用户名: 密码: 验证码:
基于SimuLog语言的水电站仿真平台研究及实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二十一世纪以来,科学技术飞速发展,系统仿真技术日渐成熟,完整的系统仿真学科体系已经形成。仿真技术在国内外多个领域取得了飞速的发展,应用越来越广泛,包括电网、变电站、核电、火电、化工、航天等领域,部分领域达到了国际先进水平。
     目前,我国水电仿真技术还比较落后,缺少成熟、通用的产品。伴随着近十来年水电建设的大发展,从业人员大幅增加,新员工培训任务加重,一大批大型、特大型机组投运,水电在电网中的比重增大,安全性要求、复杂程度均大幅提高。研究通用的水电站培训仿真平台,变得极为迫切。
     作者研究了常见的仿真建模方法,采用源于大的复杂系统分解的模块化建模思路。在连续系统的计算机仿真中,主要的数值计算工作是对微分方程(或状态方程)求解。本文分析了模型求解的几种数值积分法,选择更为实用、通用性更强的离散相似法作为传递函数、状态方程的数值解法,给出了典型环节的离散相似模型,在此基础上,结合模块化建模思想,提出并采用了面向结构图的建模方法。这种建模方法不仅适用于线性系统,还可应用于非线性系统。
     计算机仿真系统需要对水电站整个生产过程进行模拟仿真,建设与实际水电站相似的“数字水电站”。本文通过对水电站设备进行分类,建立了模型框架体系,重点分析了水轮发电机的建模原理,通过派克方程,建立发电机的基本方程。此外,本文还简要描述了调速器模型、励磁系统模型、引水系统模型、水轮机模型等。
     水电站计算机仿真系统需要将上述算法、数学方程用计算机能识别的方式进行描述,并以计算机软件的方式加以实现。传统仿真程序包的模型软件具有较大的弊端,而采用仿真语言可以使建模人员将精力集中于所研究仿真对象。本文在国内开创性地采用了国产仿真语言SimuLog (Simulation Log,缩写为SimuLog,一种通用仿真语言,作者导师自主研发的成果),首先阐述了SimuLog的重要意义,并在导师原有研究成果基础上进一步完善了描述语言的语法规则、编译器和解析器,提出了SimuLog优化设计方案。在此基础上对典型环节、水轮发电机模型进行了解析运行,证明了SimuLog正确、可信赖。
     本文在国内首次完整地采用与监控系统一体化设计运行的平台支撑技术,完成了OTS2000(Operator Training Simulation,缩写为OTS,操作员培训仿真)的软件总体架构设计、功能设计、数据库结构设计,并对OTS2000软件平台进行了实现。此外,本文还对海量数据存储与工况再现、数据库中间件、学员动态分组等技术进行讨论。本文对先进的智能考核评分系统进行了详细描述。
     本文最后结合瀑布沟运行仿真项目对OTS2000加以应用。针对国内大型数字水电仿真项目成功经验不足的现状,描述仿真项目实施过程中的具体问题,包括应搜集的技术资料、联合开发内容、流程描述模板、统一命名规则等,对于其他仿真项目的实施,具有一定的借鉴意义,使OTS2000在实践中得到检验。
With the development of technologies, the subject of System Simulation has become relatively mature in the21st century. Simulation technologies, due to their effectiveness, reproducibility, economical efficiency and security, are of increasing significance. They have been successfully applied to various areas in China and abroad, e.g., the transformer substation, the power grid, the thermal power, nuclear power, chemical industry, and aerospace engineering. After the steady development, simulation technologies in China have reached internationally advanced levels in some areas.
     Nevertheless, simulation technologies are still weak in the hydropower industry in China, lacking of mature and universal products. Meanwhile, with the intensive hydropower construction in the last decade, the number of employees in this industry has increased and continuely increases dramatically. The training on the new employees becomes greatly overloaded. Furthermore, the launch of large amount of large-scale and oversize units leads to a prominent increase in the proportion of such units in the power network, resulting in stricter security requirements and more complexities. Therefore, it is of crucial significance to study universal simulation platforms for training hydropower personnels.
     This thesis studies commonly used methods for simulation and modeling, and proposes a modularized modeling method based on decomposition of large and complex systems. In the digital simulation for continuous systems, the major numerical computations derive from solving first-order differential equations (or state equations). We analyze several numerical methods for integration in modeling solving, and choose the discrete similar method, characterized by its practicality and universality, for numerically solving the model of transfer and state equations. This results in a discrete similar model of typical links. Combining the idea of modularized modeling, we propose and apply the structure-diagram-oriented modeling, which is applicable to both linear and non-linear systems.
     For the computer simulation system, we need to simulate the whole production process of hydropower stations and construct a "digital hydropower station" corresponding to the real one. This thesis builds a system of the modeling framework by classifying equipment in hydropower stations and focusing on the modeling principles of hydro-generators. The basis equations for generators are established by using the Park equation, and several practical problems in the application of basic equations are further discussed. In addition, we also briefly describe several models including those for speed governors, excitation systems, diversion systems, and turbines.
     As a computer simulation system for hydropower stations, we describe the above algorithms and mathematical equations in a recognizable way for computers, and implement them in software. Traditional models for simulation packages being inapplicable, the simulation language enables the modelers to focus on the simulated objects of interests. This thesis applies the user-defined model description language "SimuLog" for the first time in China. After stating of the significance of SimuLog, we describe the grammatical rules, compilers, and resolvers for this language based on existing work, and propose an optimized designing scheme for SimuLog. In particular, we perform the analytic operation for the established model of hydro-generators.
     In this thesis we systematically apply, for the first time, the platform supportive technology whose design and operation is integrated with the monitoring system, and complete the designing for the overall infrastructure, functions, and database structure of the software. Furthermore, we also discuss the storage and condition reconstruction of mass data, the database middleware, and dynamic classification of the trainees. We implement the OTS2000software platform, and provide a detailed description for an advanced system for intelligent evaluation and scoring.
     At the end of the thesis, we apply OTS2000to the simulation project for Pubugou hydropower station. Despite of the lack of experience of domestic projects in large-scale digital hydropower simulation, we briefly describe several specific problems arising in the implementation of this simulation project, including technical materials collection, jointly developed contents, process description templates, and uniform naming rules. These aspects, verified in our OTS2000implementation, may serve as references for the implementation of other simulation projects.
引文
[1]中国系统仿真学会.2009-2010仿真科学与技术学科发展报告[R].北京:中国科学技术出版社,2010.
    [2]刘兴堂.现代系统建模与仿真技术(修订版)[M].西安:西北工业大学出版社,2011.
    [3]张浩,徐红燕,彭道刚等.仿真技术在电力系统中的应用[J].仿真技术在电力系统中的应用.系统仿真技术,2005.
    [4]吕崇德,任挺进,姜学智等.大型火电机组系统仿真与建模[M].北京:清华大学出版社,2002.
    [5]谢茂清.电站仿真机发展的新动向[J].中国电力,1999,31(7):18-20.
    [6]郑林.电力系统中长期动态仿真的火电厂模型研究及软件开发[D].华北电力大学硕士学位论文,2008.
    [7]徐枋同,李植鑫.水电站机组控制计算机仿真[M].北京:水利电力出版社,1994.
    [8]李发海,朱东起.电机学(第4版)[M].北京:科学出版社,2007.
    [9]P.M.安德逊,A.A.佛阿德.电力系统的控制与稳定:第一卷[M].北京:水利电力出版社,1979.
    [10]吴旭光,王新民.计算机仿真技术与应用[M].西安:西北工业大学出版社,1998.
    [11]王德宽,杨叶平.H9000 V4.0环境下的水电厂培训仿真系统[J].水电站机电技术,2008,31(3):.
    [12]杨叶平,王德宽等.三峡电站模拟操作及运行方式管理系统的研究与实现[J].中国水利水电科学研究院学报,2011,1.
    [13]杨叶平,王德宽等.OTS2000培训仿真系统平台在白山水力发电厂的应用[C].中国水力发电工程学会信息化专委会2010年年会,2010.
    [14]杨叶平,王德宽等.OTS2000培训仿真系统平台在白山水力发电厂的应用[J].水电自动化与大坝监测,2011,1.
    [15]杨叶平,张毅等.三峡右岸电站巨型发电机组数据采集与控制技术研究与实现[J].中国水利水电科学研究院学报,2012,1:.
    [16]王德宽.培训仿真系统的SimuLog语言及模型[J].水电自动化与大坝监测,2003,27(3):28-31.
    [17]王德宽.水电厂计算机监控技术新进展与展望[J].水电站机电技术,2009,32(3): 1-3.
    [18]王德宽.水电厂计算机监控培训仿真系统的设计与实现[J].水电自动化与大坝监测,2003,27(4):6-9.
    [19]王德宽.水电厂监控系统操作员培训仿真技术研究[J].中国水利水电科学研究院学报,2003,1(2):140-144
    [20]王德宽,李鹏.水电站监控系统培训仿真技术的设想与初步研究[J].水电厂自动化,2000(3):11-13,8.
    [21]常喜茂,马永光,胡建宏等.火电厂仿真培训装置的考核功能[J].华北电力大学学报,1999,26(3):55-59.
    [22]武海澄,张兴,施壮等.基于虚拟DCS的火电机组仿真系统[J].安徽电力,2010.
    [23]常喜茂,孔英会.仿真系统的操作过程考核软件开发[J].华北电力大学学报,2002.
    [24]范永胜,程芳真,吕崇德等.电站仿真机的培训评分系统研究[J].系统仿真学报,2000,12(3):282-286.
    [25]陈安.过程控制系统仿真培训平台的设计与实现[D].浙江大学硕士学位论文,2006.
    [26]李辉.双馈水轮发电机系统建模与仿真及其智能控制策略的研究[D].重庆大学博士学位论文,2004.
    [27]中华人民共和国国家发展和改革委员会.DL/T 1024-2006水电仿真机技术规范[S].北京:中国电力出版社,2007.
    [28]夏道止.电力系统分析(下册)[M].北京:水利电力出版社,1995.
    [29]诸骏伟.电力系统分析(上册)[M].北京:中国电力出版社,1995.
    [30]昆德.电力系统稳定与控制(影印版)[M].北京:中国电力出版社,2001.
    [31]邱关源.电路(第四版)[M].北京:高等教育出版社,1999.
    [32]吴旭光,王新民.计算机仿真技术与应用[M].西安:西北工业大学出版社,1998.
    [33]沈东.水力机组故障分析[M].北京:中国水利水电出版社,1996.
    [34]魏守平.水轮机调节[M].武汉:华中科技大学出版社,2009.
    [35]刘兴堂,吴晓燕.现代系统建模与仿真技术[M].西安:西北工业大学出版社,2001.
    [36]胡寿松.自动控制原理(第四版)[M].北京:科学出版社,2001.
    [37]周品,何正风.MATLAB数值分析[M].北京:机械工业出版社,2009.
    [38]李庆扬,王能超,易大义.数值分析(第5版)[M].北京:清华大学出版社,2008.
    [39]彭瑜,何衍庆.IEC 61131-3编程语言及应用基础[M].北京:机械工业出版社,2009.
    [40]任煜峰.水轮发电机组值班(上下册)[M].北京:中国电力出版社,2003.
    [41]河北省电力公司.35-110kV变电站仿真培训教材[M].北京:中国电力出版社,2009.
    [42]陈国庆,谢刚,吴丹清.水电厂运行技术问答[M].北京:中国电力出版社,2005.
    [43]龚在礼.水电厂机电设备运行与管理[M].郑州:黄河水利出版社,2009.
    [44]徐锋,黄夷百.电路分析基础[M].北京:北京大学出版社,2008.
    [45]卢菊洪,宇海英.电工电子技术基础[M].北京:北京大学出版社,2007.
    [46]魏守平.水轮机调节系统仿真[M].武汉:华中科技大学出版社,2011.
    [47]王慧刚.计算机仿真原理及应用(第二版)[M].长沙:国防科技大学出版社,2000.
    [48]SIEMENS. SIMOTION ST Structured Text:Programming and Operating Manual.2008
    [49]John, K.H., Tiegelkamp, M. IEC 61131-3:Programming Industrial Automation Systems[M]. Berlin, Heidelberg:Springer-Verlag,2010.
    [50]Eveleigh, V.W. Introduction to Control Systems Design[M]. New York:McGraw-Hill,1972.
    [51]Cadzow, J.A. Discrete-Time and Computer Control System[M]. New York:Prentice-Hall, 1970.
    [52]张恒旭.电力系统数字仿真若干问题研究[D].山东大学博士学位论文,2003.
    [53]陈立甲.电站锅炉燃烧系统和汽水系统建模方法的研究[D].哈尔滨工业大学博士学位论文,2000.
    [54]林萌.分布式并行实时核动力仿真分析系统的研发及应用[D].上海交通大学博士学位论文,2006.
    [55][魏明.基于HLA的城市道路交通仿真系统研究[D].中国农业大学博士论文,2004.
    [56]吴胜昔.基于数据挖掘技术的智能仿真系统的研究与应用[R].上海交通大学博士后研究工作报告,2004.
    [57]倪景峰.矿井通风仿真系统可视化研究[D].辽宁工程技术大学博士学位论文,2004.
    [58]李春民.矿山井巷工程三维可视化仿真技术及其实现[D].北京科技大学博士学位论文,2005.
    [59]唐胜利.热动力系统仿真环境的研究与开发[D].重庆大学博士学位论文,2004.
    [60]李辉.双馈水轮发电机系统建模与仿真及其智能控制策略的研究[D].重庆大学博士学位论文,2004.
    [61]陈刚.铁路编组站运营系统动态仿真[D].西南交通大学博士学位论文,2006.
    [62]杨静.UML模型的语义模型[D].贵州大学博士学位论文,2006.
    [63]张翔.电动汽车建模与仿真的研究[R].合肥工业大学博士后研究工作报告,2004.
    [64]孙洪军.证券仿真复杂系统建模及其应用[D].南开大学博士学位论文,2004.
    [65]熊利.基于工业组态软件的水电站仿真系统研究[D].西华大学硕士学位论文,2006.
    [66]施海熊.新安江电厂水电仿真培训系统的开发[D].上海交通大学硕士学位论文, 2007.
    [67]王玲.基于Vega的数字流域三维可视化仿真系统的应用研究[D].华中科技大学硕士学位论文,2004.
    [68]张香圃.基于OpenGL的数控机床仿真系统研究与开发[D].江苏大学硕士学位论文,2007.
    [69]李大庆.基于MATLAB的水电站过渡过程分析研究[D].北京工业大学硕士学位论文,2005.
    [70]李沛.全数字仿真自动发电控制系统[D].兰州理工大学硕士学位论文,2006.
    [71]范晓旭.火电厂仿真培训系统电气部分的建模与实现[D].华北电力大学(北京)硕士学位论文,2007.
    [72]宋丹.电力系统故障仿真培训系统的设计与开发[D].大连理工大学硕士学位论文,2007.
    [73]王宜武.电力配网自动化仿真系统的探索[J].福建电脑,2006(12):168-169.
    [74]魏路平,伍永刚.电网调度员培训仿真器(DTS)中的潮流算法[J].水电能源科学,2003,18(1):28-31.
    [75]孙宏斌,吴文传,张伯明.电网调度员培训仿真系统的新特征和概念扩展[J].电力系统自动化,2005,29(7):6-10.
    [76]IEEE Committee Report. Proposed excitation system definitions for synchronous machines[R]. IEEE Transactions on Power Apparatus and Systems,1961,80:173-180.
    [77]IEEE Committee Report. Proposed excitation system definitions for synchronous machines[R]. IEEE Transactions on Power Apparatus and Systems,1969,88:1248-1258.
    [78]American National Standards Institute. C42.1:Definition of Electrical Terms, Group 10 Rotating Machinery[S]. New York:American National Standards Institute,1957.
    [79]American National Standards Institute. C85.1:Terminology for Automatic Control[S]. New York:American National Standards Institute,1963.
    [80]American National Standards Institute. C85.1a:Suppliment to Terminology for Automatic Control[S]. New York:American National Standards Institute,1966.
    [81]IEEE Committee Report. Computer representation of excitation systems[R]. IEEE Transactions on Power Apparatus and Systems,1968,87:1460-1464.
    [82]谢成,胡炎,邰能灵,等.基于可扩展对象库的变电站三维仿真平台[J].电力系统自动化,2009,33(6):90-94.
    [83][曹林宁,沈祖诒.基于实时数据的水电站可组态仿真系统[J].人民长江,2008,39(13): 85-87.
    [84]张恒旭,杨卫东,薛禹胜.数字仿真中的用户自定义建模技术[J].水电自动化与大坝监测,2003,27(4):1-5.
    [85]林礼清,罗铸,顾元昌.水口水电站仿真系统[J].系统仿真学报,2001,13(1):50-52.
    [86]钟登华,练继亮.水利水电工程仿真系统可信性评估研究[J].水力发电学报,2003(2):17-23.
    [87]王秀云.调度员培训仿真系统图形支撑平台的研究[J].吉林电力,2006,34(1):16-18.
    [88]祝瑞金.PSS/E通用发电机模型的应用研究[J].华东电力,2004,31(3):4-7.
    [89]武成香,张学军,张海荣.变电站仿真培训系统中的发电机模型[J].山西电力,2007,3:3-5.
    [90]余健明,王猛,李阳阳.基于MATLAB SIMULINK的并网型双馈风力发电机仿真模型的研究[J].西安理工大学学报,2010,26(1):81-86.
    [91]孙俊忠,马伟明,吴旭升,等.3/12相双绕组发电机数学模型研究[J].中国电机工程学报,2003,23(1):93-96.
    [92]Smith, L.P., Dixon, R.R., Shor, S.W.W. Modular Modeling System (MMS):A Code for the Dynamic Simulation of Fossil and Nuclear Power Plants[M]. Palo Alto, CA:Electric Power Research Institute,1983.
    [93]Symons, A. What is user friendliness in modeling and simulation[C]. The Proceeding of the 1985 Summer Computer Simulation Conference. Society for Computer Simulation,1985.
    [94]Shor, S.W.W. Modular Modeling System (MMS), Vol.5:summary peport[R]. Palo Alto, CA: Electric Power Research Institute,1987.
    [95]Berenbach, B.A., et al. CETRAN:A Block-Structured Simulation Environment for Real-time Application[M]. Edison, NJ:Combustion Engineering, Power Automation,1989.
    [96]Silvennoinen, E., et al. The APROS software for process simulation and model development[R]. Technical Research Centre of Finland,1989.
    [97]崔艳,唐世林.大型火电机组实时仿真机上的发电机数学模型[J].计算机仿真,1998,15(3):41-43.
    [98]王祥珩,孙宇光,桂林,等.大型水轮发电机多回路模型的合理简化[J].中国电机工程学报,2007,27(3):63-67.
    [99]夏勇军,尹项根,陈德树,等.大型水轮发电机内部故障暂态仿真模型简化及仿真验证[J].电力系统自动化,2006,30(12):70-74.
    [100]张琦雪,王祥珩.大型同步发电机单相接地故障的暂态多回路分析—数学模型[J]. 电力系统自动化,2003,27(6):59-65.
    [101]申健,金钧.电力系统仿真分析中几种同步发电机数学模型的比选[J].电气技术,2007,11(9):48-51.
    [102]胡晓斌,宋峥,马艳茹.发电机模型及电力系统暂态稳定研究[J].科技信息,2009(35):108-109.
    [103]陈晶.混合采用发电机三阶模型和二阶模型的电网仿真[J].云南电力技术,2006,34(3):39-41.
    [104]李岩,苏学军.基于MATLAB SIMULINK同步发电机电路模型仿真[J].青岛大学学报,2003,18(3):69-71.
    [105]李凤婷,晁勤,童菲.基于Matlab的水电-风电系统动稳仿真[J].水力发电,2007,33(7):66-68.
    [106]曹程杰,莫岳平,刘洁.基于Matlab模块化模型的水轮发电机组仿真研究[J].电力系统保护与控制,2010,38(2):68-71.
    [107]童旭松,孙玉田,李桂芬,等.基于SIMSEN软件的汽轮发电机空载短路仿真计算[J].大电机技术,2005(6):5-7.
    [108]朱建国.水轮发电机组仿真模型的研究[J].浙江水利水电专科学校学报,2008,20(2):37-40.
    [109]李伯虎,童承璞,李松清,等.连续系统仿真与辅助设计语言ICSL[J].计算机工程与设计,1985(3):24-35
    [110]Zanobetti, D. Power Station Simulators[M]. Piscataway, NJ:IEEE Service Center, 1989.
    [111]American National Standards Institute. ISA-70.20:Fossil Fuel Power Plant Simulators-Functional Requirements[S]. Instrument Society of America,1990.
    [112]American National Standards Institute. ISA-70.20:Fossil Fuel Power Plant Simulators-Functional Requirements[S]. Instrument Society of America,1993.
    [113]Ozden, M.H. Graphical programming of simulation models in an object-oriented environment[J]. Simulation,1991,56(2):104-116.
    [114]Jiang, X., Li, G., Chen Y. Study on the simulation model of power unit control system[C]. Proceedings of the Third Beijing International Conference on System Simulation and Scientific Computing. Beijing,1995.
    [115]Maffezzoni, C., et al. Computer aided modeling for large power plants[C]. IFAC Proceedings on Modeling & Control of Electric Power Plants. Como, Italy,1983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700