind Power Integration and Voltage Stability Limits in Regional Networks[C]. Power Engineering Society Summer Meeting, Chicago, IL, USA, 2002, 2: 762-769
    [3]孙宏斌,郭庆来,张伯明.大电网自动电压控制技术的研究与发展[J].电力科学与技术学报, 2007, 22(1): 7-12
    [4]惠建峰,焦莉,张世学.自动电压控制系统建设与应用分析[J].陕西电力, 2009, 37(2): 38-41
    [5]唐建惠,张立港,赵晓亮.自动电压控制系统(AVC)在发电厂侧的应用[J].电力系统保护与控制, 2009, 37(4): 32-35
    [6]邹秋宏,肖华宾,丁健.发电厂侧自动电压控制策略的探讨[J].广东电力, 2009, 22(6): 16-19
    [7]戴彦.自动电压控制(AVC)系统控制策略的比较和研究[J].华东电力, 2008, 36(1): 92-95
    [8]都海坤.自动电压控制系统的设计原则[J].上海电力, 2007, (6): 627-629
    [9]张继芬,危剑鸣,杨耿杰,等.电网自动电压控制在大型火电厂的设计与实现[J].电力勘测设计, 2005, (1): 60-65
    [10]程浩忠,吴浩.电力系统无功与电压稳定性[M].北京:中国电力出版社, 2004
    [11]申洪,王伟胜,戴慧珠.变速恒频风力发电机组的无功功率极限[J].电网技术, 2003, 27(11): 60-63
    [12]郎永强,张学广,徐殿国.双馈电机风电场无功功率分析及控制策略[J].中国电机工程学报, 2007, 27(9): 77-82
    [13] Zhou Xia, Yang Weidong, Wang Songyan, et al. Layered VAR Control Strategy of DFIG-based Wind Farm[C]. Power Electronics and Machines in Wind Applications, Lincoln, NE, 2009: 1-4
    [14]秦涛,吕跃刚,徐大平.采用双馈机组的风电场无功功率控制技术[J].电网技术, 2009, 33(2): 105-110
    [15]曹军,张榕林,林国庆.变速恒频双馈电机风电场电压控制策略[J].电力系统自动化, 2009, 33(4): 87-91
    [16] Beugniez A, Ghennam T, Francois B, et al. Centralized Supervision of Reactive Power Generation for a Wind Farm[C]. European Conference on Power Electronics and Applications, Aalborg, 2007: 1-10
    [17] Tapia A, Tapia G, Ostolaza J X, et al. Reactive Power Control of a Wind Farm made up with Doubly Fed Induction Generators(Ⅱ)[C]. Power Tech Proceedings, Porto, 2001
    [18]金立军,安世超,廖黎明,等.国内外无功补偿研发现状与发展趋势[J].高压电器, 2008, 44(5): 463-465
    [19] Sun J, Czarkowski D, Zabar Z. Voltage Flick Mitigation Using PWM-basedDistribution STATCOM[C]. IEEE Power Engineering Society Summer Meeting, Chicago, IL, USA, 2002: 616-621
    [20] Camm E H, Behnke M R, Bolado O, et al. Reactive Power Compensation for Wind Power Plants[C]. Power & Energy Society General Meeting, Calgary, AB, 2009: 1-7
    [21] Camm E, Edwards C. Reactive Compensation Systems for Large Wind Farms[C]. Transmission and Distribution Conference and Exposition, Chicago, IL, 2008: 1-5
    [22] Cartwright P, Holdsworth L, Ekanayake J B, et al. Co-ordinated Voltage Control Strategy for a Doubly-fed Induction Generator(DFIG)-based Wind Farm[C]. IEE Proceedings-Generation, Transmission and Distribution, 2004, 151(4): 495-502
    [23]乔颖,鲁宗相,徐飞.双馈风电场自动电压协调控制策略[J].电力系统自动化, 2010, 34(5): 96-101
    [24] Shinde S M, Patil K D, Gandhare W Z. Dynamic Compensation of Reactive Power for Integration of Wind Power in a Weak Distribution Network[C]. Control, Automation, Communication and Energy Conservation, Perundurai, Tamilnadu, 2009: 1-6
    [25]范伟,赵书强,胡炳杰.应用STATCOM提高风电场的电压稳定性[J].电网与清洁能源, 2009, 25(4): 40-44
    [26] Wei Qiao, Harley R, Venayagamoorthy G. Coordinated Reactive Power Control of a Large Wind Farm and a STATCOM Using Heuristic Dynamic Programming[C]. IEEE Transactions on Energy Conversion, 2009, 24(2): 493-503
    [27]范高锋,王纯琦,乔元. SVC补偿型定速风电机组模型及其特性分析[J].电网技术, 2007, 31(22): 64-68
    [28]刘其辉.变速恒频风力发电系统运行与控制研究[D]:浙江:浙江大学, 2005
    [29]李晶.变速恒频双馈风电机组动态模型及并网控制策略的研究[D]:河北:华北电力大学, 2004
    [30]张薇.变速恒频双馈风力发电最大风能追踪研究[D]:哈尔滨:哈尔滨工业大学, 2006
    [31] Abo-Khalil A G, Lee D Ch. Development of Wind Turbine Simulators Using PSCAD[C]. Power Electronics and Intelligent Control for Energy Conservation, Warsaw, Poland, 2005
    [32]万航羽,黄梅.双馈风力发电机建模及谐波分析[J].电机电器, 2008, 27(6): 53-57
    [33]尹明,李庚银,赵辉,等.双馈式感应风力发电机组建模及其控制研究[J].华北电力大学学报, 2007, 34(5): 17-21
    [34] Karimi-Davijani H, Sheikholeslami A, Ahmadi R, et al. Active and Reactive Power Control of DFIG Using SVPWM Converter[C]. Universities Power Engineering Conference, Padova, 2008: 1-5
    [35] Lima F K A, Luna A, Rodriguez P, et al. Study of a Simplified Model for DFIG-Based Wind Turbines[C]. Energy Conversion Congress and Exposition, San Jose, CA, 2009: 345-349
    [36]孙秋霞.双馈感应风力发电系统的基础理论研究与仿真分析[D]:哈尔滨:哈尔滨工业大学, 2006
    [37]李晶,宋家骅,王伟胜.大型变速恒频风力发电机组建模与仿真[J].中国电机工程学报, 2004, 24(6): 100-105
    [38]卞松江,吕晓美,相会杰,等.交流励磁变速恒频风力发电系统控制策略的仿真研究[J].中国电机工程学报, 2005, 25(16): 57-62
    [39]李先允,陈小虎,唐国庆.大型风力发电场等值建模研究综述[J].华北电力大学学报, 2006, 33(1): 42-46
    [40]胡雅娟.基于实测运行数据风电场整体模型的研究[D].吉林:东北电力大学, 2007.
    [41]余洋,刘永光,董胜元.基于运行数据的风电场等效建模方法比较[J].电网与清洁能源, 2009, 25(12): 79-83
    [42]闫广新,晁勤,刘新刚,等.含变速双馈风电机组风电场的等值问题[J].可再生能源, 2008, 26(1): 21-23
    [43]吴义纯,丁明.风电引起的电压波动与闪变的仿真研究[J].电网技术, 2009, 33(20): 126-130
    [44]曹娜,赵海翔,戴慧珠.常用风电机组并网运行时的无功与电压分析[J].电网技术, 2006, 30(22): 91-94
    [45]王松岩.双馈感应发电机型风电场的无功电压控制问题研究[D]:哈尔滨:哈尔滨工业大学, 2009
    [46]姜新凡,严庆伟,周帆,等.基于实时灵敏度分析的湖南电网无功电压优化控制系统[J].电网技术, 2004, 28(16): 82-85
    [47]江岳文,温步瀛.基于灵敏度计算的发电机无功资源价值分析[J].继电器, 2006, 34(1): 55-57
    [48]迟永宁,刘燕华,王伟胜,等.风电接入对电力系统的影响[J].电网技术, 2007, 31(3): 77-81
    [49]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社, 1999
    [50]李梅.基于遗传算法的电力系统无功综合优化补偿规划[D]:河北:华北电力大学, 2000
    [51]马永芳.电网自动电压控制(AVC)系统设计及实现[D]:河北:华北电力大学, 2009
    [52]胡泽春,王锡凡.配电网无功优化的分时段控制策略[J].电力系统自动化, 2002, 26(6): 45-49
    [53]王星华,余欣梅.配电网电容器优化投切的改进模型及算法[J].电网技术, 2008, 32(14): 59-64
    [54]刘卫国,陈昭平,张颖. MATLAB程序设计与应用[M].北京:高等教育出版社, 2002
    [55]施晓红,周佳.精通GUI图形界面编程[M].北京:北京大学出版社, 2003: 164-201

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700