用户名: 密码: 验证码:
3d过渡金属掺杂有机小分子半导体的特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自旋电子学是当今凝聚态物理以及电子科学领域的一个热门学科,它的核心是不仅利用电子的电荷,而且也利用其自旋进行器件设计,实现自旋注入、输运和调控。在过去的几十年间,由于半导体工业中基于硅芯片的器件尺寸急剧缩小受到基础物理学定律的限制,当前的电子技术已经接近极限。半导体自旋电子学具有非挥发性、数据处理速度快、低能耗等优点,被认为是一种极具潜力的新兴电子学。
     有机自旋电子学作为自旋电子学和有机电子学的交叉学科,它通过有机半导体来进行传输和调控自旋信号。有机半导体具有无机半导体所不具备的优势,其中最吸引人的原因是有机半导体主要由C, H, O, N等轻元素组成,原子序数较小,自旋轨道耦合很弱,能够长时间保持载流子的自旋极化,自旋弛豫时间极长。同时,有机小分子半导体还具有丰富的结构和物理特性,种类繁多,制备工艺简单,重量轻,柔性好,性能可通过官能团修饰、杂化、掺杂等多种方法调控。在有机电子学、有机光电子学、纳米电子学、分子电子学等领域具有重要的应用前景,因此有机自旋电子学成为了当前科学界的一个研究热点。
     2002年,Dediu等人在LSMO/6T/LSMO结构中观测到磁电阻效应,6T是一种共轭有机低聚物,这次实验显示出有机材料具备吸引人的用于长距离自旋输运的潜力,可以实现自旋信号注入和保持;2004年Xiong等人在LSMO/Alq3/Co器件中发现了约40%的巨磁电阻效应,引发国内外的广泛关注。随后,在其它有机小分子材料和聚合物中也都相继发现了巨磁电阻效应。2011年,Yoo等人以有机高分子磁体V(TCNE)X为铁磁电极制备了V(TCNE)X/Rubrene/V(TCNE)x全有机自旋阀,在100K温度下观测到了约0.04%的磁电阻。虽然获得的磁电阻较小,但是它揭示了有机磁性半导体在全有机自旋器件中的应用前景。Baik等人提出了制备基于有机小分子的磁性半导体,他们在用共蒸法制备的Co掺杂Alq3薄膜中发现了超过室温的铁磁性,Mn掺杂Alq3薄膜的居里温度也达到了270K;这预示着制备具有优异光、电、磁学特性的有机小分子磁性半导体并应用于有机自旋电子学中成为可能。
     过渡金属掺杂有机小分子半导体作为制备有机磁性半导体的一个重要手段,这项研究目前刚刚开始,尚存在很多难题。一个最先需要考虑的问题就是过渡金属原子与有机分子的结合问题。材料中存不存在金属团簇?过渡金属在有机分子中呈现什么结构?过渡金属原子与有机分子是吸附还是形成化学键?如果成键会形成什么样的化学键?掺入的过渡金属原子对材料的电子结构和性质有何影响?这些都是迫切需要解决的问题。
     并且,从器件上来讲,有机自旋阀器件中的“铁磁电极/有机半导体”界面(如"Co/Alq3"等)的结构和性质对器件的自旋注入和磁电阻特性有重要的影响。深入研究其界面特性,找出界面处铁磁金属与有机分子结合情况及其对器件性质的影响,对于设计具有高自旋注入和探测效率的有机自旋电子学器件是至关重要的。然而目前大多数的研究主要集中在界面的电子性质上,铁磁金属/有机分子的界面精细结构研究进展较慢。
     本论文针对以上问题,开展了相关工作,主要内容和结论如下:
     1.有机自旋电子学器件中LSMO铁磁电极的性质研究
     LSMO因其极高的自旋极化率而被许多有机自旋电子器件作为铁磁电极材料。我们通过射频磁控溅射方法在玻璃衬底上生长LSMO薄膜,并研究了退火效应对其结构特性,输运行为和磁性性质的影响。结果显示在空气中经过退火的LSMO薄膜,由于界面晶格不匹配导致的应力几乎被完全弛豫,其面外晶格参数非常接近体材料LSMO;薄膜中存在纳米尺寸的晶粒。LSMO薄膜的输运特性显示,未处理薄膜呈现绝缘体特性。经过退火的薄膜出现金属-绝缘体相变现象,其相变温度为268K。磁性测量显示620℃退火薄膜的居里温度达到315K,同时其饱和磁矩也非常接近LSMO体材料。
     2.锰掺杂八羟基喹啉镓薄膜的分子和电子结构研究
     八羟基喹啉镓(Gaq3)是一种具有优异光电性能的有机小分子半导体,它具有比Alq3更高的电致发光效率。我们通过密度泛函第一性原理对Mn掺杂Gaq3孤立分子体系的结构和电子性质进行了计算;同时通过傅立叶红外光谱(FTIR)和光致发光(PL)光谱对Mn掺杂Gaq3薄膜的结构和光学性质进行了研究。结果显示,Gaq3分子中的最低未占据分子轨道主要由吡啶环上N2,N3原子的p轨道,以及这两个N原子的第三近邻C原子的p轨道构成。锰原子失去的电子主要积累在A配体中吡啶环的C,N原子上。体系中的磁矩主要局域在锰原子的d轨道,同时吡啶环上C,N原子由于其2p轨道接受了注入电荷也产生了自旋极化。带正电的锰原子可能在带隙中引入一个电子势阱态,薄膜的光致发光谱中出现一个新的红光发光峰,这可能和金属-配体电荷转移激发态有关。
     3.X射线吸收精细结构光谱测定过渡金属-八羟基喹啉金属配合物的结构
     金属-Mqx(M=Al, Ga, Zn, Be和Ca等,x=2或者3)复合物在有机铁磁半导体以及有机光电子学的研究中吸引了广泛关注。然而,长时间以来对这种复合物中的结构进行精确测定一直是一项很大的挑战。本论文中我们通过同步辐射X射线吸收精细结构(XAFS)实验方法,并结合IFEFFIT软件包对MnK边的扩展X射线吸收精细结构光谱(EXAFS)进行了分析和拟合,获得了Mn-Gaq3退火薄膜中的精确结构。结果表明,锰原子在薄膜中和Gaq3分子发生了反应,而不是形成类似于锰氧化物或锰金属团簇的无机物。Mn K边EXAFS结果显示Mn原子位于其中一个分子N,O原子的吸引中心,同时和另一分子中吡啶环上的部分C原子成键(LUMO能级主要位于这些C原子上)。Mn原子与其最近邻的N,O两个原子之间的距离分别为2.09A和2.12A。氧K边X射线吸收近边结构(XANES)也发现锰金属在Gaq3分子的带隙中引入了一条新的势阱态。
     同时,我们通过变角度掠入射XAFS方法对Co/Alq3和Alq3/Co界面结构进行了研究。通过对Co K边XANES光谱的分析,发现不同的生长顺序对Co-Alq3界面结构有显著的影响。Alq3薄膜生长在Co金属上形成的Co/Alq3界面化学性质稳定,其结构没有发生明显变化;Co金属生长在Alq3薄膜上形成的Alq3/Co界面中,XANES光谱发生了显著变化,这表明Co与Alq3产生了反应,Co在界面中形成类似于Co掺杂Alq3薄膜中的局域近邻结构。
     4.锰掺杂八羟基喹啉铝中的磁性
     我们采用第一性原理密度泛函理论对锰掺杂八羟基喹啉铝(Alq3)中的磁性进行了计算,分析了以往实验报道Mn掺杂Alq3薄膜中铁磁性的来源和机制。结果表明,Mn原子掺入后向周围喹啉环上的C,N等非金属原子提供电子,Mn的3d轨道和C,N原子的2p轨道产生杂化。体系中的磁矩主要来自Mn d轨道的贡献。Mn原子作为磁性杂质存在,和束缚在喹啉环上C,N原子中的电子形成了内部具有反铁磁作用的类似于磁极化子的态;自旋方向反平行于同一个磁性杂质的磁极化子之间的间接铁磁交换作用可能是Mn掺杂Alq3薄膜中铁磁性的来源。
Spintronics is a hot topic in the research fields of condensed-matter physics and electronics. It makes use of both the charge of the electrons and their spin to design devices. In the last several decades, the microelectronics industry has been able to continually shrink the size of electronic components on silicon chips. However, transistors cannot scale down indefinitely, and they are now so small that further shrinking would compromise performance. The microelectronics industry is therefore looking beyond the classic transistor to secure the future of a new generation of electronics. Semiconductor spintronics is a promising candidate with many advantages including the nonvolatile data storage, the high speed of data processing, the high storage density, and the low energy consumption.
     Organic spintronics is the interdiscipline of spintronics and organic electronics. It makes uses of organic materials to transport and manipulate spin-polarized signals. Compared with inorganic semiconductors, it is more attractive that organic semiconductors have weaker spin-scattering mechanism. The spin-polarization can be maintained for a very long time. The organic semiconductors are composed of low-weight atoms (such as C, N, O, H, etc.) which lead to a small spin-orbit coupling (spin-orbit coupling scales with Z4, where Z is the atomic number) and long spin-relaxation time. Moreover, organic small molecule semiconductors have a variety of species, rich structure and physical properties, and the characteristics of low-weight, easy processing and mechanically flexible. Especially, their performance can be easily modified by functional group modification, hybridization and doping.
     In2004, Xiong et al. reported a GMR response of40%in a LSMO/Alq3/Co spin valve. In the following researches, devices based on other organic small molecules and polymers have also shown noticeable MR. In2011, Yoo et al. reported the V(TCNE)x/Rubrene/V(TCNE)x full organic spin valve using the organic polymer magnet V(TCNE)x as the ferromagnetic electrodes. They observed an about0.04%MR response. Although the absolute MR values remain small, it indicates the potential applications of organic magnetic semiconductors in all-organic spintronic devices. Baik et al. found ferromagnetism above room temperature in Co-doped Alq3thin films, impling that the preparation of organic semiconductors with ferromagnetic properties is possible. However, the magnetism in transition metal-doped organic small molecules remains unknown, and the accurate structures, which is the first step to the understanding of the magnetism, of these materials remains unclear.
     Not only the magnetism in transition metal-doped organic small molecules, the structure investigation of transition metal-organic small molecules are also crucial for the understanding of the spin polarized carriers transport through the transition metal-OSC interfaces (such as Co-Alq3) in spintronic devices. The structure and electronic properties in the interface affect remarkably the spin injection efficiency and MR value of the devices. A well-defined interface of FM/OSC is therefore crucial for designing the devices with high spin injection and detection efficiency. While the current researches mainly focus on the electronic structure in the interface, the reports on the structure of FM/OSC interface are rather rare.
     To solve the issues listed above, we performed the related experiments and simulations, the detailed contents and main results are given below:
     1. Study on the properties of LSMO ferromagnetic electrode in organic spintronic devices
     LSMO is usually used as spin polarized electrode in organic spin valves. In this work, the Lao.67Sro.33Mn03thin films are grown on glass substrates in a mixed argon and oxygen atmosphere by using RF magnetron sputtering. Annealing effect on structural characteristics, transport behaviors and magnetic properties of LSMO films has been studied. The results indicate that the out-of-plane lattice parameter aLSMO contracts after annealing and is close to that of bulk LSMO abuik, implying that the internal strain arising from the lattice mismatch is almost fully relaxed. Nanocrystalline grains are also observed in the annealed films. The transport measurement indicates that the as-grown LSMO films show insulate-like behavior, while a clear metal-to-insulator transition is observed at268K in the annealed films. The magnetic measurement shows that the Curie temperature of620℃annealed films reaches315K, and the films have the largest saturation magnetization which is approximate to that of bulk materials.
     2. Molecular and electronic structures of Mn-doped tris-8-hydroxyquinolinate gallium
     Tris-8-hydroxyquinolinate gallium (Gaq3) is an organic small molecule semiconductor with excellent optoelectronic properties, which exhibits higher electroluminescence yields than equivalent devices based on Alq3. The molecular and electronic properties of Mn-doped Gaq3are investigated by ab-initio DFT cluster model calculations, Fourier transform infrared spectroscopy (FTIR) and photoluminescence spectra (PL). The results show that the lowest unoccupied molecular orbital (LUMO) sets reside mainly on N2, N3p states, as well as on the p states of their third-nearest-neighbor C atoms. The electrons deplete from the Mn atom and accumulate mainly on the C, N atoms within the pyridyl ring of ligand A. The magnetic moment is mainly localized around the d orbital of Mn atom and the2p states of C and N atoms on pyridyl ring are also spin polarized due to the injected electrons. The positive charged Mn ions lead to an electron trap site in the energy gap and a red luminescence also appears in PL spectra which may be related to the MLCT excited states.
     3. Determination of the Structures of Transition metal-Mq3(M=Al and Ga) by X-ray Absorption Fine Structure Spectroscopy
     Metal-Mqqx (M=Al, Ga, Zn, Be and Ca, x=2or3) complexes play a key role in organic spintronics and organic optoelectronics. However, the accurate structure determination of these complexes has been a challenge for a long time. We determine the accurate structure of annealed Mn-Gaq3thin films by using synchronic radiation x-ray absorption fine structure (XAFS) experiments with the extended X-ray absorption fine structure (EXAFS) analysis at Mn K-edge performed in IFEFFIT software package. The results show that the Mn atoms interact with Gaq3molecules rather than forming inorganic compounds. The EXAFS results show that the Mn atoms locate at the attraction centers with respect to the N and O atoms in a Gaq3molecule and bond with some C atoms on the pyridyl ring in the other molecule (LUMO sets reside mainly on these C atoms). The nearest Mn-N and Mn-O distances are about2.09A and2.12A, respectively. O K-edge x-ray absorption near-edge structure (XANES) spectra show that a new trap state is introduced in the forbidden energy gap by doped metal atoms.
     We also investigate the structures of Co-Alq3and Alq3-Co interfaces by variable incidence angles grazing incidence XAFS (VIA-GIXAFS) method. By analyzing the XANES spectra at Co K-edge, it is found that the structures of Co-Alq3interfaces depend strongly upon the order of deposition. The interface Co-Alq3(Alq3is deposited on Co layer) is chemically stable without obvious structure changes. However, in the interface Alq3-Co (Co is deposited on Alq3layer), XANES spectra have large discrepancy with that of Co-Alq3interface. It indicates that Co interacts with Alq3molecule, forming a complicated structure similar with the local atomic structures around Co atoms in Co-doped Alq3thin films.
     4. Magnetism in Mn-doped Tris(8-hydroxyquinoline)Aluminum
     The magnetic and electronic properties in Mn-doped Alq3has been studied by ab initio density functional theory calculation. The doped Mn atoms deplete electrons to the adjacent non-metal atoms (C, N, etc.). Mn atoms act as a trap sites, and the local magnetic moments in the system arise mainly from the Mn d orbitals. Mn atoms and the transferred electrons localized on the C, N atoms in quinolate ligands form the states similar with bound magnetic polarons which have antiferromagnetic configuration. Two bound magnetic polarons antiparallel with the same magnetic ion have indirect ferromagnetic exchange interaction, leading to the collective magnetism. It may interpret the ferromagnetism found in the Mn-dopd Alq3thin films.
引文
[1]蔡建旺,赵见高,詹文山,沈保根,物理学进展17,119(1997).
    [2]S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova and D. M. Treger, Science 294,1488 (2001).
    [3]J. Barnas, A. Fuss, R. Camley, P. Grunberg and W. Zinn, Phys. Rev. B 42,8110 (1990).
    [4]M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau and F. Petroff, Phys. Rev. Lett. 61,2472(1988).
    [5]B. Dieny, V. Speriosu, S. Parkin, B. Gurney, D. Wilhoit and D. Mauri, Phys. Rev. B 43,1297 (1991).
    [6]N. F. Mott, Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences 153,699 (1936).
    [7]D. D. Awschalom and M. E. Flatte, Nat. Phys.3,153 (2007).
    [8]V. A. Ivanov, T. G. Aminov, V. M. Novotortsev and V. T. Kalinnikov, Russ. Chem. Bull.53,2357(2004).
    [9]任俊峰,付吉永,解士杰,前沿进展35,852(2006).
    [10]C.-M. Hu, J. Nitta, A. Jensen, J. B. Hansen and H. Takayanagi, Phys. Rev. B 63, 125333 (2001).
    [11]G. Schmidt, D. Ferrand and L. W. Molenkamp, Phys. Rev. B 62, R4790 (2000).
    [12]V. Dediu, M. Murgia, F. C. Matacotta, C. Taliani and S. Barbanera, Solid State Commun.122,181(2002).
    [13]V. Garcia, M. Bibes, A. Barthelemy, M. Bowen, E. Jacquet, J. P. Contour and A. Fert, Phys. Rev. B 69,053403 (2004).
    [14]M. Koubaa, A. M. Haghiri-Gosnet, R. Desfeux, P. Lecoeur, W. Prellier and B. Mercey, J. Appl. Phys.93,5227 (2003).
    [15]N. M. Souza-Neto, A. Y. Ramos, H. C. N. Tolentino, E. Favre-Nicolin and L Ranno, Appl. Phys. Lett.83,3587 (2003).
    [16]A. Tiwari, C. Jin, D. Kumar and J. Narayan, Appl. Phys. Lett.83,1773 (2003).
    [17]F. Wang, C. Yang, Z. Vardeny and X. Li, Phys. Rev. B 75,245324 (2007).
    [18]林亮,有机自旋小分子半导体材料与器件制备及特性研究,博士学位论文,山东大学(2011).
    [19]J. D. Bergeson, spin-dependent transport phenomena in organic semiconductors. Doctoral dissertation, School of The Ohio State University (2007).
    [20]M. Julliere, Phys. Lett.54,225 (1975).
    [21]A. Fert and I. A. Campbell, Phys. Rev. Lett.21,1190 (1968).
    [22]R. Farchioni and G. Grosso, Organic Electronic Materials (Berlin:Springer) (2001).
    [23]G. Cuniberti, G. Fagas and K. R. (ed), Introducing Molecular Electronics (Berlin: Springer) (2005).
    [24]H. K. (ed), Organic Electronics:Materials, Manufacturing and Applications (Weinheim:Wiley-VCH) (2006).
    [25]G. Prinz, Phys. Today 48,58 (1995).
    [26]G Prinz, Science 282,1660 (1998).
    [27]S. S. Das, Am. Sci.89,516 (2001).
    [28]J. F. Gregg, J. Petej, E. Jouguelet and C. Dennis, J. Phys. D:Appl. Phys.35, R121 (2002).
    [29]I. Zutic, J. Fabian and S. S. Das, Rev. Mod. Phys.76,323 (2004).
    [30]W. J. M. Naber, S. Faez and W. G. v. d. Wiel, J. Phys. D:Appl. Phys.40, R205 (2007).
    [31]王丰功,氧化物和有机小分子中磁性及相关特性的理论研究,博士学位论文,山东大学(2010).
    [32]M. Cinchetti, K. Heimer, J.-P. Wustenberg, O. Andreyev, M. Bauer, S. Lach, C. Ziegler, Y. Gao and M. Aeschlimann, Nat. Mater.8,115 (2009).
    [33]A. J. Drew, J. Hoppler, L. Schulz, F. L. Pratt, P. Desai, P. Shakya, T. Kreouzis, W. P. Gillin, A. Suter, N. A. Morley, V. K. Malik, A. Dubroka, K. W. Kim, H. Bouyanfif, F. Bourqui, C. Bernhard, R. Scheuermann, G. J. Nieuwenhuys, T. Prokscha and E. Morenzoni, Nat. Mater.8,109 (2009).
    [34]T. Francis,O. Mermer, G. Veeraraghavan and M. Wohlgenannt, New J. Phys.6,185 (2004).
    [35]V. N. Prigodin, J. D. Bergeson, D. M. Lincoln and A. J. Epstein, Synth. Met.156, 757 (2006).
    [36]P. Desai, P. Shakya, T. Kreouzis, W. P. Gillin, N. A. Morley and M. R. J. Gibbs, Phys. Rev. B 75,094423 (2007).
    [37]B. Hu and Y. Wu, Nat. Mater.6,985 (2007).
    [38]J. D. Bergeson, V. N. Prigodin, D. M. Lincoln and A. J. Epstein, Phys. Rev. Lett. 100,067201 (2008).
    [39]P. A. Bobbert, T. D. Nguyen, F. W. A. v. Oost, B. Koopmans and M. Wohlgenannt, Phys. Rev. Lett.99,216801 (2007).
    [40]T. P. Nguyen, Mater. Sci. Semicond. Process.9,198 (2006).
    [41]G. Szulczewski, S. Sanvito and M. Coey, Nat. Mater.8,693 (2009).
    [42]P. Bobbert, W. Wagemans, F. van Oost, B. Koopmans and M. Wohlgenannt, Phys. Rev. Lett.102,156604 (2009).
    [43]Y. Sheng, T. D. Nguyen, G. Veeraraghavan, O. Mermer, M. Wohlgenannt and U. Scherf, Phys. Rev. B 74,045213 (2006).
    [44]B. F. Ding, Y. Yao, Z. Y. Sun, C. Q. Wu, X. D. Gao, Z. J. Wang, X. M. Ding, W. C. H. Choy and X. Y. Hou, Appl. Phys. Lett.97,163302 (2010).
    [45]V. Coropceanu, J. Cornil, D. A. d. Silva, Y. Olivier, R. Silbey and J. L. Bredas, Chem. Rev.107,926 (2007).
    [46]S. Bandyopadhyay, Phys. Rev. B 81,153202 (2010).
    [47]Z. G. Yu, Phys. Rev. Lett.106,106602 (2010).
    [48]J. M. D. Teresa, Science 286,507 (1999).
    [49]J. E. Evetts, Philos. Trans. R. Soc. Lond. A 356,1593 (1998).
    [50]G. Horowitz, D. Fichou, X. Z. Peng, Z. G. Xu and F. A. Gamier, Solid State Commun.72,381 (1989).
    [51]Z. H. Xiong, D. Wu, Z. V. Vardeny and J. Shi, Nature 427,821 (2004).
    [52]V. Dediu, L. Hueso, I. Bergenti, A. Riminucci, F. Borgatti, P. Graziosi, C. Newby, F. Casoli, M. De Jong, C. Taliani and Y. Zhan, Phys. Rev. B 78,115203 (2008).
    [53]S. Majumdar, H. S. Majumdar, R. Laiho and R. Osterbacka, J. Alloys Compd.423, 169(2006).
    [54]W. Xu, Appl. Phys. Lett.90,072506 (2007).
    [55]F. J. Wang, Z. H. Xiong, D. Wu, J. Shi and Z. V. Vardeny, Synth. Met.155,172 (2005).
    [56]D. Sun, L. Yin, C. Sun, H. Guo, Z. Gai, X. G. Zhang, T. Z. Ward, Z. Cheng and J. Shen, Phys. Rev. Lett.104,236602 (2010).
    [57]J.-W. Yoo, C.-Y. Chen, H. W. Jang, C. W. Bark, V. N. Prigodin, C. B. Eom and A. J. Epstein, Nat. Mater.9,638 (2010).
    [58]B. Li, C. Y. Kao, J. W. Yoo, V. N. Prigodin and A. J. Epstein, Adv. Mater.23,3382 (2011).
    [59]游彪,盛文婷,孙亮,张维,杜军,胡安,自然杂志25,220(2003).
    [60]R. A. de Groot, F. M. Muller, P. G. van Engen and K. H. J. Buschow, Phys. Rev. Lett.50,2024(1983).
    [61]J. M. D. Coey, M. Viret and S. v. Monlnar, Adv. Phys.48,167 (1999).
    [62]詹丁山,刘如熹,化学66,37(2008).
    [63]刘甜甜,LCMO/A1q3/Co三明治结构有机自旋阀器件,山东大学硕士论文(2007).
    [64]G. H. Jonker and J. H. v. Santen, Physica 16,337 (1950).
    [65]C. Zener, Phys. Rev.82,403 (1951).
    [66]P. W. Anderson and H. Hasegawa, Phys. Rev.100,675 (1955).
    [67]P. G. d. Gennes, Phys. Rev.118,141 (1960).
    [68]J. B. Goodenough, Phys. Rev.100,564 (1955).
    [69]E. O. Wollan and W. C. Koehler, Phys. Rev.100,545 (1955).
    [70]C. W. Searle and S.-T. Wang, Can. J. Phys.48,2023 (1970).
    [71]R. v. Helmolt, J. Wecker, B. Holzapfel, L. Schultz and K. Samwer, Phys. Rev. Lett. 71,2331 (1993).
    [72]S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R.Ramesh and L. H. Chen, Science 264,413 (1994).
    [73]B. Nadgorny,I.I. Mazin, M. Osofsky, J. R. J. Soulen, P. Broussard, R. M. Stroud, D. J. Singh, V. G. Harris, A. Arsenov and Y. Mukovskii, Phys. Rev.63,184433 (2001).
    [74]W. E. Pickett and D. J. Singh, Phys. Rev.53,1146 (1996).
    [75]. J. M. D. Coey, M. Venkatesan and M. A. Bari, in Lecture Notes in Physics,595, 377 (2002).
    [76]W. E. Pickett and D. Singh, Physics of Manganites, Plenum, New York, (1998).
    [77]J.-H. Park, E. Vescovo, H.-J. Kim, C. Kwon, R. Ramesh and T.Venkatesan, Nature 392,794(1998).
    [78]M. Bowen, M. Bibes, A. Barthelemy, J.-P. Contour and A. Anane, Appl. Phys. Lett. 82,233 (2003).
    [79]J. R. J. Soulen, J. M. Byers, M. S. Osofsky, B. Nadgorny, T. Ambrose, S. F. Cheng, P. R. Broussard, C. T. Tanaka, J. Nowak, J. S. Moodera, A. Barry and J. M. D. Coey, Science 282,85 (1998).
    [80]S. Majumdar, H. Huhtinen, H. S. Majumdar and P. Paturi, J. Alloys Compd.512, 332(2012).
    [81]J. Zhu, Y. Chen, W. Xu, J. Yang, W. Bai, G. Wang, C. Duan, Z. Tang and X. Tang, Phys. Lett. A 375,3103 (2011).
    [82]S. Valencia, Z. Konstantinovic, D. Schmitz, A. Gaupp, L. Balcells and B. Martinez, Phys. Rev. B 84,024413 (2011).
    [83]C. Wu, J. Qiu, J. Wang, M. Xu and L. Wang, J. Alloys Compd.506, L22 (2010).
    [84]M. Martino, M. Cesaria, A. P. Caricato, G. Maruccio, A. Cola and I. Farella, phys. Stat. Sol. (a) 208,1817(2011).
    [85]D. Pesquera, V. Skumryev, F. Sanchez, G. Herranz and J. Fontcuberta, Phys. Rev. B 84,184412(2011).
    [86]J. S. Lee, D. Arena, P. Yu, C. Nelson, R. Fan, C. Kinane, S. Langridge, M. Rossell, R. Ramesh and C. C. Kao, Phys. Rev. Lett.105,257204 (2010).
    [87]A. Mauger and C. Godart, Phys. Rep 141,51 (1986).
    [88]G. Prinz and K. Hathaway, Phys. Today 48,24 (1995).
    [89]M. Tanaka, J. Cryst. Growth 201/202,660 (1999).
    [90]J. M. D. Coey, Curent Opinion, in Solid State and Materials Science 10,83 (2006).
    [91]Y. Hamada, H. Kanno, T. Tsujioka, H.Takahashi and T. Usuki, Appl. Phys. Lett.75, 1682(1999).
    [92]C. H. Chen, C. W. Tang, J. Shi and K. P. Klubek, Thin Solid Films 363,327 (2000).
    [93]J. M. Shi and C. W. Tang, Appl. Phys. Lett.70,1665 (1997).
    [94]I. Tanaka, Y. Tabata and S. Tokito, Phys. Rev. B 71,205207 (2005).
    [95]R. C. Kwong, S. Sibley and T. Dubovoy, Chem. Mat.11,3709 (1999).
    [96]H. J. Ding and Y. L. Gao, Appl. Surf. Sci.252,3943 (2006).
    [97]T. W. Pi, C. H. Liu and J. Hwang, J. Appl. Phys.99,123712 (2006).
    [98]M. Takahashi, P. Turek, Y. Nakazawa, M. Tamura, K. Nazawa, D. Shiomi, M. Ishikawa and M. Kinoshita, Phys. Rev. Lett.67,746 (1991).
    [99]J. M. Manriquez, G. T. Yee, R. S. Mclean, J. S. Miller and A. J. Epstein, Science 252,1415(1991).
    [100]J. S. Miller and A. J. Epstein, Ang. Chem. Int. Ed.33,385 (1994).
    [101]S. Ferlay, T. Mallah, R. Ouahes, P. Veiliet and M. Verdaguer, Nature 378,701 (1995).
    [102]N. E. Chakov, S. C. Lee, A. G. Harter, P. L. Kuhns, A. P. Reyes, S. O. Hill, N. S. Dalal, W. Wernsdorfer, K. A. Abboud and G. J. Christou, J. Am. Chem. Soc.128,6975 (2006).
    [103]H. Ohno, Science 281,951 (1998).
    [104]S. Tanabe, S. Miwa, M. Mizuguchi, T. Shinjo, Y. Suzuki and M. Shiraishi, Appl. Phys. Lett.91,063123(2007).
    [105]J. F. Yin, G. Ni, J. Q. Wu, M. Y. Yuan, P. Sheng, S. Y Wang and Q. Y. Jin, Chin. Phys. Lett.26,017804 (2009).
    [106]X. M. Zhao, G. Ni, Q. Shu, P. Sheng, J. Q. Wu, J. F. Yin, B. Ma and Y. Q. Jin, J. Magn. Magn. Mater.321,418 (2009).
    [107]H. Zare-Kolsaraki and H. Micklitz, Eur. Phys. J. B 40,103 (2004).
    [108]S. Miwa, M. Shiraishi, M. Mizuguchi, T. Shinjo and Y. Suzuki, Jpn. J. Appl. Phys. 45, L717 (2006).
    [109]S. Miwa, M. Shiraishi, S. Tanabe, M. Mizuguchi, T. Shinjo and Y. Suzuki, Phys. Rev. B 76 (2007).
    [110]H. Kusai, S. Miwa, M. Mizuguchi, T. Shinjo, Y. Suzuki and M. Shiraishi, Chem. Phys. Lett.448,106(2007).
    [111]J. M. Baik, Y. Shon, S. J. Lee, Y. H. Jeong, T. W. Kang and J. L. Lee, J. Am. Chem. Soc.130,13522(2008).
    [112]J. M. Baik, J.-L. Lee, Y. Shon and T. W. Kang, Phys. Stat. Sol. (RRL) 2,22 (2008).
    [113]F. Wang, Z. Pang, L. Lin, S. Fang, Y. Dai and S. Han, Appl. Phys. Lett.96, 053304 (2010).
    [114]S. Majumdar, H. S. Majumdar, R. Laiho and R. Osterbacka, New J. Phys.11, 013022(2009).
    [115]L. Lin, Z. Pang, S. Fang, F. Wang, S. Song, Y. Huang, X. Wei, H. Yu and S. Han, J. Phys. Chem. A115,880 (2011).
    [116]Y. Zhan, E. Holmstrom, R. Lizarraga, O. Eriksson, X. Liu, F. Li, E. Carlegrim, S. Stafstrom and M. Fahlman, Adv. Mater.22,1626 (2010).
    [117]Y.-L. Chan, Y.-J. Hung, C.-H. Wang, Y.-C. Lin, C.-Y. Chiu, Y.-L. Lai, H.-T. Chang, C.-H. Lee, Y. J. Hsu and D. H. Wei, Phys. Rev. Lett.104,177204 (2010).
    [118]P. E. Burrows, L. S. Sapochak, D. M. McCarty, S. R. Forrest and M. E. Thompson, Appl. Phys. Lett.64,2718 (1994).
    [119]L. S. Sapochak, P. E. Burrows, D. Garbuzov, D. M. Ho, S. R. Forrest and M. E. Thompson, J. Phys. Chem.100,17766 (1996).
    [120]A. Elschner, H. W. Heuer, F. Jonas, S. Kirchmeyer, R. Wehrmann and K. Wussow, Adv. Mater.13,1811 (2001).
    [1]I. Hernandez, W. P. Gillin and M. Somerton, J. Lumin.129,1835 (2009).
    [2]M. Brinkmann, B. Fite, S. Pratontep and C. Chaumont, Chem. Mater.16,4627 (2004).
    [3]刘甜甜,LCMO/Alq3/Co三明治结构有机自旋阀器件,硕士论文,山东大学(2007).
    [4]林亮,有机自旋小分子半导体材料与器件制备及特性研究,博士学位论文,山东大学(2010).
    [5]吕茂水,溅射法制备掺锆氧化锌透明导电薄膜及薄膜特性研究,博士学位论文,山东大学(2007).
    [6]郭立伟,现代材料分析测试方法,兵器工业出版社(2008).
    [7]乔文,Ce掺杂Ca2FeMoO6双钙钛矿材料的制备与性质研究,硕士论文,兰州大学(2009).
    [8]王丰功,氧化物和有机小分子中磁性及相关特性的理论研究,博士学位论文,山东大学(2010).
    [9]解士杰,韩圣浩,凝聚态物理,山东教育出版社(2001).
    [10]谢希德,固体能带理论,复旦大学出版社(2007).
    [1]Y. H. Chen and T. B. Wu, Appl. Phys. Lett.93,224104 (2008).
    [2]Y. Takamura, R. V. Chopdekar, E. Arenholz and Y. Suzuki, Appl. Phys. Lett.92, 162504(2008).
    [3]P. Dey, T. K. Nath and A. Taraphder, Appl. Phys. Lett.91,012511 (2007).
    [4]M. Spankova, S. Chromik, I. Vavra, K. Sedlackova, P. Lobotka, S. Lucas and S. Stancek, Appl. Surf. Sci.253,7599 (2007).
    [5]S. Pignard, H. Vincent, J. P. Senateur and P. H. Giauque, Thin Solid Films 347,161 (1999).
    [6]M. Jain, Y. Li, M. F. Hundley, M. Hawley, B. Maiorov, I. H. Campbell, L. Civale, Q. X. Jia, P. Shukla, A. K. Burrell and T. M. McCleskey, Appl. Phys. Lett.88,232510 (2006).
    [7]M. Jain, P. Shukla, Y. Li, M. F. Hundley, H. Wang, S. R. Foltyn, A. K. Burrell, T. M. McCleskey and Q. X. Jia, Adv. Mater.18,2695 (2006).
    [8]D. R. Sahu, Appl. Surf. Sci.255,1870 (2008).
    [9]Y. S. Cho, J. S. Hwang-Bo, Y. H. Kim, S.-I. Park, S. W. Lee and C. S. Kim, J. Magn. Magn. Mater.226,754 (2001).
    [10]Y. S. Dua, B. Wang, T. Li, D. B. Yu and H. Yan, J. Magn. Magn. Mater.297,88 (2006).
    [11]P. K. Muduli, G. Singh, R. Sharma and R. C. Budhani, J. Appl. Phys.105,113910 (2009).
    [12]Z. Konstantinovic, J. Santiso, D. Colson, A. Forget, L. Balcells and B. Martinez, J. Appl. Phys.105,063919 (2009).
    [13]H. P. Klug and L. Alexander, X-RAY Diffraction Procedures-for Plolycrystalline and Amorphous Materials,2nd, John Wiley and Sons, New York (1974).
    [14]H. Yin, R. Huang, K. D. Hobart, Z. Suo, T. S. Kuan, C. K. Inoki, S. R. Shieh, T. S. Duffy, F. J. Kub and J. C. Sturm, J. Appl. Phys.91,9716 (2002).
    [15]C. Zener, Phys. Rev.82,3 (1951).
    [16]H. L. Ju and H. Sohn, Solid State Commun.102,463 (1997).
    [17]H. L. Jua and K. M. Krishnanb, J. Appl. Phys.83,7073 (1998).
    [18]R. Mahesh, R. Mahendiran, A. K. Raychaudhuri and C. N. R. Rao, Appl. Phys. Lett. 68,2291 (1995).
    [1]R. H. Friend, et al., Nature 397,121 (1999).
    [2]Pierre Clement Barraud, R. Seneor, S. Mattana, K. Fusil, C. Bouzehouane, P. Deranlot, L. Graziosi, I. Hueso, V. Bergenti, F. Dediu, Petroff and A. Fert, Nat. Phys.6, 615(2010).
    [3]K. Tarafder, B. Sanyal and P. Oppeneer, Phys. Rev. B 82,060413 (2010).
    [4]V. A. Dediu, L. E. Hueso, I. Bergenti and C.Taliani, Nat. Mater.8,707 (2009).
    [5]F. Pulizzi, Nat. Mater.8,691 (2009).
    [6]Z. H. Xiong., D. Wu and Z. V. Vardeny, Nat. Mater.427,821 (2004).
    [7]J. M. Baik, Y. Shon, S. J. Lee, Y. H. Jeong, T. W. Kang and J. L. Lee, J. Am. Chem. Soc.130,13522 (2008).
    [8]J. M. Baik, J.-L. Lee, Y. Shon and T. W. Kang, Phys. Stat. Sol. (RRL) 2,22 (2008).
    [9]F. Wang, Z. Pang, L. Lin, S. Fang, Y. Dai and S. Han, Appl. Phys. Lett.96,053304 (2010).
    [10]Y.-W. Yu, C.-P. Cho and T.-P. Perng, Nanoscale Res. Lett.4,820 (2009).
    [11]F. F. Muhammad, A. I. A. Hapip and K. Sulaiman, J. Org. Chem.695,2526 (2010).
    [12]R. M. Carlos and M. G. Neumann, J. Photochem. Photobiol. A:Chem.131,67 (2000).
    [13]W. Kohn and L. J. Sham, Phys. Rev.140, A1133 (1965).
    [14]J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais, Phys. Rev. B 46,6671 (1992).
    [15]J. P. Perdew and Y. Wang, Phys. Rev. B 33,8800 (1986).
    [16]G. Kresse and D. Joubert, Phys. Rev. B 59,1758 (1999).
    [17]H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13,5188 (1976).
    [18]M. Brinkmann, B. Fite, S. Pratontep and C. Chaumont, Chem. Mater.16,4627 (2004).
    [19]A. Curioni, W. Andreoni, R. Treusch, F. J. Himpsel, E. Haskal, P. Seidler, C. Heske, S. Kakar, T. v. Buuren and L. J. Terminello, Appl. Phys. Lett.72,1575 (1998).
    [20]G. Gahungu and J. Zhang, J. Mol. Struct. THEOCHEM 755,19 (2005).
    [21]G. Henkelman, A. Arnaldsson and H. Jonsson, Comput. Mater. Sci.36,354 (2006).
    [22]A. Degli Esposti, M. Brinkmann and G. Ruani, J. Chem. Phys.116,798 (2002).
    [23]D. Z. Garbuzov, V. Bulovic, P. E. Burrows and S. R. Forrest, Chem. Phys. Lett.249, 433 (1996).
    [24]H. Kunkely and A. Vogler, J. Photochem. Photobiol. A:Chem.151,45 (2002).
    [1]J. W. Yoo, C. Y. Chen, H. W. Jang, C. W. Bark, V. N. Prigodin, C. B. Eom and A. J. Epstein, Nat. Mater.9,638 (2010).
    [2]M. Prezioso, A. Riminucci, I. Bergenti, P. Graziosi, D. Brunel and V. A. Dediu, Adv. Mater.23,1371(2011).
    [3]Z. H. Xiong, D. Wu, Z. V. Vardeny and J. Shi, Nature 427,821 (2004).
    [4]L. Bogani and W. Wernsdorfer, Nat. Mater.7,179 (2008).
    [5]L. E. Hueso, I. Bergenti, A. Riminucci, Y. Q. Zhan and V. Dediu, Adv. Mater.19, 2639 (2007).
    [6]O. Kahn, Molecular Magnetism, VCH:New York, USA (1993).
    [7]J. S. Miller, J. C. Calahrese, H. Rommelmann, S. R. Chittipeddi, J. H. Zhang, W. M. Reiff and A. J. Epstein, J. Am. Chem. Soc.109,769 (1987).
    [8]T. L. Makarova, B. Sundqvist, R. Hohne, P. Esquinazi, Y. Kopelevich, P. Scharff, V. A. Davydov, L. S. Kashevarova and A. V. Rakhmanina, Nature 413,716 (2001).
    [9]S. Ferlay, T. Mallah, R. Ouahes, P. Veillet and M. Verdaguer, Nature 378,701 (1995).
    [10]J. M. Manriquez, G. T. Yee, R. S. Mclean, A. J. Epstein and J. S. Miller, Science 252,1415(1991).
    [11]J. S. Miller, Inorg. Chem.39,4392 (2000).
    [12]R. Jain, K. Kabir, J. B. Gilroy, K. A. R. Mitchell, K. C. Wong and R. G. Hicks, Nature 445,291 (2007).
    [13]C. W. Tang and S. A. Vanslyke, Appl. Phys. Lett.51,913 (1987).
    [14]J. M. Baik, Y. Shon, S. J. Lee, Y. H. Jeong, T. W. Kang and J. L. Lee, J. Am. Chem. Soc.130,13522(2008).
    [15]J. M. Baik, J. L. Lee, Y Shon and T. W. Kang, Phys. Stat. Sol. (RRL) 2,22 (2008).
    [16]A. Curioni and W. Andreoni, J. Am. Chem. Soc.121,8216 (1999).
    [17]Y Sakurai, S. Kimura and K. Seki, Appl. Phys. Lett.91,061922 (2007).
    [18]S. Meloni, A. Palma, J. Schwartz, A. Kahn and R. Car, J. Am. Chem. Soc.125, 7808 (2003).
    [19]R. J. Davis and J. E. Pemberton, J. Am. Chem. Soc.131,10009 (2009).
    [20]Y. Sakurai, Y. Hosoi, H. Ishii, Y. Ouchi, G. Salvan, A. Kobitski, T. U. Kampen, D. R. T. Zahn and K. Seki, J. Appl. Phys.96,5534 (2004).
    [21]R. J. Davis and J. E. Pemberton, J. Phys. Chem. C 112,4364 (2008).
    [22]T. W. Pi, C. H. Liu and J. Hwang, J. Appl. Phys.99,123712 (2006).
    [23]T. Yokoyama, H. Ishii, N. Matsuie, K. Kanai, E. Ito, A. Fujimori, T. Araki, Y. Ouchi and K. Seki, Synth. Met.152,277 (2005).
    [24]S. Sanvito, Nat. Phys.6,562 (2010).
    [25]L. Lin, Z. Pang, S. Fang, F. Wang, S. Song, Y. Huang, X. Wei, H. Yu and S. Han, J. Phys. Chem. A115,880 (2011).
    [26]http://cars9.uchicago.edu/ifeffit/.
    [27]J. P. Perdew and Y. Wang, Phys. Rev. B 33,8800 (1986).
    [28]G. Kresse and D. Joubert, Phys. Rev. B 59,1758 (1999).
    [29]H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13,5188 (1976).
    [30]M. Brinkmann, B. Fite, S. Pratontep and C. Chaumont, Chem. Mater.16,4627 (2004).
    [31]Y. Jiang, W. Yan, Z. Sun, Q. Liu, Z. Pan, T. Yao, Y. Li, Z. Qi, G. Zhang, P. Xu, Z. Wu and S. Wei, J. Phys. Conf. Ser.190,012100 (2009).
    [32]T. E. Westre, P. Kennepohl, J. G. Dewitt, B. Hedman, K. O. Hodgson and E. I. Solomon, J. Am. Chem. Soc.119,6297 (1997).
    [33]W. Kohn and L. Sham, J. Phys. Rev.140, A1133 (1965).
    [34]F. Wang, Z. Pang, L. Lin, S. Fang, Y. Dai and S. Han, Appl. Phys. Lett.96,053304 (2009).
    [35]A. Curioni, W. Andreoni, R. Treusch, F. J. Himpsel, E. Haskal, P. Seidler, C. Heske, S. Kakar, T. v. Buuren and L. J. Terminello, Appl. Phys. Lett.72,1575 (1998).
    [36]Y. Zhan, E. Holmstrom, R. Lizarraga, O. Eriksson, X. Liu, F. Li, E. Carlegrim, S. Stafstrom and M. Fahlman, Adv. Mater.22,1626-1630 (2010).
    [37]Y.-L. Chan, Y.-J. Hung, C.-H. Wang, Y.-C. Lin, C.-Y. Chiu, Y.-L. Lai, H.-T. Chang, C.-H. Lee, Y. J. Hsu and D. H. Wei, Phys. Rev. Lett.104,177204 (2010).
    [1]C. W. Tang and S. A. Vanslyke, Appl. Phys. Lett.51,913 (1987).
    [2]V. Dediu, M. Murgia, F. C. Matacotta, C. Taliani and S. Barbanera, Solid State Commun.122,181 (2002).
    [3]J. M. D. Teresa, Science 286,507 (1999).
    [4]J. E. Evetts, Philos. Trans. R. Soc. Lond. A 356,1593 (1998).
    [5]Z. H. Xiong, D. Wu, Z. V. Vardeny and J. Shi, Nature 427,821 (2004).
    [6]F. Wang, C. Yang, Z. Vardeny and X. Li, Phys. Rev. B 75,245324 (2007).
    [7]V. Dediu, L. Hueso, I. Bergenti, A. Riminucci, F. Borgatti, P. Graziosi, C. Newby, F. Casoli, M. De Jong, C. Taliani and Y. Zhan, Phys. Rev. B 78,115203 (2008).
    [8]S. Majumdar, H. S. Majumdar, R. Laiho and R. Osterbacka, J. Alloys Compd.423, 169(2006).
    [9]W. Xu, Appl. Phys. Lett.90,072506 (2007).
    [10]F. J. Wang, Z. H. Xiong, D. Wu, J. Shi and Z. V. Vardeny, Synth. Met.155,172 (2005).
    [11]D. Sun, L. Yin, C. Sun, H. Guo, Z. Gai, X. G. Zhang, T. Z. Ward, Z. Cheng and J. Shen, Phys. Rev. Lett.104,236602 (2010).
    [12]J. M. Baik, Y. Shon, S. J. Lee, Y. H. Jeong, T. W. Kang and J. L. Lee, J. Am. Chem. Soc.130,13522(2008).
    [13]J. M. Baik, J.-L. Lee, Y. Shon and T. W. Kang, physica status solidi (RRL)-Rapid Research Letters 2,22 (2008).
    [14]W. Kohn and L. J. Sham, Phys. Rev.140, A1133 (1965).
    [15]J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais, Phys. Rev. B 46,6671 (1992).
    [16]J. P. Perdew and Y. Wang, Phys. Rev. B 33,8800 (1986).
    [17]G. Kresse and D. Joubert, Phys. Rev. B 59,1758 (1999).
    [18]H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13,5188 (1976).
    [19]M. Brinkmann, G. Gadret, M. Muccini, C. Taliani, N. Masciocchi and A. Sironi, J. Am. Chem. Soc.122,5147 (2000).
    [20]K. Tarafder, B. Sanyal and P. Oppeneer, Phys. Rev. B 82,060413 (2010).
    [21]A. Curioni, W. Andreoni, R. Treusch, F. J. Himpsel, E. Haskal, P. Seidler, C. Heske, S. Kakar, T. v. Buuren and L. J. Terminello, Appl. Phys. Lett.72,1575 (1998).
    [22]S. Fang, Z. Pang, L. Lin, F. Wang, W. Zheng, Y. Li, Y. Dai and S. Han, Physica E 43,1470(2011).
    [23]F. Wang, Z. Pang, L. Lin, S. Fang, Y. Dai and S. Han, Appl. Phys. Lett.96,053304 (2010).
    [24]A. C. Durst, R. N. Bhatt and P. A. Wolff, Phys. Rev. B 65,235205 (2002).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700