用户名: 密码: 验证码:
三类掺杂的类钙钛矿型氧化物功能材料电子结构和磁性质的计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
类钙钛矿型氧化物(Perovskite Oxide),由于其几何结构和化学组成的多样性,使其具有丰富而奇特的物性,如庞磁电阻、催化作用、铁电性、高介电常数、氧离子传导性、高温超导电性等。这使此类氧化物在磁存储、磁传感、光催化、固体氧化物燃料电池等相关领域具有巨大的应用前景。因此,无论在实验还是理论上,类钙钛矿型氧化物都已成为人们竞相研究的热点。
     自旋电子学(spintronics)是当前的热门研究领域,而半金属材料(half-metal)在此领域中具有举足轻重的地位。类钙钛矿型氧化物则是寻找半金属材料的主要源头,而这也是本文的主要工作所在。
     第一章简要介绍了类钙钛矿型氧化物庞磁电阻材料和自旋电子学的研究进展。
     第二章简要介绍了密度泛函理论的基本框架以及近年来的发展,从基本理论的思想来源到寻找更适当的交换和关联势,以及近年来的自相互作用修正和多种更新更复杂的密度泛函。最后简要介绍了一些常用的基于密度泛函理论的计算模拟软件包。
     第三章介绍了B位掺杂的类钙钛矿型氧化物SrFe1-xCoxO3物性的计算研究工作。计算结果表明:当掺杂浓度为x=0.1时,SrFe0.9Co0.1O3的基态显示为A类反铁磁序,而当掺杂浓度为x≥0.2时,该化合物的基态则显示为铁磁序。此外,对于所考虑的各种掺杂浓度,化合物的Co离子都呈现均匀分布。关于电子结构性质,当0.2≤x≤0.7时,SrFe1-xCoxO3具有半金属特性,其他掺杂浓度的化合物则表现为金属特性。对于半金属SrFe1-xCoxO3,其能隙则随着掺杂浓度x的增加而减小,而半金属-铁磁相之间的隧穿效应导致其具有庞磁电阻效应。此外,在我们所考虑的全部化合物中,Co离子的电子组态为中间自旋态;而当x≤0.5时,Fe离子的电子组态表现为中间自旋态,当x≥0.6时,则表现为高自旋态。
     第四章在第三章的基础上,即SrFe0.5Co0.5O3具有半金属特性,介绍了一种新型的半金属材料—非化学计量配比的双钙钛矿氧化物Sr2FeCoO6-δ的理论设计工作。计算结果表明,基态Sr2FeCoO5表现为反铁磁半金属特性,且具有Imma空间群结构。磁矩计算结果表明,Fe离子和Co离子都分为两类,Fe(1)位Fe离子的磁矩为2.97μB,Fe(2)位Fe离子的磁矩则为3.72μB;而Co(1)位和Co(2)位Co离子的磁矩分别为2.96μB和3.20μB。这说明Sr2FeCoO5体现出磁矩有序排列。Fe(1)位和Fe(2)位Fe离子的磁矩平行排列,Co(1)位和Co(2)位Co离子的磁矩亦平行排列,但Co离子的磁矩与Fe离子的磁矩成反平行排列。此外,O位上大约存在0.05μB的磁矩,且平行于Co离子的磁矩方向。而Sr2FeCoO5的净磁矩则表现为零。除Sr2FeCoO5表现为半金属特性外,Sr2FeCoO4和Sr2FeCoO6两者都表现出半金属特性,Sr2FeCoO4表现为亚铁磁性半金属,Sr2FeCoO6则体现为铁磁性半金属。从O位过度空缺的Sr2FeCoO4到无O位空缺的Sr2FeCoO6都表现为半金属特性,意味着δ在很大范围内Sr2FeCoO6-δ都体现出半金属特性。这一发现也许可以为寻找具有稳定半金属特性的新型自旋电子学材料提供一种可行的路径。
     第五章介绍了A位掺杂钙钛矿型氧化物LaCu3Fe4O12具有奇特物性的原因。计算研究表明,在高温时,Fe—O—Fe之间的库仑吸引作用要强于在低温时的库仑吸引作用,这是导致LaCu3Fe4O12出现负热膨胀效应的原因所在。通常Cu3+氧化物结构不稳定,然而LaCu3Fe4O12中的Cu离子在低温下具有+3价态,但其结构却能保持稳定。我们认为其原因在于La—O—Cu的轨道之间存在着强烈的杂化作用,抑制了LaCu3Fe4O12结构对称性随温度的变化,导致拥有Cu3+离子的LaCu3Fe4O12能够稳定存在。空间群结构的不变性以及B位Fe离子之间的对称性等价性,导致随着温度的变化,B位Fe离子与A位Cu离子之间发生电荷转移,而等价的Fe离子之间没有电荷转移。基于这个结果,我们预测,在A'A3B4O12型钙钛矿氧化物中,在A—O—A’之间是否存在杂化相互作用将主导A'A3B4O12化合物的物性,我们亦可以根据这个特点来设计符合各种技术要求的功能材料。
Due to the diversity in geometry and composition, perovskite oxides possess plenty of special physical properties, such as colossal magnetoresistance, catalytic activity, ferroelectricity, large dielectric constant, oxygen conductivity, and high-temperature superconductivity. These properties make perovskite oxides promising for extensive potential applications as magnetic memory, magnetic sensor, photocatalyst, and solid oxide fuel cells, etc., and become the focus of a large number of experimental and theoretical studies.
     Spintronics is currently a hot research field in which half-metal materials play a key role, and perovskite oxides are the potential compounds with half-metalicity. Hence, computationial search for half-metallic provskite oxides is the main motivation of this work.
     In chapter1, an overview is presented on the research progress of provskite oxides as colossal magnetoresistance materials. In the mean time, a brief review is provided on spintronics.
     In chapter2, density functional theory (DFT) is introduced and a review is given on its development in recent years, including the basic framework of DFT, good approximation of exchange-correlation function, and self-interaction correction etc.. At the end of this chapter, we briefly introduce some simulation packages based on DFT.
     In chapter3, the special properties of SrFe1-xCoxO3are studied by using DFT. The results show that the ground states have A-type antiferromagnetic order for x=0.1and ferromagnetic order for x≥0.2with Co ions distributed averagely. SrFe1-xCoxO3exhibits half-metallic nature for0.2≤x≤0.7and full-metallic nature for other values of x, and the half-metallic gap decreases with increasing x. The tunneling between the half-metallic ferromagnetic phases leads to the large magnetoresistance. In addition, the Co cations are in the intermediate-spin state, while the Fe cations are in the intermediate-spin state for x≤0.5and the high-spin state for x≥0.6.
     Based on the results of the chapter3that SrFeo.5Co0.5O3is half-metal and considering the oxygen vacancy in the system, new half-metallic materials, non-stoichiometry peroskite oxide Sr2FeCoO6-δ (5=0,1, and2), are designed in chapter4. The results reveal that the ground-state Sr2FeCoO5has antiferromagnetic half-metallic nature with Imma space group. The magnetic calculation illuminates that Sr2FeCoO5exhibits magnetic moment ordering with the magnetic moments of2.91and3.72μB on Fe(1) and Fe(2) sites,2.96and3.20μBb on Co(1) and Co(2) sites antiparallel to those of Fe ions, respectively. The magnetic moments of about0.05μB per atom parallel to those of Co ions are induced on O sites. The net magnetic moment per unit is zero. Additionally, Sr2FeCoO4behaves as ferrimagnetic half-metal, and Sr2FeCoO6exhibits ferromagnetic half-metal, respectively. This hints that Sr2FeCoO6-δ possesses half-metallic nature in a large range of δ. It is expected that the present findings may be a way to develop a new kind of half-metallic material.
     In chapter5, the origin of the intriguing physical properties of an A-site-ordered LaCu3Fe4O12perovskite is investigated in detail. The calculational results show that Coloumb absorption force between Fe-O-Fe at high temperature is stronger than that at low temperature, which is the origin of the large negative thermal expansion in the compound. The origin of the stability of the Cu3+oxide, LaCu3Fe4O12, is the strong hybridization interaction between La-O-Cu, which also suppressed the structural change with the temperature changing. The equivalence symmetry of each Fe ion at the same temperature results into the charge transfer between Fe and Cu, instead of between Fe and Fe. We think the special properties of LaCu3Fe4O12are driven by the strong hybridization interaction between La—O—Cu. Therefore, whether there is the hybridization interaction between A-O-A'would essentially dominate the properties of A'A3B4O12, and the different characterful material satisfying the different technologically applications could be experimentally designed by changing the A-site component.
引文
[1]Goldschmidt V M. Die Gesetze der Krystallochemie. Natur wissenschaften,1926,21: 477-485
    [2]Chi en C L, Xiao J Q, Jiang J S. Giant negative magnetoreslstance in granular ferromagnetic systems. J. Appl. Phys.,1993,73:5309-5314
    [3]Baibich M N, Broto J M, Fert A, Dau F N V, Petrol F, Etienne P, Creutzet G, Friederich A, Chazelas J. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Snperlattices. Phys. Rev. Lett,1998,61:2472-2475; Saurenbach F, Walz U, Hinchey L, Grunberg P, Zinn W. Static and dynamic magnetic properties of Fe-Cr layered structures with antiferromagnetic interlayer exchange. J. Appl. Phys.,1988,63:3473
    [4]Kusters R M, Singletom J, Keen D A, Hayes W. Magnetoresistance measurements on the magnetic semiconductor Nd0.5Pb0.5MnO3. Physica B,1989,155:362-365
    [5]Helmolt R, Wecker J, Holzapfel B, Schultz L, Samwer K. Giant Negative Magnetoresistance in Perovskitelike La2/3Ba1/3MnOx Ferromagnetic Films. Phys Rev Lett,1993,71:2331-2333
    [6]Jin S, Tiefel T H, McCormack M, Fastnacht R A, Ramesh R, Chen L H. Thousandfold Change in Resistivity in Magnetoresistive La-Ca-Mn-O Films. Science,1994, 264:413-415
    [7]Salamon M B, Jaime M. The physics of manganites:Structure and transport. The physics of manganites:Structure and transport. Rev. Mod. Phys,2001,73:583-628
    [8]Jin S, Tiefel T H, McCormack M, OOBryan H M, Chan L H, Ramesh R, Schuring D. Thickness dependence of magnetoresistance in La-Ca-Mn-0 epitaxial films. Appl. Phys. Lett.,1995,67:557-559
    [9]Hu N, Lu C L, Wang K F, Cheng L, Liu Y, Liu J M, Xiong R, Shi J. A-site disorder effects in electron-doped manganite La0.4Ca0.6MnO3. Appl. Phys. A,2011,103:485-491
    [10]Adamo C, Ke X, Wang H Q, Xin H L, Heeg T, Hawley M E, Zander W, Schubert J, Schiffer P, Muller D A, Maritato L, Schlom D G. Effect of biaxial strain on the electrical and magnetic properties of (001) La0.7Sr0.3MnO3 thin films Appl. Phys. Lett, 2009,95:112504-1-3
    [11]Cobas R, Munoz-Perez S, Cadogan J M, Puig T, Obradors X. Magnetoresistance in epitaxial thin films of La0.85Ag0.15MnO3 produced by polymer assisted deposition. Appl Phys Lett,2011,99:083113-1-3
    [12]Biswas A, Samanta T, Banerjee S, Das I. Magnetocaloric properties of nanocrystalline La0.125Ca0.875MnO3. Appl. Phys. Lett.2009,94:233109-1-3
    [13]Biswas A, Samanta T, Banerjee S, Das I. Observation of large low field magnetoresistance and large magnetocaloric effects in polycrystalline Pr0.65(Ca0.7Sr0.3)0.35MnO3. Appl. Phys. Lett,2008,92:012502-1-3
    [14]Wang K F, Yuan F, Dong S, Li D, Zhang Z D, Ren Z F, Liu J M.A-site disorder induced collapse of charge-ordered state and phase separated phase in manganites. Appl. Phys. Lett.2006,89:222505-1-3
    [15]Wang K F, Wang Y, Wang L F, Dong S, Li D, Zhang Z D, Yu H, Li Q C, Liu J M. Cluster-glass state in manganites induced by A-site cation-size disorder. Phys. Rev. B, 2006,73:134411-1-10
    [16]Tomioka Y, Tokura Y. Global phase diagram of perovskite manganites in the plane of quenched disorder versus one-electron bandwidth. Phys. Rev. B,2004,70:014432-1-5
    [17]Akahoshi D, Uchida M, Tomioka Y, Arima T, Matsui Y, Tokura Y. Random Potential Effect near the Bicritical Region in Perovskite Manganites as Revealed by Comparison with the Ordered Perovskite Analogs. Phys. Rev. Lett.,2003,90:177203-1-4
    [18]Sato T J, Lynn J W, Dabrowski B. Disorder-Induced Polaron Formation in the Magnetoresistive Perovskite La0.54Ba0.46MnO3. Phys. Rev. Lett.,2004,93:267204-1-4
    [19]Maignan A, Martin C, Tendeloo G V, Hervieu M, Raveau B. Size mismatch:A crucial factor for generating a spin-glass insulator in manganites. Phys. Rev. B,1999, 60:15214-15219
    [20]Sundaresan A, Maignan A, Raveau B. Effect of A-site cation size mismatch on charge ordering and colossal magnetoresistance properties of perovskite manganites. Phys. Rev. B,1997,56:5092-5095
    [21]Wang K F, Wang Y, Wang L F, Dong S, Yu H, Li Q C, Liu J M, Ren Z F. Ferromagnetic metal to cluster-glass insulator transition induced by A-site disorder in manganites. Appl. Phys. Lett.,2006,88:152505-1-3
    [22]Salafranca J, Brey L. Disorder-induced first order transition and Curie temperature lowering in ferromagnetic manganites. Phys. Rev. B,2006,73:214404-1-4
    [23]Xiong G C, Li Q, Greene R L, Venkatesan T. Giant magnetoresistance in epitaxial Nd0.7Sr0.3MnO3-δ thin films. Appl Phys Lett,1995,66:1427-1429
    [24]Tang T, Cao Q Q, Gu K M, Xu H Y, Zhang S Y, Du Y W. Giant magnetoresistance of the La1-xAgxMnO3 polycrystalline inhomogeneous granular system. Appl. Phys. Lett., 2000,77:723-725
    [25]Yuan X B, Liu Y H, Wang C J, Mei L M. Large room-temperature magnetoresistance in Pd-added manganites. Appl. Phys. Lett.,2006,88:042508-1-3
    [26]Petrov D K, Krusin-Elbaum L, Sun J Z, Field C, Duncombe P R. Enhanced magnetoresistance in sintered granular manganite/insulator systems. Appl. Phys. Lett., 1999,75:995-997
    [27]Zhang N, Wang M. Giant positive magnetoresistance in composite (La0.83Sr0.17MnO3)o.6(ITO)o.4. Appl. Phys. Lett.,2006,88:122111-1-3
    [28]Kang B S, Wang H, MacManus-Driscoll J L, Li Q Y, Jia X, Mihut I, Betts J B. Low field magnetotransport properties of (La0.7Sr0.3MnO3)0.5:(ZnO)0.5 nanocomposite films. Appl. Phys. Lett.,2006,88:192514-1-3
    [29]Gaur A, Varma G D, Singh H K. Enhanced low field magnetoresistance in La0.7Sr0.3MnO3/TiO2 composite. J. Phys. D, Appl. Phys.,2006,39:3531-3535
    [30]Chen S Y, Lai H, Lin Y B, Ke W P, Zhang F M, Huang Z G, Du Y W. Transport and magnetic properties of nanosized La2/3(Ca0.6Ba0.4)1/3MnO3/xNiO composites. J. Magn. Magn. Mater.,2006,303:e308-e311
    [31]Miao J H, Yuan S L, Xiao X, Ren G M, Yu G Q, Wang Y Q, Yin S Y. Giant magnetoresistance and unusual hysteresis behavior in La0.67Ca0.33MnO3/xCuO (x=20%) composite. J. Appl. Phys.,2007,101:043904-1-5
    [32]Santos T S, Lee J S, Migdal P, Lekshmi I C, Satpatal B, Mooderal J S. Room-Temperature Tunnel Magnetoresistance and Spin-Polarized Tunneling through an Organic Semiconductor Barrier. Phys. Rev. Lett.,2007,98:016601-1-4
    [33]Huang Z G, Chen Z G, Peng K, Zhang F M, Du Y W. Monte Carlo simulation of tunneling magnetoresistance in nanostructured materials. Phys. Rev. B,2004, 69:094420-1-7
    [34]Zhao K, Zhang L, Wong H K. Anisotropic magnetoresistance in La0.67Ca0.33MnO3/YBa2Cu4O8/La0.67Ca0.33MnO3 trilayer films. Thin Solid Films,2005, 471:287-292
    [35]Briceno G, Chang H, Sun X D, Schultz P G, Xiang X D. A Class of Cobalt Oxide Magnetoresistance Materials Discovered with Combinatorial Synthesis. Science,1995, 270:273-275
    [36]Kobayashi K I, Kimura T, Sawada H, Terakura K, Tokura K. Room-temperature magnetoresistance in an oxide materialwith an ordered double-perovskite structure. Nature,1998,395:677-680
    [37]Sarma D D, Sampathkumaranb E V, Sugata R, Nagarajanb R, Subham M, Ashwani K, Nalini G, Guru Row T N. Magnetoresistance in ordered and disordered double perovskite oxide Sr2FeMoO6. Solid State Commun,2000,114:465-468
    [38]Tomioka Y, Okuda T, Okimoto Y, Kumai R, Kobayashi K I. Magnetic and electronic properties of a single crystal of ordered double perovskite Sr2FeMoO6. Phys. Rev. B, 2000,61:422-427
    [39]Dasgupta T S, Sarma D D. Ab initio study of disorder effects on the electronic and magnetic structure of Sr2FeMoO6. Phys. Rev. B,2001,64:064408-1-6
    [40]J. Linden. Observation of antiphase boundaries in Sr2FeMoO6 Phys. Rev. B,2003,68: 174415-1-5
    [41]Sarma D D, Ray S, Tanaka K, Kobayashi M, Fujimori A, Sanyal P. Intergranular Magnetoresistance in Sr2FeMoO6 from a Magnetic Tunnel Barrier Mechanism across Grain Boundaries. Phys Rev Lett,2007,98:157205-1-4
    [42]Meneghini C, Ray S, Liscio F, Bardelli F, Mobilio S, Sarma D D. Nature of "Disorder" in the Ordered Double Perovskite Sr2FeMoO6. Phys Rev Lett,2009,103:046403-1-4
    [43]Ray S, Middey S, Jana S, Banerjee A, Sanyal P, Rawat R, Gregoratti L, Sarma D D. Origin of the unconventional magnetoresistance in Sr2FeMoO6.Europhys. Lett,2011, 94:47007p1-p6
    [44]Johnson M. Communications-Interviews:Stephen Kent Sudhir Dixit. IEEE Spectrum, 2000,37:33-39
    [45]Datta S, Das B. Electronic anolog of the electro-optic modulator. Appl Phys Lett,1990, 56:665-667
    [46]de Groot R A, Muller F M, van Engen P G. New Class of Materials:Half-Metallic Ferromagnets. Phys. Rev. Lett.,1983,50:2024-2027
    [47]Pickett W E, Moodera J S. Half Metallic Magnets. Physics Today,2001,54:39-44
    [48]王银国、郭光宇。以第一性原理理论计算来寻找新颖材料。物理双月刊,2005,4:578-586
    [49]Park J-H, Vescovo E, Kim H-J. Direct evidence for a half-metallic ferromagnet. Nature, 1998,392:794-796
    [50]Zhu H J, Ramsteiner M, Kostial H. Room-Temperature Spin Injection from Fe into GaAs. Phys. Rev. Lett,2001,87:016601-1-4
    [51]Schmidt G, Ferrand D, Molenkamp. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B,2000, 62:R4790-R4793
    [52]Schmidt G, Molenkamp L W. Spin injection into semiconductors, physics and experiments. Semiconductor science and technology,2002,17:310-320
    [53]Johnson M. The bipolar spin transistor. J. Magn. Magn. Mater.,1995,140:21-24
    [54]Tanaka C, Nowark J, Moodera J S. Spin-polarized tunneling in a haf-metallic ferromagnet. J. Appl. Phys.,1999,86:6239-6242
    [55]Black W C, Das B. Programmable logic using giant-magnetoresistance and spin-dependent tunneling devices (invited). J. Appl. Phys.,2000,87:6674-6679
    [56]Park J-H, Vescovo E, Kim H J. Direct evidence for a half-metallic ferromagnet. Nature, 1998,392:794-796
    [57]Kainuma R, Imano Y, Ito W. Magnetic-field-induced shape recovery by reverse phase transformation. Nature,2006,439:957-960
    [58]Carey R, Newman D M, Wears M L. Giant low-temperature enhancement of magneto-optic Kerr effects in PtMnSb. Phys. Rev. B 2000,62:1520-1523
    [59]Bobo J F, Johnson P R, Kautzky M. Optical spectroscopy investigations of half metallic ferromagnetic Heusler alloy thin films:PtMnSb, NiMnSb, and CuMnSb. J. Appl. Phys., 1997,81:4164-4166
    [60]Nobori M, Nakano T, Hasegawa J, Oomi G, Sakuraba Y, Takanashi Y. Pressure-induced half-metallic gap transformation in Co2MnSi observed by tunneling conductance spectroscopy. Phys. Rev. B,2011,83:104410-1-6
    [61]Keizer R S, Goennenwein S T B, Klapwijk T M. A spin triplet supercurrent through the half-metallic ferromagnet CrO2. Nature,2006,439:825-827
    [62]Hwang H Y, Cheong S-W. Enhanced Intergrain Tunneling Magnetoresistance in Half-Metallic CrO2 Films. Science,1997,278:1607-1609
    [63]Joonghoe Dho, Kim D-H, Daeyoung K. Thermal instability of the half-metallic CrO2 film epitaxially grown on TiO2. J. Appl. Phys.,2008,104:063528-1-4
    [64]Attema J J, Uijttewaal M A, de Wijs J A. Work function anisotropy and surface stability of half-metallic CrO2. Phys. Rev. B,2008,77:165109-1-9
    [65]Kamper K P, Schmitt W, Guntherodt G. CrO2-A New Half-Metallic Ferromagnet? Phys. Rev. Lett.,1987,59:2788-2791
    [66]Korotin M A, Anisimov V I, Khomskii D I. CrO2:A Self-Doped Double Exchange Ferromagnet. Phys. Rev. Lett.,1998,80:4305-4308
    [67]Mazin 11, Singh D J, Claudia A-D. Transport, optical, and electronic properties of the half-metal CrO2. Phys. Rev. B,1999,59:411-418
    [68]Ji Y, Strijkers G J, Yang F Y. Determination of the Spin Polarization of Half-Metallic CrO2 by Point Contact Andreev Reflection. Phys. Rev. Lett.,2001,86:5585-5588
    [69]Anguelouch A, Gupta A, Xiao G. Near-complete spin polarization in atomically-smooth chromium-dioxide epitaxial films prepared using a CVD liquid precursor. Phys. Rev. B, 2001,64:180408-1-3
    [70]Kunihiro Hasegawa, Masahiko Isobe, Touru Yamauchi, Hiroaki Ueda, Jun-Ichi Yamaura, Hirotada Gotou. Discovery of Ferromagnetic-Half-Metal-to-Insulator Transition in K2Cr8016. Phys. Rev. Lett.2009,103:146403-1-4
    [71]Versluijs J J, Bari M A, Coey J M D. Magnetoresistance of Half-Metallic Oxide Nanocontacts._Phys. Rev. Lett.,2001,87:026601-1-4
    [72]Chen P, Xing D Y, Du Y W. Giant Room-Temperature Magnetoresistance in Polycrystalline Zn0.41Fe2.59O4 with a-Fe2O3 Grain Boundaries. Phys. Rev. Lett.,2001, 87:107202-1-4
    [73]Yu S D, Rudiger U, Guntherodt G. Evidence for the half-metallic ferromagnetic state of Fe3O4 by spin-resolved photoelectron Spectroscopy. Phys. Rev. B,2002,65:064417-1-5
    [74]Liu B G. Robust half-metallic ferromagnetism in zinc-blende CrSb. Phys. Rev. B,2003, 67:172411-1-4
    [75]Xu Y Q, Liu B G, Pettifor D G. Hlaf-metallic ferromagnetism of MnBi in the zinc-blende structure. Phys. Rev. B,2002,66:184435-1-5
    [76]Akinaga H, Manago T, Shirai M. Material Design of Half-metallic Zinc-Blende CrAs and the Synthesis by Molecular-Beam Epitaxy. Jpn. J. Appl. Phys,2000, Part2 39:L1118-L1120
    [77]Mizuguchi M, Akinaga H, Manago T, Ono K, Oshima M, Shirai M. Epitaxial growth of zinc-blende CrAs/GaAs multilayer. J. Appl. Phys.,2002,91:7917-7919
    [78]Yao K L, Gao C Y, Liu Z L, Zhu L. Half-metallic ferromagnetism of zinc-blende CrS and CrP:a first principles pseudopotential study. Solid State Commun.2005,133:301-304
    [79]Son Y-W, Marvin L C, Steven G L. Half-metallic graphene nanoribbons. Nature,2006, 444:347-342
    [80]Kan E J, Li Z Y, Yang J L. Half-Metallicity in Edge-Modified Zigzag Graphene Nanoribbons. J. Am. Chem.Soc.,2008,130:4224-4225
    [81]Kan E J, Wu X J, Li Z Y, Yang J L. Half-metallicity in hybrid BCN nanoribbons. J. Chem. Phys.,2008,129:084712-1-5
    [82]Oded H, Gustavo E S. Half-Metallic Zigzag Carbon Nanotube Dots. ACS Nano,2008, 2:2243-2249
    [83]Lai L, Lu J, Wang L. Magnetic Properties of Fully Bare and Half-Bare Boron Nitride Nanoribbons. J. Phys. Chem. C,2009,113:2273-2276
    [84]Sudipta D, Arun K M, Swapan K P. Intrinsic Half-Metallicity in Modified Graphene Nanoribbons. Phys. Rev. Lett.,2009,102:096601-1-4
    [85]Kan E J, Xiang H J, Wu F, Tian C, Lee C, Yang J L, Whangbo M H. Prediction for room-temperature half-metallic ferromagnetism in the half-fluorinated single layers of BN and ZnO. Appl. Phys. Lett.,2010,97:122503-1-3
    [86]Pan L H, An J, Liu Y J, Gong C H. Zigzag graphene nanoribbons without inversion symmetry. Phys. Rev. B,2011,84:115434-1-6
    [87]Lin X Q, Ni J. Half-metallicity in graphene nanoribbons with topological line defects. Phys. Rev. B,2011,84:075461-1-7
    [88]Thushari J, Kong B D, Kim K W, Buongiorno N M. Band Engineering and Magnetic Doping of Epitaxial Graphene on SiC (0001). Phys. Rev. Lett.,2010,104:146801-1-4
    [89]Longo R C, Carrete J, Gallego L J. Ab initio study of 3d,4d, and 5d transition metal adatoms and dimers adsorbed on hydrogen-passivated zigzag graphene nanoribbons. Phys. Rev. B,2011,83:235415-1-9
    [90]Huang B, Xiang H J, Wei S H. Controlling doping in graphene through a SiC substrate:A first-principles study. Phys. Rev. B,2011,83:161405-1-4
    [91]Pickett W E, David J S. Electronic structure and half-metallic transport in the La1-xCaxMnO3 system. Phys. Rev. B,1996,53:1146-1160
    [92]Park J H, Vescovo E, Kim H J, Kwon C, Ramesh R, Venkatesan T. Direct evidence for a half-metallic ferromagnet. Nature,1998,392:794-796
    [93]Park J H, Vescovo E, Kim H J, Kwon C, Ramesh R, Venkatesan T. Magnetic Properties at Surface Boundary of a Half-Metallic Ferromagnet La0.7Sr0.3MnO3. Phys. Rev. Lett., 1998,81:1953-1956
    [94]Yang Z Q, Ye L, Xie X D. Electronic and magnetic properties of the perovskite oxides: LaMn1-xCoxO3. Phys. Rev. B,1999,59:7051-7057
    [95]Kang J S, Han H, Lee B W, Olson C G, Han S W, Kim K H, Jeong J I, Park J H, Min B I. Electronic structure of the double-perovskite Ba2FeMoO6 using photoemission spectroscopy. Phys. Rev. B,2001,64:024429-1-6
    [96]Wu H. Electronic structure study of double perovskites A2FeReO6(A=Ba, Sr, Ca) and Sr2M4oO6 (M=Cr, Mn, Fe, Co) by LSDA and LSDA+U. Phys. Rev. B,2001, 64:125126-1-7
    [97]Wang Y K, Lee P H, Guo G Y. Half-metallic antiferromagnetic nature of La2VTcO6 and La2VCu06 from ab initio calculations. Phys. Rev. B,2009,80:224418-1-9
    [98]Pardo V, Pickett W E. Evaluation of compensated magnetism in La2VCuO6:Exploration of charge states. Phys. Rev. B,2011,84:115134-1-4
    [99]Kazuhide T, Yamada I, Azuma M, Takano M, Shimakawa Y. Magnetoresistance and electronic structure of the half-metallic ferrimagnet BiCu3Mo4O12. Phys. Rev. B,2007, 76:024429-1-4
    [100]Hao X F, Xu Y H, Gao F M, Zhou D F, Meng J. Charge disproportionation in CaCu3Fe4O12. Phys. Rev. B,2009,79:113101-1-4
    [101]Lee K Y, Pickett W E. Compensated half-metallicity in the trigonally distorted perovskite NiCrO3. Phys. Rev. B,2011,83:180406-1-4
    [102]van Leuken H, de Groot R A. Half-Metallic Antiferromagnets. Phys. Rev. Lett.,1995, 74:1171-1173
    [103]Pickett W E. Spin-density-functional-based search for half-metallic antiferromagnets. Phys. Rev. B,1998,57:10613-10619
    [104]Katsnelson M I, Irkhin V Y, Chioncel L. Half-metallic ferromagnets:From band structure to many-body effects. Rev. Mod. Phys.,2008,80:315-378
    [105]Hohenberg P, Kohn W. Inhomogeneous Electron Gas. Phys. Rev.,1964,136:B864-B871
    [106]Kohn W, Sham L J. Self-consistent equation including exchange and correlation effects. Phys. Rev.,1965,14O:A1133-A1138
    [107]Kohn W. Nobel lecture:Electronic structure of matter-wave functions and density functionals. Rev. Mod. Phys.,1999,71:1253-1266
    [108]Hartree D R. Proc. Cam. Phil. Soc.,1928,24:89
    [109]Fock V Z, Phys.,1930,61:209
    [110]Foresman J B, Head-Gordon M, Pople J A, Frisch M J. Toward a Systematic Molecular Orbital Theory for Excited States. J. Phys. Chem.,1992,96:135 -149
    [111]Moller C, Plesset M S. Note to an Approximation Treatment for Many-Electron Systems. Phys. Rev.,1934,46:618-622
    [112]Foresman J B, Frisch E. Exploring Chemistry with Electronic Structure Methods,2nd Edition. Gaussian Inc., Pittsburgh,1996
    [113]王志中、李向东。半经验分子轨道理论与实践。科学出版社,北京,1981
    [114]Hoffmann R J. An Extended Hiickel Theory. I. Hydrocarbons. J. Chem. Phys.,1963, 39:1397-1412
    [115]Pople J A, Santry D P, Segal G A. Approximate Self- Consistent Molecular Orbital Theory. I. Invariant Procedures. J. Chem. Phys.,1965,43:S129-135
    [116]Pople J A, Beveridge D J, Dobosh P A. Approximate Self-Consistent Molecular-Orbital Theory. V. Intermediate Neglect of Differential Overlap. J. Chem. Phys.,1967, 47:2026-2033
    [117]Dixon R N. Approximate self-consistent field molecular orbital calculations for valence shell electronic states. Molecular Phys.,1967,12:83-90
    [118]Dewar M J S, Zoebisch E G, Healy E F, Stewart J J P. Development and use of quantum mechanical molecular models.76. AM1:a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc.,1985,107:3902-3909
    [119]Stewart J J P. Optimization of Parameters for Semi-Empirical Methods I-Method. J. Comp. Chem.,1989,10:209-220
    [120]Stewart J J P. Optimization of Parameters for Semi-Empirical Methods II-Applications. J. Comp. Chem.,1989,10:221-264
    [121]Thomas H. The calculation of atomic fields. Proc. Camb. phil. Soc.,1927,23:542-548
    [122]Fermi E. Un Metodo Statistico per la Determinazione di alcune Prioprieta dell'Atomo. Rend. Accad. Naz. Lincei.,1927,6:602-607
    [123]Dirac P A M. Note on exchange phenomena in the Thomas-Fermi atom. Rend. Phil. Roy. Soc.,1930,26:376-385
    [124]袁岚峰,中国科学技术大学博士学位论文,(2001)
    [125]李震宇,中国科学技术大学博士学位论文,(2004).
    [126]武晓君,中国科学技术大学博士学位论文,(2005)
    [127]向红军,纳米材料的理论研究及线性标度电子结构方法的发展.中国科学技术大学博士学位论文,(2006)
    [128]阚二军,新型磁性材料的第一性原理计算与设计研究.中国科学技术大学博士学位论文,(2008)
    [129]Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev.,1965,140:A1133-A1138
    [130]Kohn W, Sham L J. Self-consistent equation including exchange and correlation effects. Phys. Rev.,1965,140:A1133-A1138
    [131]Becke A D. Density functional exchange-energy approximation with correct asymptotic correlation energy. Phys. Rev. A,1988,38:3098-3100
    [132]Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B,1992,45:13244-13249
    [133]Perdew J P, Burke K. Comparison shopping for a gradient-corrected density functional. Int. J. Quant. Chem.,1996,57:767-808
    [134]Becke A D. Density-functional thermochemistry.Ⅲ. The role of exact exchange. J. Chem. Phys.,1993,98:5648-5652
    [135]Stoll H, Pavlidou C M E, Preuss H. On the calculation of correlation energies in the spin-density functional formalism. Theor. Chim. Acta,1978,49:143-149
    [136]Svane P, Gunnarsson O. Transition-metal oxides in the self-interaction-corrected density-functional formalism. Phys. Rev. Lett.,1990,65:1148-1151
    [137]Strange P. Understanding the valency of rare earths from first-principles theory. Nature, 1999,399:756-758
    [138]Anisimov V I, Zaanen J, Andersen O K. Band theory and Mott insulators:Hubbard U instead of Stoner I. Phys. Rev. B,1991,44:943-954
    [139]Martin R M, Electronic structure:basic theory and practical methods (Cambridge University Press, Cambridge,2004).
    [140]Reimann S M, Manninen M. Electronic structure of quantum dots. Rev. Mod. Phys., 2002,74:1283-1342
    [141]Brivio G P, Trioni M I. The adiabatic molecule-metal surface interaction:Theoretical approaches. Rev. Mod. Phys.,1999,71:231-265
    [142]Pickett W E. Electronic structure of the high-temperature oxide superconductors. Rev. Mod. Phys.,1989,61:433-512
    [143]谢希德、陆栋,固体能带理论(复旦大学出版社,上海,1998)
    [144]Eerenstein W, Mathur N D, Scott J F. Multiferroic and magnetoelectric materials. Nature (London),2006,442:759-765
    [145]Bevillon E, Dezanneau G, Geneste G. Oxyfen incorporation in acceptor-doped perovskites. Phys. Rev. B,2011,83:174101-1-6
    [146]Nelson C T, Winchester B, Zhang Y, Kim S J, Melville A, Adamo C, Folkman C M, Baek S H, Eom C B, Schlom D G, Chen L Q, Pan X Q. Spontaneous Vortex Nanodomain Arrays at Ferroelectric Heterointerfaces. Nano Lett.,2011,11:828-834
    [147]Battle P D, Green M A, Lago J, Mihut A, Rosseinsky M J, Spring L E, Singleton J, Vente J F. Water molecules are omitted for clarity. Chem. Commun.,1998,9:987-988
    [148]Marshall I M, Blundell S J, Husmann A, Jestt J, Lovett B M, Pratt F L, Lago J, Battle P D, Rosseinsky M J. Spin dynamics in high oxidation state iron oxides displaying colossal magnetoresistance. Physica B,2000,289:89-93
    [149]Maignan A, Martin C, Nguyen N, Raveau B. Magnetoresistance in the ferromagnetic metallic perovskite SrFe1-xCoxO3. Solid State Sci.,2001,3:57-63
    [150]Zhao Y M, Mahendiran R, Nguyen N, Raveau B, Yao R H. SrFeO2.95:A helical antiferromagnet with large magnetoresistance. Phys. Rev. B,2001,64:024414-1-5
    [151]Abbate M, Zampieri G, Okamoto J, Fujimori A, Kawasaki S, Takano M. X-ray absorption of the negative charge-transfer material SrFe1-xCoxO3. Phys. Rev. B,2002, 65:165120-1-7
    [152]Takeda T, Watanabe H. Magnetic Properties of the System SrCo1-xFexO3-y. J. Phys. Soc. Japn,1972,33:973-978
    [153]Bezdicka P, Fournes L, Wattiaux A, Grenier J C, Pouchard M. Mossbauer characteristics of the Sr2CoFe6 perovskite obtained by electrochemical oxidation. Solid State Commun.,1994,91:501-505
    [154]Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave bais set. Phys. Rev. B,1996,54:11169-11186
    [155]Blochl P E. Projector augmented-wave method. Phys. Rev. B,1994,50:17953-17979
    [156]Mazin 11, Anisimov V I. Insulating gap in FeO:Correlations and covalency. Phys. Rev. B,1997,55:12822-12825
    [157]Bellini V, Giustino L D, Manghi F. Ab initio study of the Fe/NiO interface:Structural and magnetic properties. Phys. Rev. B,2007,76:214432-1-9
    [158]Yang Z Q, Huang Z, Ye L, Xie X D. Influence of oarameters U and J in the LSDA+U method on electronic struture of the peroskites LaMO3 (M= Cr, Mn, Fe, Co, Ni). Phys. Rev. B,1999,60:15674-15682
    [159]Taniguchi T, Mizusaki S, Okada N, Nagata Y, Lai S H, Lan M D, Hiraoka N, Itou M, Sakurai Y, Ozawa T C, Noro Y, Samata H. Crystallographic magnetic properties of the mixed-valence oxides CaRu1-xMnxO3. Phys. Rev. B,2008,77:014406-1-7
    [160]Sondena R, Ravindran P, Stolen S. Electronic structure and magnetic properties of cubic and hexagonal SrMnO3. Phys. Rev. B,2006,74:144102-1-12
    [161]Jaya S M, Jagadish R, Rao R S, Asokamani R. Electronic structure and magnetism of SrFeO3 and SrCoO3. Phys. Rev. B,1992,43:13274-13279
    [162]Kawasaki S, Takano M, Takeda Y. Ferromagnetic Properties of SrFe1-xCoxO3 Sytnthesized under High Pressure. J. Solid State Chem.,1996,121:174-180
    [163]Kolesnik S, Dabrowski B, Mais J, Brown D E, Feng R, Chmaissem O, Kruk R, Kimball C W. Magnetic phase diagram of cubic perovskites SrMn1-xFexO3. Phys. Rev. B,2003, 67:144402-1-7
    [164]Garcia V, Bibes M, Bocher L, Valencia S, Kronast F, Crassous A, Moya X, Vedrenne S E. Ferroelectric Control of Spin Polarization. Science,2010,327:1106-1110
    [165]Behin-Aein B, Datta D, Salahuddin S, Datta S. Nature Nanotechnology,2010,5:266-
    [166]He X, Wang Y, Wu N, Caruso A N, Vescovo E, Belashchenko K D, Dowben P A, Binek C. Robust isothermal electric control of exchange bias at room temperature. Nature Materials,2010,9:579-585
    [167]Weiss D. Spintronics:The importance of contacts. Nature Physics,2009,5:859-860
    [168]Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes M L, Chtchelkanova A Y, Treger D M. Spintronics:A Spin-Based Electronics Vision for the Future. Science,2001,294:1488-1495
    [169]GrAunberg P, Schreiber R, Pang Y, Brodsky M B, Sowers H. Layered Magnetic Structures:Evidence for Antiferromagnetic Coupling of Fe layers across Cr Interlayers. Phys. Rev. Lett.,1986,57:2442-2445
    [170]Baibich M N, Broto J M, Fert A, van Dau F N, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J. Giant Magnetoresistance of (001) Fe/(001)Cr Magnetic Superlattices. Phys. Rev. Lett.,1988,61:2472-2475
    [171]Katsnelson M I, Irkhin V Y, Chioncel L, Lichtenstein A I, de Groot R A. Half-metallic ferromagnets:From band structure to many-body effects. Rev. Mod. Phys.,2008, 80:315-378
    [172]Hasegawa K, Isobe M, Yamauchi T, Ueda H, Yamaura J I, Gotou J. Discovery of Ferromagnetic-Half-Metal-to-Insulator Transition in K2Cr8O16. Phys. Rev. Lett.,2009, 103:146403-1-4
    [173]Gercsi Z, Rajanikanth A, Takahashi Y K, Hono K, Kikuchi M, Tezuka N, Inomata K. rSpin polarization of Co2FeSi full-Heusler alloy and tunneling magneto esistance of its magnetic tunneling junctions. Spin polarization of Co2FeSi full-Heusler alloy and tunneling magnetoresistance of its magnetic tunneling junctions. Appl. Phys. Lett., 2006,89:082512-1-3
    [174]Saito T, Katayama T, Ishikawa T, Yamamoto M, Asakura D, Koide T, Miura Y, Shirai M. Interface structure of half-metallic Heusler alloy Co2MnSi thin film facing an MgO tunnel barrier determined by x-ray magnetic circular dichroism. Phys. Rev. B,2010, 81:144417-1-6
    [175]Keizer R S, Goennenwein S T B, Klapwijk T M, Miao G, Xiao G, Gupta A. A spin triplet supercurrent through the half-metallic ferromagnet CrO2 Nature (London),2006, 439:825-827
    [176]Dho J, Kim D-H, Kwon D, Kim B G. Thermal instability of the half-metallic CrO2 film epitaxially grown on TiO2. J. Appl. Phys.,2008,104:063528-1-4
    [177]Park J-H, Vescovo E, Kim H-J, Kwon C, Ramesh R, Venkatesan T. Direct evidence for a half-metallic ferromagnet. Nature (London),1998,392:794-796
    [178]Coey J M D, Viret M, von Monar S. Mixed-valence manganites. Adv. Phys.,1999, 48:167-293
    [179]Yanase A, Siratori K. Band Structure in the High Temperature Phase of Fe3O4. J. Phys. Soc.Jpn.,1984,53:312-317
    [180]Oeiras R Y, Araujo-Moreira F M, da Silva E Z. Defect-mediated half-metal behavior in zigzag graphene nanoribbons. Phys. Rev. B,2009,80:073405-1-4
    [181]Du A, Chen Y, Zhu Z H, Amal R, Lu G Q, Smith S C. Dots versus Antidots: Computational Exploration of Structure, Magnetism, and Half-Metallicity in Boron-Nitride Nanostructures. J. Am. Chem. Soc.,2009,131:17354-17359
    [182]Pickett W E. Single Spin Superconductivity. Phys. Rev. Lett.,1996,77:3185-3188
    [183]Park J-H, Kwon S K, Min B I. Half-metallic antiferromagnetic double perovskites: LaAVRuO6 (A=Ca, Sr, and Ba). Phys. Rev. B,2002,65:174401-1-4
    [184]Toquin R L, Paulus W, Cousson A, Prestipino C, Lamberti C. Time-Resolved in Situ Studies of Oxygen Intercalation into SrCoO2.5, Performed by Neutron Diffraction and X-ray Absorption Spectroscopy. J. Am. Chem. Soc.,2006,128:13161-13174
    [185]Pruneda J M, Iiguez J, Canadell E, Kageyama H, Takano M. Structural and electronic properties of SrFeO2 from first principles. Phys. Rev. B,2008,78:115101-1-5
    [186]Tsujimoto Y, Tassel C, Hayashi N, Watanabe T, Kageyama H, Yoshimura K, Takano M, Ceretti M, Ritter C, Paulus W. Infinite-layer iron oxide with a square-planar coordination. Nature,2007,450:1062-1066
    [187]Zaanen J, Sawatzky G A, Allen J W. Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett.,1985,55:418-421
    [188]Zeng Z, Greenblatt M, Subramanian M A, Croft M. Large Low-Field Magnetoresistance in Perovskite-type CaCu3Mn4O12. Phys. Rev. Lett.,1999,82:3164-3167
    [189]Homes C C, Vogt T, Shapiro S M, Wakimoto S, Ramirez A P. Optical Response of High-Dielectric-Constant Perovskite-Related Oxide. Science,2001,293:673-676
    [190]nchez-Bentez S J. Preparation, Crystal and Magnatic Structure, and Magnetotransport Properties of the Double Perovskite CaCu2.5Mn4.5O12. Chem. Mater.,2003,15:2193-2200
    [191]Takata K. Magnetoresistance and electronic structure of the half-metallic ferrimagnet BiCu3Mn4O12. Phys. Rev. B,2007,76:024429-1-4
    [192]Shimakawa Y. A-Site-Ordered Perovskites with Intriguing Physical Properties. Inorg. Chem.,2008,47:8562-8570
    [193]Morita Y, Sudayama T. Valence fluctuations and correlated metallic states in A-site ordered perovskite oxides ACu3V4O12 (A=Na, Ca, and Y). Phys. Rev. B,2010, 81:165111-1-5
    [194]Clark J H, Dyer M S, Palgrave R G. Visible Light Photo-oxidation of Model Pollutants Using CaCu3Ti4O12:An Experimental and Theoretical Study of Optical Properties, Electronic Structure, and Selectivity. J. Am. Chem. Soc.,2011,133:1016-1032
    [195]Imada M, Fujimori A, Tokura Y. Metal-insulator transitions. Rev. Mod. Phys.,1998, 70:1039-1263
    [196]Goto T, Luthi B. Charge ordering, charge fluctuations and lattice effects in strongly correlated electron systems. Adv. Phys.,2003,52:67-118
    [197]Saito T, Chen W-T, Mizumaki M. Magnetic coupling between A and B sites in the A-site-ordered perovskite BiCu3Mn4O12. Phys. Rev. B,2010,82:024426-1-5
    [198]Lee P A, Nagaosa N, Wen X G. Doping a Mott insulator:Physics of high-temperature superconducticity. Rev. Mod. Phys.,2006,78:17-85
    [199]Salamon M B, Jaime M. The physics of manganites:Structure and transport. Rev. Mod. Phys.,2001,73:583-628
    [200]Long Y W, Hayashi N, Saito T, Azuma M, Muranaka S, Shimakawa Y. Temperature-induced A-B intersite charge transfer in an A-site-ordered LaCu3Fe4O12 perovskite. Nature (London),2009,458:60-64
    [201]Yamada I. A perovskite containing quadrivalent iron as a charge-disproportionated ferrimagnet. Angew. Chem. Int. Ed.,2008,47:7032-7035
    [202]Takano M. Nakanishi N, Takeda Y, Naka S, Takada T. Charge disproportionation in CaFeO3 studied with the Mossbauer effect. Mater. Res. Bull.,1977,12:923-928
    [203]Hao X F, Xu Y H, Gao F M, Zhou D F, Meng J. Charge disproportionation in CaCu3Fe4O12. Phys. Rev. B,2009,79:113101-1-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700