用户名: 密码: 验证码:
双自转研磨方式下研磨成球机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精密机械的运转常使用轴承,而轴承球、陶瓷球是轴承的主要元件之一,精密球在精密工程领域发挥着重要作用。然而,成球机理不完善、加工效率低的传统研磨方式越来越不能适应当代科技发展需求。为克服上述不利因素,本研究中心独创性提出双自转研磨方式,它继承了自转角主动控制研磨方式的研磨均匀性优点,使研磨轨迹点在球上分布均匀。
     为定量评价双自转研磨方式的研磨均匀性,对球坯和研磨盘接触点上的基本材料去除率进行了研究,即单位接触面积,单位力作用,单位相对速度条件下的材料去除量。运用有限元法计算得到轴承钢球和上研磨盘之间的接触应力,由接触应力分别设计了不同加工载荷和转速的轴承钢平面研磨实验,得出材料的基本去除率,作为仿真中球和盘接触点上的材料去除率,为定量评价双自转研磨方式的均匀性奠定了前提条件。
     本文还对几种不同类型的研磨方式进行了力学特性的分析,得出了双自转研磨方式下的球坯运动方程,根据球坯的运动方程,计算出研磨轨迹,并用计算机仿真精密球球面研磨轨迹的分布。为了进一步对研磨均匀性做定量化分析,提出了对精密球进行网格划分的评价方式,将平面研磨实验得出的轴承钢材料去除规则应用到仿真中,分析双自转研磨方式的研磨均匀性。最后从研磨均匀性角度比较了新型研磨方式和传统研磨方式的区别,并分析了影响研磨均匀性的一些机构参数。
     为验证双自转研磨方式的研磨均匀性,选取仿真后几组工艺参数组合,在磨球机上进行了研磨均匀性试验研究。在试验过程中,以研磨后的球形偏差为评价指标,验证以上几组组合条件下的研磨均匀性。仿真结果和试验结果表明,在双自转研磨方式下,球坯表面能均匀研磨,且研磨盘转速和加工载荷都对球度有较大影响。
     最后通过建立研磨过程中单球球形误差修正过程、球坯滑动和碰撞等模型,对研磨成球过程中成球机理及影响因素进行了分析。并探讨了材料去除、设备精度、研磨盘端跳等因素对研磨成球的影响。
Bearing is widely used in precision mechanism, and the bearing balls and ceramic balls are one of its major components. The precise bearing balls play the important role in precision engineering. Because of the limitation of sphere generation mechanism, low finishing efficiency and high cost, the traditional lapping technique of precise bearing balls can hardly meet the requirements of modern science and technology. To overcome limitations in traditional lapping process, a new type of high efficiency lapping method for high precision ball, Rotated Dual-Plates (RDP) lapping, is developed by our research center, which inherits the advantage of spin angle control lapping, so the lapping trace can be evenly distributed on the ball.
     In orde to quantificationally analyze the lapping uniform of RDP, the basic material removal rate of ball-plates’contact point is researched. Firstly the contact stress between the upper grinding plate and presion ball is calculated by finite element method, and the plane grinding experiments of bearing steel and Si3N4 materials are designed according to the contact stress. At last, the rules of two typical materials are obtained by the array of single factor grinding experiment, which provides the basis for lapping uniformity of simulation.
     In this thesis, the kinematics of the other lapping method is also analysised, and the motion equations of RDP lapping mode is obtained, according to the equations of motion equations of RDP lapping mode, the lapping trace is calculated, and the distribution of lapping trace on the ball is simulated by computer simulation. At last, for further quantificationally analyzing lapping uniform, the estimation methods of grid division on precision bearing ball are put forward, and the plane grinding experiments of bearing steel material removal rules is also applied to the simulation, so the lapping uniformity of balls can be well analysised. At last, the difference of RDP lapping mode and traditional v-grooves lapping method are compared, and some parameters of device which influence the lapping uniformity are also analysed.
     In order to verify the lapping uniform of the RDP lapping devices, the lapping uniform experiment of RDP lapping devices is done based on the sphericity of simulation. During the experiment, the material removal rate and sphericity are selected as the target of the evaluation, so the abave of grinding combination can be verified. It is shown that the precision ball can be lapped uniformly in RDP mode, and rotational speed and load are the chief influence factors on the lapping uniformity.
     By establishing of mechanisms of sphere error correction, ball sliding against plates and impaction between balls mode, the ball’s mechanism of the RDP lapping mode and influence factors in the lapping are analysised in the end. The influence of material remova, the presion of device and lapping tools on sphere-shaping process is also discussed with theory analysis.
引文
[1]黄传真,艾兴.新型陶瓷轴承研究的现状与展望[J].中国陶瓷工业, 1999, 6: 25-27.
    [2]张伯霖,李易平,郑东.陶瓷滚动轴承及其应用[J].中国机械工程, 1993, 4: 18-21.
    [3]李自根.陶瓷轴承球渗透检验自动分选系统[J].无损检测, 2003, 6: 296-301.
    [4]袁巨龙.功能陶瓷的超精密加工技术[M].哈尔滨:哈尔滨工业大学出版社, 2000.
    [5]周兆忠,赵萍.精密球体研磨技术的现状与发展方向[J].新技术新工艺, 2005, 5: 25-28.
    [6] Wang.L, Snidle.R.W, Gu.L. Rolling contact silicon nitride bearing technology: a review of recent research [J]. Wear, 2000, 246: 159-173.
    [7] CI Staff Report. Bearings optimize technology for machine tools [J]. Ceramic Industry, 1995, 144(1): 31-32.
    [8] Katz.R.N. Ceramic bearings: rolling along [J]. Ceramic Industry, 1999, 149: 23-24.
    [9]李钦湖.国外陶瓷滚动轴承的研制和应用[J].轴承, 1995, 2: 43-45.
    [10]张劲松.陶瓷球轴承的开发与应用[J].轴承, 1996, 11: 1-9.
    [11]张葵摘译.日本NSK新型滚动轴承浅析[J].轴承, 2000, 9: 36-39.
    [12] Dezzani.M.M, Pearson.P.K. Hybrid ceramic bearings for difficult applications [J]. Journal of Engineering for Gas Trbine Surbines and Power-Transactions of the ASME, 1996, 118(2): 449-452.
    [13]蒋沂萍.混合轴承及陶瓷球研制近况[J].轴承, 2001, 2: 33-35.
    [14] Ido.M. Studies on the method of the manufacture of miniature ball bearings(in Japanese) [J]. J.Japan Soc.Precision Engng, 1957, 23(4): 127-131.
    [15] Ido.M, Hazi.T, Nakazima.M. On the miniature ball bearings—on the effect of revolutional radius in lapping steel balls (in Japanese) [J]. J.Japan Soc.Precision Engng, 1960, 26(8): 470-475.
    [16] Ido.M, Hazi.T. On the miniature ball bearings—on the lapping pressure in lapping steel balls(Part 1)(in Japanese) [J]. J.Japan Soc.Precision Engng, 1958, 24(4): 161-168.
    [17] Ido.M, Hazi.T, Nakazima.M. On the miniature ball bearings—on the effect of lapping liquid in lapping steel balls (in Japanese) [J]. J.Japan Soc.Precision Engng, 1961, 27(5): 261-267.
    [18] Ido.M. Hazi.T. On the miniature ball bearings—on the lapping pressure in lapping steel balls(Part 2)(in Japanese) [J]. J.Japan Soc.Precision Engng, 1958, 24(5): 161-168.
    [19]聂兰芳,赵学军.钢球加工成圆条件及其影响因素探讨[J].轴承, 2001, 1: 16-18.
    [20] Huang.B.W, Kung.H.K. Variations of instability in a rotating spindle system with various bearings [J]. International Journal of Mechanical Sciences, 2003, 45: 57-72.
    [21] Ohta.H, Kobayashi.K. Vibrations of hybrid ceramic ball bearings [J]. Journal of Sound and Vibration, 1996, 192(2): 481-493.
    [22] Tatsunobu, Momono, Banda. Sound and Vibration in Rolling Bearings [J]. Motion & Control, 1999, 6: 29-37.
    [23]吕冰海,袁巨龙.陶瓷球高效研磨技术的研究[J].金刚石和磨料磨具工程, 2008, 166(4): 166-170.
    [24]吕冰海.陶瓷球双转盘研磨方式及成球机理的研究[D].哈尔滨:哈尔滨工业大学, 2007.
    [25]于军,王军.新型陶瓷球研磨装置[J].机械工程师, 1997, 5: 24-25.
    [26]余兴龙,王友冰.四研头超精加工小球机理分析[J].清华大学学报, 2003, 43: 632-635.
    [27]王先逵.精密加工技术使用手册[M].北京:机械工业出版社, 1999.
    [28]肖晖.氮化硅陶瓷材料及其精研加工[J].轴承, 1999, 4:35-39.
    [29] Rascher.R.研磨钢球的技术现状和发展趋势[J].国外轴承, 1992, 3: 38-42.
    [30]朱晨.两种钢球研磨方式的力学分析[J].轴承, 2000, 9: 11-13.
    [31]王军,吴玉厚.陶瓷球研磨装置设计和实验[J].机械制造, 1997, 7: 8-12.
    [32] Zhang.B, Nakajima.A. Spherical surface generation mechanism in the grinding of balls for ultraprecision ball bearing [J]. Journal of Engineering Tribology, 2000, 214(4): 351-357.
    [33] Kang.J, Hadfield.M. The effects of lapping load in finishing advanced ceramic balls on a novel eccentric lapping machine [J]. Proceedings of the Institution of Mechanical Engineers.Part B, Journal of Engineering Manufacture, 2005, 219: 505-513.
    [34] Lee.R.T, Hwang.Y.C, Chiou.Y.C. Lapping of ultra-precision ball surfaces. Part II. Eccentric V-groove lapping system [J]. International Journal of Machine Tools & Manufacture, 2006, 46: 1157-1169.
    [35]任成祖.陶瓷球加工技术及陶瓷球轴承结构设计初探[D].天津:天津大学, 1995.
    [36] Umehara, Kato.K. A study on magnetic fluid grinding [J]. Journal of JSME, 1988, 54: 1599-1604.
    [37]黑部利次.ヤラミックスの球超精密研磨[J].机械と工具, 1990, 34 (2): 43-49.
    [38] Kurobe.T, Kakuta.H, Onoda.M. Spin angle control lapping of balls (1st report) - theoretical analysis of lapping mechanism [J]. Journal of the Japan Society for Precision Engineering, 1996, 62(12): 1773-1777.
    [39] Kurobe.T, Kakuta.H, Onoda.M. Spin angle control lapping of balls (2st report) - theoretical analysis of lapping mechanism [J]. Journal of the Japan Society for Precision Engineering, 1997, 63(5): 726-730.
    [40]王军,张淳,吴玉厚.精密陶瓷球研磨加工技术研究[J].制造技术与机床, 1998, 9: 34-36.
    [41]张珂,徐湘辉,吴玉厚等.精密陶瓷球的锥形研磨技术研究[J].金刚石与磨料磨具工程, 2005, 146(2): 39-42.
    [42] Childs.T.H.C, Mahmood.S, Yoon.H.J. Magnetic fluid grinding of ceramic balls [J]. Tribology Internation, 1995, 28: 341-348.
    [43] Raghunandan.M, Komanduri.R. Finishing of silicon nitride balls for high-speed bearing applications [J]. Journal of manufacturing science and engineering, 1998, 120: 376-386.
    [44] Umehara.N, Kirtane.T, Gerlick.R, et al. A new apparatus for finishing large size/large batch silicon nitride (Si3N4) balls for hybrid bearing applications by magnetic float polishing (MFP) [J]. International Journal of Machine Tools & Manufacture, 2006, 46: 151-169.
    [45] Zhang.B, Nakajima.A. Dynamics of magnetic fluid support grinding of Si3N4 ceramic balls for ultraprecision bearings and its importance in spherical surface generation [J]. Precision Engineering, 2003, 27: 1-8.
    [46] Childs.T.H.C, Moss.D.J. Grinding ratio and cost issues in magnetic and non-magnetic fluid grinding [J]. Annals of the CIRP, 2000, 49(1): 261-255.
    [47]孙永安,李县辉.国外陶瓷球加工技术及其应用[J].陶瓷学报, 2002, 23 (2): 145-148.
    [48]蒋沂萍.混合轴承及陶瓷球研制近况[J].轴承, 2001, 2: 33-35.
    [49]刘文卿.实验设计[M].北京:清华大学出版社, 2005.
    [50]阜元.田口方法简介[J].质量与可靠性, 1991, 4: 27-31.
    [51]徐烈,谭久彬.经线法球度测量的评定方法研究[J].哈尔滨工业大学学报, 2001, 5: 620-624.
    [52]何改云,宋占杰.球度误差评定方法的研究[J].计量技术, 1999, 3: 16-19.
    [53]谭静.球度误差及其评定方法综述[J].计测技术, 2004, 31(1): 10-11.
    [54]朱训生,任新生.球度最小二乘评定的一般公式[J].上海交通大学学报, 1998, 9: 45-46.
    [55]付丽霞,宋薇沙.圆度误差的测量评述[J].轴承, 1999, 5: 17-20.
    [56]朱正辉,缪寅宵.超精密球度的激光干涉测量方法[J].宇航计测技术, 1999, 4: 12-15.
    [57]唐红霞.钢球表面粗糙度测量方法探讨[J].轴承, 1999, 11: 22-26.
    [58]胡于进,王璋奇.有限元分析及应用[M].北京:清华大学出版社, 2009.
    [59]李淑慧,基于ANSYS的混合陶瓷球轴承有限元分析[D].天津:天津大学, 2004 .
    [60]陈锦江,任成祖.混合陶瓷球轴承接触应力和变形的数值求解[J].机械设计, 2004, 21(1): 10-12.
    [61]张剑锋.摩擦磨损与抗磨技术[M].天津:天津科技翻译出版公司, 1993.
    [62]朱永昕,施高义.摩擦磨损原理[M].杭州:浙江大学出版社, 1992.
    [63]温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社, 1990.
    [64]陈万吉.用有限元混合法分析弹性接触问题[J].大连工学院学报, 1970, 2: 16-28.
    [65]李诗龙.单因素法及其对加工精度的分析[J].武汉工业学院学报, 2000, 1: 27-29.
    [66]那卓,张武虎.大型轴承钢球的制造[J].轴承, 2008, 1:21-22.
    [67]孙永安,张永乾. Si3N4陶瓷球与GCr15钢球接触疲劳对比试验分析[J].轴承, 2002, 6: 19-21.
    [68] Genichi.T. Taguchi Method-Research and Development [M]. New York: ASI Press, 1992.
    [69] Ross.P.J. Taguchi Techniques for Quality Engineering [M]. New York: The McGraw-Hill press, 1996.
    [70]章昕.概率统计双博士课堂[M].北京:机械工业出版社, 2003.
    [71]周国利.概率论与数理统计教程[M].南京:南京大学出版社, 2007.
    [72] Steven.C.C.工程与科学数值方法的MATLAB实现[M].北京:清华大学出版社, 2009.
    [73]景振毅,张泽兵. MATLAB7.0使用宝典[M].北京:中国铁道出版社, 2009.
    [74]王志伟.精密球研磨技术的基础研究[D].杭州:浙江工业大学, 2005.
    [75] Yuan.J.L, Wang.Z.W, Lv.B.H. Simulation Study on the Developed Eccentric V-grooves Lapping Mode for Precise Ball [J]. Key Engineering Materials, 2006, 304: 300-304.
    [76]马霄. ANSYS的网格划分技巧[J].矿山机械, 2004, 5: 65-66.
    [77]王明强,朱永梅.有限元网格划分方法应用研究[J].机械设计与制造, 2004, 2(1): 22-24.
    [78]郭红燕.新型精密轴承球超精密研磨加工系统球研磨技术的基础研究[D].南京:南京航空航天大学, 2006.
    [79]许秦.硬质材料精密球的高效研磨技术研究[D].杭州:浙江工业大学, 2008.
    [80]贾玉坤,赵文宏,袁巨龙等.基于ATmega128的高效精密球体研磨机控制系统[J].机电工程, 2009, 26: 24-27.
    [81] Archard.J.F. Mechanical polishing of metals- scientific argument of long standing [J]. Phys. Bull, 1985, 36: 212-214.
    [82]李颂华,张珂,吴玉厚等.新型陶瓷球研磨方式的力学分析[J].沈阳建筑工程学院学报, 2002, 18(3): 229-231.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700