用户名: 密码: 验证码:
磁通切换型电机拓扑结构及运行特性的分析与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
永磁磁通切换电机(FSPM)继承了开关磁阻电机转子结构简单坚固和永磁同步电机(转子永磁式电机)转矩密度高、效率高的优点。永磁体放置在定子上,不受离心力,散热条件良好;电枢磁场和永磁磁场为并联关系,永磁体退磁风险小;电励磁和混合励磁拓扑易于实现无刷化。一系列优点决定了其在航空航天、风力发电、电动汽车领域具有较大的应用潜力。
     本文致力于磁通切换型电机的拓扑结构和控制策略的研究,在分析了12/10永磁磁通切换电机电磁性能的基础上,对电机的容错拓扑、电励磁拓扑、混合励磁拓扑、电动及发电控制策略进行了深入的研究。
     针对航空电力作动系统,从提高电枢磁场磁路的磁导入手,提出6/19转子分段式多齿容错FSPM电机拓扑。与传统容错型FSPM电机拓扑相比,所研究拓扑优点如下:(1)具有相对较高的转矩密度和较小的定位力矩;(2)定转子采用多齿结构,增大了电机自感,提高了抑制短路电流能力;(3)特定的轴向分段结构可以实现单个线圈反电势的高正弦度,并保证较高的反电势基波幅值。为了减小电机故障运行时的转矩脉动,研究了基于电流矢量重构技术的FSPM电机容错控制算法。
     对FSPM电机的电励磁拓扑结构进行了研究和衍化:(1)12/10电励磁磁通切换(EEFS)电机相对于12/8电励磁双凸极(EEDS)电机具有高正弦度的励磁磁链和相对较高的转矩密度。(2)衍化得到的“E”型铁芯EEFS电机、“C”型铁芯EEFS电机、多齿EEFS电机相对于12/10EEFS电机具有更高的转矩密度以及较强的恒功率区域运行能力。此外,详细分析了EEFS发电机和EEDS发电机在采用不同整流电路时的外特性。
     针对发电场合和宽转速范围驱动场合,研究了一种转子分段式混合励磁磁通切换电机拓扑,与串联式混合励磁磁通切换电机、磁桥式混合励磁磁通切换电机、“E”型铁芯混合励磁磁通切换电机等相比,所提出拓扑优点如下:(1)解决了二维混合励磁拓扑中永磁磁场与电励磁磁场的耦合问题;(2)不存在永磁体的退磁和短路,具有较高的永磁体利用率和励磁电流利用率。因此,转子分段式混合励磁磁通切换电机适合应用在高可靠性(无永磁体退磁)、高转矩密度(无永磁体短路)、调磁能力强(电励磁磁场磁路磁阻小)的场合。
     为同时提高发电系统的动、静态性能,提出了混合励磁磁通切换发电机的直接功率线性控制(DPLC)策略。DPLC不但与经典的直接功率控制(DPC)具有相同的转矩跟踪能力,而且在稳态时,定子磁链纹波和电磁转矩脉动得到有效地抑制。从系统成本、可靠性、功率因数、电机利用率分析了直接功率线性控制策略、直接功率控制策略、矢量控制策略、调磁调压控制策略的优缺点,对各种策略具有优势的使用场合进行了分析。
     将DPLC的控制思想移植到交流电机的电动控制领域,提出了交流电机的直接转矩线性(DTLC)控制策略,给出同步类交流电机和异步电机的DTLC控制框图和目标定子磁链计算方法。在DPLC和DTLC算法中,为准确辨识到电机的定子磁链信息,提出了基于高通滤波器、低通滤波器以及坐标变换环节的磁链辨识算法,该算法可将反电势中的直流分量有效滤除,其幅频特性、相频特性与纯积分算法相同,不受负载、电机转速以及闭环参数的影响。克服了纯积分算法和一阶低通滤波器存在的饱和和相位误差问题。
The flux-switching permanent-magnet (FSPM) machine inherits the simple and robust rotor of theswitched reluctance machine (SRM) and high torque density and efficiency of the permanent magnetsynchronous machine (rotor-PM machine). As the magnets are on the stator, the temperature rise ofthe magnets may be more easily managed; moreover, the brushless hybrid excitation structure may bemore easily achieved. Furthermore, the armature field is in parallel with the PM field and there is norisk of PM demagnetization. Therefore, FSPM machines exhibit the potential in applications includingaerospace engineering, wind power systems and hybrid electric vehicles.
     This dissertation focuses on basic research of topologies and operational characteristics of theFSPM machines with emphasize on fault tolerant, electrical excitation and hybrid excitationtopologies and control strategies for both generator and motor operations, moreover, experiments arecarried out and analyzed.
     For the electro-mechanical actuator (EMA) in aircraft subsystems, a6/19multi-tooth fault-tolerantFSPM machine with twisted-rotor (MTFTFSPM-TR) is presented. Compared with the traditionalfault-tolerant FSPM machines, the MTFTFSPM-TR shows higher torque density, better capability ofinhibition short-circuit current and lower cogging torque. Meanwhile, the twisted-rotor structure canachieve a symmetric and high sinusoidal back-EMF in each armature coil without the magnitudereduction. Besides, the fault tolerant control methods are investigated to reduce the torque rippleswhen in fault operation, which has been verified on MTFTFSPM-TR machines.
     For low cost applications, the electrical excitation topologies of FSPM machines are analyzed:(1)compared with the12/8EEDS machine, the12/10EEFS machine shows bipolar excitation flux andrelatively higher torque density.(2) Compared with the12/10EEFS machine, the “E” core EEFSmachine, the “C” core EEFS machine and the multi-tooth EEFS machine shows higher torque density.Meanwhile, the “E” core EEFS machine, the “C” core EEFS machine and the multi-tooth EEFSmachine show wide constant-power capability even with constant excitation current. Besides,theexternal characteristics of the EEFS and the EEDS generators are compared based on differentrectifiers.
     For generation application field, a twisted-rotor parallel hybrid excitation flux-switching machine isproposed. Compared with the series hybrid excitation topology, the series hybrid excitation topologywith iron flux bridge and the parallel hybrid excitation topology with E core structure, the proposedtopology shows the following advantages:(1) the coupling problem of PM field and electrical excitation field can be solved.(2) high excitation current and high magnets utilization can be achievedsimultaneously. It can be found that the twisted-rotor parallel hybrid excitation flux-switchingmachine is suitable for applications that require high reliability (no PM demagnetization), high torquedensity (no PM magnetic short circuit), and high flux adjustment capability (small reluctance inelectrical field circuit).
     For the hybrid excitation flux-switching generator, a direct power linear control (DPLC) isproposed. This strategy shows similar excellent dynamic performance as that of the traditional directpower control (DPC), and further, it can reduce the ripples in stator flux-linkage and electromagnetictorque, which enhance the system steady performance. In terms of system cost, reliability, powerfactor and machine utilization, the DPLC, DPC, vector control (VC) and excitation current regulationstrategies are compared and their suitable applications are analyzed.
     Moreover, the direct torque linear control (DTLC) can also be employed for the motor operation. Inthe DTLC under motor operation, the abilities to control the torque angle by the motion vector and themaximum space vector, respectively, are compared. The DTLC and direct torque control (DTC) showabilities to control torque, which is verified. The concept of DTLC can also be extended to otherapplications using AC machines, which has been verified on FSPM machines.
     However, both DPLC and DTLC need accurate stator flux-liakage. Hence, a new integrationalgorithm, which can not only overcome the problems the pure integrator and LP filter produced butalso effectively solve the problems that estimation accuracy may be affected by closed-loop parameterin the closed-loop algorithms and adaptive filter algorithms, is proposed. This method has sameamplitude-frequency and phase-frequency characteristics as those of the pure integrator. Meanwhile,its dc gain is zero and the operation will not be affected by machine load and speed as well asclosed-loop parameters. The performance is verified by experiments.
引文
[1] Y. Amara, L. Vido, M. Gabsi, E. Hoang, A. Hamid Ben Ahmed, and M. Lecrivain, Hybridexcitation synchronous machines: energy-efficient solution for vehicles propulsion. IEEE Trans.Veh. Technol.,2009,58(5):2137-2149.
    [2] N. Patin, L. Vido, E. Monmasson, J.-P. Louis, M. Gabsi, and M. Lecrivain, Control of a hybridexcitation synchronous generator for aircraft applications, IEEE Trans. Ind. Electron.,2008,55(10):3772-3783.
    [3] W. Cai, Comparison and review of electric machines for integrated starter alternator applications,in Proc.39th IAS Annual Meeting, Washington, USA,2004,1:386-393.
    [4]邓智泉,仇志坚,王晓琳等,无轴承永磁同步电机的转子磁场定向控制研究,中国电机工程学报,2005,25(1):104-108。
    [5] Z.Zhang, Y.Tao, Y.Yan, A new topology of low speed doubly salient brushless DC generator forwind power generation, IEEE Trans. Magn.,2012,48(2):1227-1233.
    [6] Z.Chen, H.Wang, Y.Yan, A doubly salient starter-generator with two-section twisted-rotorstructure for potential future aerospace application, IEEE Trans. on Ind. Electron., to bepublished.
    [7] Zhihui Chen, Nan Zhou, Flux regulation ability of a hybrid excitation doubly salient machine.IET Electric Power Applications,2011,5(2):224-229.
    [8] Zhihui Chen, Ran Chen, Zhe Chen, A fault tolerant parallel structure of single-phase full-bridgerectifiers for a wound-field doubly salient generator, IEEE Trans. on Ind. Electron., to bepublished.
    [9] Yuwen Hu, Wenxin Huang, Yong Li. A Novel Instantaneous Torque Control Strategy forInduction Generator Systems. IEEE Trans. on Energy Convers.,2010,25(3):795-803.
    [10] J.A. Marra, A.K. Jain, S. Mathapati, V.T. Ranganathan, V.Narayanan, Integrated StarterGenerator for42-V Power net Using Induction Machine and Direct Torque Control Technique,IEEE Trans. Power Electron.,2006,21(3):701-710.
    [11]王晓琳,邓智泉,张宏荃等,无轴承异步电机研究与实现,航空学报,2003,24(3):259-262。
    [12] Yan Yang, Zhiquan Deng, Gang Yang, Xin Cao, Qianying Zhang, A Control Strategy forBearingless Switched-Reluctance Motors, IEEE Trans. Power Electron.,2010,24(11):2807-2819.
    [13] Z. Q. Zhu and C. C. Chan, Electrical machine topologies and technologies for electric, hybrid,and fuel cell vehicles, in Proc. VPPC’08, Haerbin, China, Sep.3-5,2008:1-6.
    [14] Z.Zhang, Y.Yan, S.Yang, and B.Zhou, Principle of operation and feature investigation of a newtopology of hybrid excitation synchronous machine, IEEE Trans. Magn.,2008,44(9):2174-2180.
    [15] Zhuoran Zhang, Yangyang Tao, Yangguang Yan, Investigation of a new topology of hybridexcitation doubly salient brushless DC generator, IEEE Trans. on Ind. Electron.,2012,59(6):2550-2556.
    [16] Zhuoran Zhang,Yangguang Yan, Shanshui Yang, Zhou Bo, Development of a newpermanent-magnet BLDC generator using12-phase half-wave rectifier, IEEE Trans. on Ind.Electron.,2009,56(6):2523-2529.
    [17] J.Wei, Q.Deng, B.Zhou, M.Shi, Y.Liu, The control strategy of open-winding permanent magnetstarter-generator with inverter-rectifier topology, IEEE Trans. on Ind. Informat., to be published.
    [18]陈志辉,周楠,30/20极混合励磁双凸极电机开关磁阻发电方式研究,中国电机工程学报,2011,31(15):94-100。
    [19]张卓然,周竞捷,严仰光,周波,电励磁双凸极发电机转子极宽对输出特性的影响,中国电机工程学报,2010,30(3):77-82。
    [20] Feifei Bu, Wenxin Huang, Yuwen Hu, Kai Shi, An excitation-capacitor-optimized dualstator-winding induction generator with the static excitation controller for wind powerapplication, IEEE Trans. Energy Convers.,2011,26(1):122-13.
    [21] Feifei Bu, Wenxin Huang, Yuwen Hu, Jingkui Shi, and Kai Shi, A stand-alone dualstator-winding induction generator variable frequency AC power system, IEEE Trans. PowerElectron.,2012,27(1):10-13.
    [22] Feifei Bu, Wenxin Huang, Yuwen Hu, and Kai Shi, An Integrated AC and DC hybrid generationsystem using dual-stator-winding induction generator with static excitation controller, IEEETrans. Energy Convers.,2011,27(3):810-812.
    [23]卜飞飞,黄文新,胡育文等,基于瞬时转差频率控制的定子双绕组异步电机变频交流发电系统,电工技术学报,2012,27(12):94-100。
    [24] Gang Yang, Zhiquan Deng, Xin Cao, Xiaolin Wang, Optimal winding arrangements of abearingless switched reluctance motor, IEEE Trans. Power Electron.,2008,23(6):3056-3066.
    [25]邓智泉,王晓琳,张宏荃等,无轴承异步电机的转子磁场定向控制,中国电机工程学报,2003,23(3):89-92。
    [26]赵朝会,张卓然,秦海鸿,混合励磁电机的结构及原理,北京,科学出版社,2010。
    [27] Mingming Shi, Bo Zhou, Jiadan Wei, Zhuoran Zhang,Yiran Mao, Chu Han, Design and PracticalImplementation of a Novel Variable-Speed Generation System, IEEE Trans. on Ind. Electron.,2011,58(11):5032-5040.
    [28]郝振洋,胡育文,黄文新,余文涛,许顺,转子磁钢离心式六相十极永磁容错电机及控制策略,中国电机工程学报,2010,30(30):81-86。
    [29] Jiabin Wang, K. Atallah, D. Howe, Optimal torque control of fault-tolerant permanent magnetbrushless machines, IEEE Trans. Magn.,2003,39(5):2962-2964.
    [30] D. Ishak, Z. Q. Zhu, and D. Howe, Comparison of PM brushless motors, with either all teeth oralternate teeth wound, IEEE Trans. Energy Convers.,2006,21(1):95-103.
    [31] D. Ishak, Z. Q. Zhu, and D. Howe, Permanent magnet brushless machines with unequal toothwidths and similar slot and pole numbers, IEEE Trans. Ind. Appl.,2005,41(2):584-590.
    [32] J.D. Ede, K. Atallah, Jiabin Wang, D. Howe, Effect of optimal torque control on rotor loss offault-tolerant permanent-magnet brushless machines, IEEE Trans. Magn.,2002,38(5):3291-3293.
    [33] B.C. Mecrow, A.G. Jack, D.J. Atkinson, S.R. Green, G.J. Atkinson, A. King, B.Green, Design andtesting of a four-phase fault-tolerant permanent-magnet machine for an engine fuel pump, IEEETrans. on Energy Convers.,2004,19(4):671-678.
    [34]郝振洋,六相永磁容错电机及其控制系统的设计和研究,[博士学位论文],南京,南京航空航天大学,2010。
    [35]齐蓉,林辉,周素莹,多电飞机电气系统关键技术研究,航空计算机技术,2004,34(1):91-101。
    [36]倪光正,倪培宏,熊素铭(译),现代电动汽车、混合动力汽车和燃料电池车-基本原理、理论和设计,北京,机械工业出版社,2011。
    [37] M.Cheng, W.Hua, J.Zhang and W.Zhao, Overview of stator-Permanent Magnet BrushlessMachines, IEEE Trans. on Ind. Electron.,2011,58(11):5087-5101.
    [38] Z. Q. Zhu, Y. Pang, D. Howe, S. Iwasaki, R. Deodhar, and A. Pride, Analysis of electromagneticperformance of flux-switching permanent magnet machines by non-linear adaptive lumpedparameter magnetic circuit model, IEEE Trans. Magn.,2005,41(11):4277-4287.
    [39]花为,程明,Z. Q. Zhu,D. Howe,新型磁通切换型双凸极永磁电机的静态特性研究,中国电机工程学报,2006,26(13):129-134。
    [40] S. E. Rauch and L. J. Johnson, Design principles of flux-switching alternators, AIEE Trans.74III,1955:1261-1268.
    [41] A.E. Laws, An electromechanical transducer with permanent magnet polarization, TechnicalNote No.G.W.202, Royal Aircraft Establishment, Farnborough, UK,1952
    [42] C. Pollock, and M. Wallace, The flux-switching motor, a DC motor without magnets or brushes,IEEE Industry Applications Society Annual Meeting,1999:1980-1987.
    [43] C. Pollock, and M. Brackley, Comparison of the acoustic noise of flux-switching and a switchedreluctance drives, IEEE Trans. Industry Applications,2003,39(3):826-834.
    [44] K. S. Chai and C. Pollock, Using genetic algorithms in design optimization of the flux switchingmotor, Int. Conf. on Power Electronics, Machines and Drives,2002:540-545.
    [45] C. Pollock, H. Pollock, R. Barron, R. Sutton, J. Coles, D. Moule, and A. Court, Flux switchingmotors for automotive applications, IEEE Trans. on Industry Applications,2006,42(5):1177-1184
    [46] H. Pollock, C. Pollock, R. T. Walter, and B.V. Gorti, Low cost, high power density,flux-switching machines and drives for power tools, IEEE Industry Applications Society AnnualMeeting,2003:1451-1457.
    [47] C. Pollock, H. Pollock, and M. Brackley, Electronically controlled flux switching motors: acomparison with an induction motor driving an axial fan, The29th Annual Conference of theIEEE Industrial Electronics Society, IECON '03,2003:2465-2470.
    [48] K. N. Ochije and C. Pollock, Simulink model of controlled power factor flux switching generatorsystem for embedded power generation, IEEE Industry Applications Society Annual Meeting,2005:2657-2664.
    [49] K. N. Ochjie and C. Pollock, Design/performance of a flux switching generator system forvariable speed applications, IEEE Industry Applications Society Annual Meeting,2005:1567-1574.
    [50] K. N. Ochije and C. Pollock, Controlled series compensation of high speed brushless fluxswitching generators for direct drive variable speed application, IEEE Electric ShipTechnologies Symposium,2007:408-413.
    [51] C. Yi, C. Pollock, and H. Pollock, A permanent magnet flux switching motor for low energyaxial fans, IEEE Industry Applications Society Annual Meeting,2005:2168-2175.
    [52] E. Hoang, A. H. Ben-Ahmed and J. Lucidarme, Switching flux permanent magnet polyphasedsynchronous machines,7th European Conf. on Power Electronics and Applications,1997:903-908.
    [53] E. Hoang, M. Gabsi, M. Lecrivain and B. Multon, Influence of magnetic losses on maximumpower limits of synchronous permanent magnet drives in flux-weakening mode, IEEE IndustryApplications Society Annual Conference,2000:299-303.
    [54] Y. Amara, E. Hoang, M. Gabsi, M. Lecrivain, and S. Allano, Design and comparison of differentflux-switch synchronous machines for an aircraft oil breather application, The2ndIEEE Int.Conf. on Signals, Systems, Decision and Information Technology,2003:26-29.
    [55] E. Hoang, M. Lecrivain, and M. Gabsi, A new structure of a switching flux synchronouspolyphased machine with hybrid excitation, European Conf. Power Electronics and Applications,2007:1–8.
    [56] E. Hoang, M. Lecrivain, S. Hlioui, and M. Gabsi, Hybrid excitation permanent magnetsynchronous machines optimally designed for hybrid and full electric vehicles, Int Conf onPower Electronics (ICPE2011)-ECCE-Asia,2011, Paper TuD1-2.
    [57] E. Hoang, M. Lecrivain, and M. Gabsi,3-D thermal model of an hybrid excitation flux switchingsynchronous machine using a2-D FE method software, Int. Symposium Power ElectronicsElectrical Drives Automation and Motion (SPEEDAM),2010:101-104.
    [58] E. Hoang, S. Hlioui, M. Lecrivain, and M. Gabsi, Experimental comparison of laminationmaterial case of switching flux synchronous machine with hybrid excitation, European Conf.Power Electronics and Applications,2009:1-7.
    [59] X. Ojeda, G. J. Li, and M. Gabsi, Fault diagnosis using vibration measurements of aflux-switching permanent magnet motor, IEEE Int. Symp. Industrial Electronics,2010:2091-2096.
    [60] Z.Q. Zhu, Study of Laws relay, Industrial Technical Report, University of Sheffield, UK,1988.
    [61] R. Owen, Z. Q. Zhu, A. Thomas, G. W. Jewell, and D. Howe, Alternate pole wound fluxswitching permanent magnet brushless AC machines, IEEE Trans. Industry Applications,2010,46(2):790-797.
    [62] T. Raminosoa and C. Gerada, A comparative study of permanent magnet-synchronous andpermanent magnet-flux switching machines for fault tolerant drive systems, IEEE EnergyConversion Congress and Exposition,2010:2471-2478.
    [63] T. Raminosoa and C. Gerada, Novel fault tolerant design of flux switching machines, Int. Conf.Power Electronics, Machines and Drives,2010:1-6.
    [64] T. Raminosoa and C. Gerada, Fault tolerant winding technology comparison for flux switchingmachine, Int. Conf. Electrical Machines,2010:1-6.
    [65] J. T. Chen, Z. Q. Zhu, S. Iwasaki, R. Deodhar, A novel E-core flux-switching PM brushless ACmachine for direct-drive applications, IEEE Trans. Industry Applications,2011,47(3):1273-1282.
    [66] T. Raminosoa, C. Gerada, and M. Galea, Design considerations for a fault-tolerantflux-switching permanent-magnet machine, IEEE Trans. Industrial Electronics,2011,58(7):2818-2825.
    [67] W. Zhao, M. Cheng, W. Hua, H. Jia, and R. Cao, Back-EMF harmonic analysis andfault-tolerant control of flux-switching permanent-magnet machine with redundancy, IEEETrans. Industrial Electronics,2011,58(5):1926-1935.
    [68] W. Zhao, M. Cheng, W. Hua, L. Xu, R. Cao, and Y. Du, Post-fault operation of redundantflux-switching permanent-magnet motors using harmonic injected current, Int. Conf. ElectricalMachines and Systems,2010:868-872.
    [69] W. Zhao, M. Cheng, W. Hua, H. Jia, R. Cao, and W. Wang, Remedial operation of afault-tolerant flux-switching permanent magnet motor for electric vehicle applications, IEEEVehicle Power and Propulsion Conf.,2010:1-6.
    [70] W. Zhao, M. Cheng, K. T. Chau, J. Ji, W. Hua, and R. Cao, A new modular flux-switchingpermanent-magnet machine using fault-tolerant teeth,14th Biennial IEEE Conf. ElectromagneticField Computation,2010:1.
    [71]花为,董广鹏,程明,混合励磁型磁通切换电机电感特性分析,中国科技论文在线,2010,5(8):637-642。
    [72] W. Hua, M. Cheng, and G. Zhang, A novel hybrid excitation flux-switching motor for hybridvehicles, IEEE Trans. Magnetics,2009,45(10):4728-4731.
    [73] Y. Wang, Z. Q. Deng, and X. L. Wang, A novel fault-tolerant multi-tooth flux-switching motorwith hybrid excitation for electro-mechanical actuator,14th Biennial IEEE Conf.Electromagnetic Field Computation,2010:1-1.
    [74] E. Sulaiman, T. Kosaka, Y. Tsujimori, and N. Matsui, Design of12-slot10-pole permanantmagnet flux-switching machine with hybrid excitation for hybrid electric vehicle, Int. Conf.Power Electronics, Machines and Drives,2010:1-5.
    [75] N. Naoe, T. Fukami, Trial production of a hybrid excitation type synchronous machine, in Proc.2001international conference on electrical machines and drives (IEMDC),2001:545-547.
    [76] J. T. Chen, Z. Q. Zhu, S. Iwasaki, R. Deodhar, A novel hybrid excited switched-flux brushlessAC machine for EV/HEV applications, IEEE Trans. Vehicular Technology,2011,60(4):1365-1373.
    [77] R L. Owen, Z.Q. Zhu, and G. W. Jewell, Novel hybrid-excited flux-switching permanent-magnetmachines with iron bridges, IEEE Trans. Magnetics,2010,46(6):1726-1729.
    [78] J.T. Chen, and Z.Q. Zhu, Winding configurations and optimal stator and rotor pole combinationof flux-switching PM brushless AC machines, IEEE Trans. Energy Conversion,2010,25(2):293-302.
    [79] J. T. Chen, Z. Q. Zhu, and Z. P. Xia, Coil connections and winding factors in flux-switching PMbrushless AC machines, Int. J. for Computation and Mathematics in Electrical and ElectronicEngineering (COMPEL),2011,30(1):84-97.
    [80] J. T. Chen, Z.Q. Zhu, and D. Howe, Stator and rotor pole combination and optimal design ofmulti-tooth flux-switching PM brushless AC machines, IEEE Trans. Magnetics,2008,44(12):4659-4667.
    [81] J.T. Chen, and Z.Q. Zhu, Influence of rotor pole number on optimal parameters in flux-switchingPM brushless AC machines by lumped parameter magnetic circuit model, IEEE Trans. IndustryApplications,2010,46(4):1381-1388.
    [82] J.T. Chen and Z.Q. Zhu, Comparison of all and alternate poles wound flux-switching PMmachines having different stator and rotor pole numbers, IEEE Trans. Industry Applications,2010,46(4):1406-1415.
    [83]颜建虎,林鹤云,冯奕,磁通切换型横向磁通永磁风力发电机,中国电机工程学报,2010,30(21):67-72。
    [84] A. Zulu, B. Mecrow, and A. Armstrong, A wound-field three-phase flux-switching synchronousmotor with all excitation sources on the stator, IEEE Trans. Industry Applications,2010,46(4):2363-2371.
    [85] A. Zulu, B. C. Mecrow, and M. Armstrong, Prediction of performance of a wound-fieldsegmented-rotor flux-switching synchronous motor using a dq-equivalent model, Int. Conf. onElectrical Machines,2010, pp.1-6. IEEE Trans. on Industrial Electronics,2011, in press.
    [86] A. Zulu, B. C. Mecrow, and M. Armstrong, Topologies for wound-field three-phasesegmented-rotor flux-switching machines, IET Int. Conf. Power Electronics, Machines andDrives (PEMD2010),2010:1-6.
    [87] W. Fei, P. C. K. Luk, J. X. Shen, and Y. Wang, A novel outer-rotor permanent-magnetflux-switching machine for urban electric vehicle propulsion, Int. Conf. Power ElectronicsSystems and Applications,2009:1-6.
    [88] Y. Wang, M. J. Jin, J. X. Shen, W. Z. Fei, and P. C. K. Luk, An outer-rotor flux-switchingpermanent magnet machine for traction applications, IEEE Energy Conversion Congress andExposition,2010:1723-1730.
    [89] W. Min, J. T. Chen, Z. Q. Zhu, Y.Zhu, and G. H. Duan, Optimization of linear flux switchingpermanent magnet motor, IEEE Vehicle Power and Propulsion Conf.,2010: PaperRT6/95-93051.
    [90] W. Min, J. T. Chen, Z. Q. Zhu, Y. Zhu, M. Zhang, G. H. Duan, Optimization and comparison ofnovel E-core and C-core linear switched flux PM machines, IEEE Trans. Magnetics, in Press.
    [91] Z.Q. Zhu, X. Chen, J. T. Chen, D. Howe, and J.S. Dai, Novel linear fault-tolerant flux-switchingpermanent-magnet machines, Proc. Int. Conf. Elec. Machines and Systems (ICEMS),2008,paper SMO-48.
    [92] Ruiwu Cao, Ming Cheng, Mi, C.,Wei Hua, Xin Wang, Wenxiang Zhao, Modeling of aComplementary and Modular Linear Flux-Switching Permanent Magnet Motor for Urban RailTransit Applications, IEEE Trans. Energy Conversion,2012,27(2):489-497.
    [93] L. Huang, H. Yu, M. Hu, J. Zhao, and Z. Cheng, A novel flux-switching permanent-magnetlinear generator for wave energy extraction application, IEEE Trans. Magnetics,2011,47(3):1034-1037.
    [94] L. Huang, H. Yu, J. Zhao, and M. Q. Hu, A novel flux-switching permanent magnet lineargenerator for wave energy extraction,14th Biennial IEEE Conf. Electromagnetic FieldComputation,2010:1.
    [95] M. J. Jin, C. F. Wang, J. X. Shen, and B. Xia, A modular permanent-magnet flux-switchinglinear machine with fault-tolerant capability, IEEE Trans. Magnetics,2009,45(8):3179-3186.
    [96] C. F. Wang, J. X. Shen, L. L. Wang, and K. Wang, A novel permanent magnet flux-switchinglinear motor,4thIET Conf. Power Electronics, Machines and Drives,2008:116-119.
    [97] C. F. Wang, J. X. Shen, Y. Wang, L. L. Wang, and M. J. Jin, A new method for reduction ofdetent force in permanent magnet flux-switching linear motors, IEEE Trans. Magnetics,2009,45(6):2843-2846.
    [98] D. C. J. Krop, L. Encica, and E. A. Lomonova, Hybrid modeling method for the analysis of alinear flux switching machine,14th Biennial IEEE Conf. Electromagnetic Field Computation,2010:1-1.
    [99]曹瑞武,程明,花为,赵文祥,磁路互补型模块化磁通切换永磁直线电机,中国电机工程学报,2011,31(6):58-65。
    [100] Z. Q. Zhu, A.S. Thomas, J.T. Chen, and G.W. Jewell, Cogging torque in flux-switchingpermanent magnet machines, IEEE Trans. Magnetics,2009,45(10):4708-4711.
    [101] W. Hua and M. Cheng, Cogging torque reduction of flux-switching permanent magnetmachines without skewing, Int. Conf. Electrical Machines and Systems,2008:3020-3025.
    [102] H. Jia, M. Cheng, W. Hua, Z. Yang, and Y. Zhang, Compensation of cogging torque forflux-switching permanent magnet motor based on current harmonics injection, IEEE Int. ElectricMachines and Drives Conf.,2009:286-291.
    [103] W. Z. Fei, P. C. K. Luk, J. X. Shen, B. Xia, and Y. Wang, Permanent-magnet flux-switchingintegrated starter generator with different rotor configurations for cogging torque and torqueripple mitigations, IEEE Ind. Appli.,2011,47(3):1247-1256.
    [104] Y. Wang, M. J. Jin, W. Z. Fei, and J. X. Shen, Cogging torque reduction in permanent magnetflux-switching machines by rotor teeth axial pairing, IET Electric Power Applications,2010,4(7):500-506.
    [105] M. J. Jin, Y. Wang, J. X. Shen, P. C. K. Luk, W. Z. Fei, and C. F. Wang, Cogging torquesuppression in a permanent magnet flux-switching integrated-starter-generator, IET ElectricPower Applications,2010,4(8):647-656.
    [106] W. Fei, P. C. K. Luk, B. Xia, Y. Wang, and J. X. Shen, Permanent magnet flux switchingintegrated-starter-generator with different rotor configurations for cogging torque and torqueripple mitigations, IEEE Energy Conversion Congress and Exposition,2010:1715-1722.
    [107] J. Yang, Y. Deng, Q. Ma, and W. Zhao, Cogging torque analysis of flux-switching permanentmagnet motor, Int. Conf. E-Product E-Service and E-Entertainment,2010:1-4.
    [108]贾红云,程明,花为,赵文祥,基于电流谐波注入的磁通切换永磁电机定位力矩补偿方法,中国电机工程学报,2009,29(27):83-89。
    [109] Y. Chen, Z.Q. Zhu, and D. Howe, Three-dimensional lumped parameter magnetic circuit modelfor analyzing single-phase flux-switching permanent magnet motor, IEEE Trans. IndustryApplications,2008,44(6):1701-1710.
    [110] Z. Q. Zhu, J.T. Chen, Y. Pang, D. Howe, S. Iwasaki, and R. Deodhar, Modelling of end-effecton electromagnetic torque in flux-switching permanent magnet machine, Int. Conf. ElectricalMachines and Systems (ICEMS2007),2007:943-948.
    [111] J.T. Chen, Z.Q. Zhu, and D. Howe, A dual-lumped parameter magnetic circuit modelaccounting for the cross-coupling effect, with particular reference to flux-switching permanentmagnet machines, IET, power Electronics, Machines and Drives,2008:111-115.
    [112] W. Hua, G. Zhang, and M. Cheng, Electromagnetic performance analysis of hybrid-excitedflux-switching machines for electrical vehicles by an improved magnetic network model, IEEEVehicle Power and Propulsion Conf.,2010:1-5.
    [113] G. Zhang, M. Cheng, W. Hua, and X. K. Sun, Analysis of flux-switching permanent-magnetmachine by nonlinear magnetic network model considering saturation,14th Biennial IEEE Conf.Electromagnetic Field Computation,2010:1-1.
    [114] G. P. Dong, M. Cheng, and W. Hua, Modeling of a novel hybrid-excited flux-switchingmachine drives for hybrid electrical vehicles,2010Int. Conf. Electrical Machines and Systems,2010:839-843.
    [115] G. Zhang, M. Cheng, W. Hua, Analysis of flux-switching permanent-magnet machine bynonlinear magnetic network model with bypass-bridges,2010Int. Conf. Electrical Machines andSystems,2010, pp.1787-1791.
    [116] W. Zhao, M. Cheng, W. Hua, and H. Jia, Modeling of flux-switching permanent magnet motordrives using transient field-circuit co-simulation method, Int. Conf. Electrical Machines andSystems,2008:4044-4048.
    [117] D. H. Wang, and X. H. Wang, Analysis of static performance for flux-switching motor bynonlinear equivalent magnetic circuit model, Int. Conf. Electrical Machines and Systems,2010:1661-1665.
    [118] D. H. Wang, and X. H. Wang, Modeling and analysis on flux switching motor based on timestepping finite element, Asia-Pacific Power and Energy Engineering Conf.,2010:1-4.
    [119] A. Chen, R. Nilssen, and A. Nysveen, Analytical design of a high-torque flux-switchingpermanent magnet machine by a simplified lumped parameter magnetic circuit model, Int. Conf.Electrical Machines,2010:1-6.
    [120] E. Ilhan, B. L. J. Gysen, J. J. H. Paulides, and E. A. Lomonova, Analytical hybrid model forflux switching permanent magnet machines, IEEE Trans. Magnetics,2010,46(6):1762-1765.
    [121] L. J. Gysen, E. Ilhan, K. J. Meessen, J. J. H. Paulides, and E. A. Lomonova, Modeling of fluxswitching permanent magnet machines with fourier analysis, IEEE Trans. Magnetics,2010,46(1):1499-1502.
    [122]王道涵,王秀和,张冉,磁通切换型磁阻电机系统的非线性仿真模型,中国电机工程学报,2009,29(30):76-83。
    [123] Y. Pang, Z. Q. Zhu, D. Howe, S. Iwasaki, R. Deodhar, and A. Pride, Eddy current loss in theframe of a flux-switching permanent magnet motor, IEEE Trans. Magnetics,2006,42(10):3413-3415.
    [124] S. Iwasaki, R. Deodhar, Y. Liu, A. Pride, Z.Q. Zhu, and J. Bremner, Influence of PWM on theproximity loss in permanent magnet brushless AC machines, IEEE Trans. Industry Applications,2009,45(4):1359-1367.
    [125] A.S. Thomas, Z.Q. Zhu, G.W. Jewell, Proximity losses study in a high speed flux switchingpermanent magnet machine, IEEE Trans. on Magnetics,2009,45(10):4748-4751.
    [126] Y. Chen, Z.Q. Zhu, and D. Howe, Rotor eddy current loss in1-phase high-speed permanentmagnet brushless DC motor, Proc. IEEE Industry Application Society Annual Meeting,2007,paper IAS15p1.
    [127] Z. Q. Zhu, Y. Pang, J.T. Chen, R. Owen, D. Howe, S. Iwasaki, R. Deodhar, and A. Pride,Analysis and reduction of magnet eddy current loss in flux-switching permanent magnetmachines, IET, power Electronics, Machines and Drives,2008:120-124.
    [128] Y. Pang, Z. Q. Zhu, D. Howe, S. Iwasaki, R. Deodhar, and A. Pride, Investigation of iron lossin flux-switching permanent magnet machines, IET, Power Electronics, Machines and Drives,2008:460-464.
    [129] J. T. Chen, Z. Q. Zhu, S. Iwasaki, and R. Deodhar, Comparison of losses and efficiency inalternate flux-switching permanent magnet machines, XIX Int. Conf. on Elec. Machines,ICEM2010,2010: paper RF-002259-PMM2.
    [130] Z.Q. Zhu, and J.T. Chen, Advanced flux-switching permanent magnet brushless machines,IEEE Trans. Magnetics,2010,46(6):1447-1453.
    [131] Z.Q. Zhu, Y. Pang, W. Hua, M. Cheng, and D. Howe, Investigation of end-effect in PMbrushless machines having magnets in the stator, J. Applied Physics,2006,99(8):08R319,1-3.
    [132] Y. Chen, Y.S. Chen, Z.Q. Zhu, and D. Howe, and Y.Y. Ye, Starting torque of single-phaseflux-switching permanent magnet motors, IEEE Trans. Magnetics,2006,42(10):3416-3418.
    [133] W. Hua, M. Cheng, Z.Q. Zhu, and W.X. Zhao, Comparison of electromagnetic performance ofbrushless machines having magnets in stator and rotor, J. Applied Physics,2008,103:07F124-1.
    [134] W. Hua, M. Cheng, Z.Q. Zhu, and D. Howe, Analysis and optimization of back-EMFwaveform of a novel flux-switching PM motor, IEEE Trans. Energy Conversions,2008,23(3):727-733
    [135] Z. Q. Zhu, J. T. Chen, D. Howe, S. Iwasaki, and R. Deodhar, Analysis of a novel multi-toothflux-switching permanent magnet brushless ac machines for high torque direct drives, IEEETrans. Magnetics,2008,44(11):4313-4316.
    [136] A. S. Thomas, Z.Q. Zhu, R. Owen, G. W. Jewell, and D. Howe, Multi-phase flux-switchingpermanent magnet brushless machine for aerospace applications, IEEE Trans. IndustryApplications,2009,45(6):1971-1981.
    [137] J. T. Chen, Z. Q. Zhu, S. Iwasaki, R. Deodhar, Influence of slot opening on optimal stator androtor pole combination and electromagnetic performance of flux-switching PM brushless ACmachines, IEEE Trans. Industry Applications, in Press.
    [138] A.S. Thomas, Z.Q. Zhu, G.W. Jewell, Comparison of switched flux and surface mountedpermanent magnet generators for high speed applications, Proc. IET, Electrical Systems inTransportation, in Press.
    [139]王凤翔,永磁电机在风力发电系统中的应用及其发展趋向,电工技术学报,2012,27(3):12-24。
    [140]诸自强,永磁电机研究的新进展,电工技术学报,2012,27(3):1-11。
    [141] A.S. Thomas, Z.Q. Zhu, G.W. Jewell, D. Howe, Flux-switching PM brushless machines withalternative stator and rotor pole combinations, J. Asian Electric Vehicles,2008,6(1):1103-1110.
    [142] W. Hua, Z.Q. Zhu, M. Cheng, Y. Pang, and D. Howe, Comparison of flux-switching anddoubly-salient permanent magnet brushless machines, Proc.8th Int. Conf. Electrical Machinesand Systems,2005:165-170.
    [143] W. Hua, M. Cheng, Z. Q. Zhu, and D. Howe, Design of flux-switching permanent magnetmachine considering the limitation of inverter and flux-weakening capability, IEEE IndustryApplications Society Annual Conf.,2006, paper60p7,6pages.
    [144] W. Hua, M. Cheng, Z.Q. Zhu, and D. Howe, Comparative study of2-phase flux-switching anddoubly-salient permanent magnet brushless machines, Proc. Int. Conf. Elec. Machines,(ICEM2006),2006, paper no: OMM1-1,6pages.
    [145] Y. Pang, Z. Q. Zhu, D. Howe, S. Iwasaki, R. Deodhar, and A. Pride, Comparative study offlux-switching and interior permanent magnet machines, Int. Conf. Electrical Machines andSystems (ICEMS2007),2007:757-762.
    [146] Z.Q. Zhu, Y. Pang, J.T. Chen, Z.P. Xia, and D. Howe, Influence of design parameters on outputtorque of flux-switching permanent magnet machines, Proc. IEEE Vehicle Power and PropulsionConference (VPPC),2008:1-6.
    [147] A.S. Thomas, Z.Q. Zhu, G.W. Jewell, D. Howe, New3-phase flux-switching PM brushlessmachines with alternative stator and rotor pole combinations, Proc. Int. Conf. Elec. Machinesand Systems (ICEMS),2008, paper SMO-55.
    [148] R. L. Owen, Z.Q. Zhu, and G.W. Jewell, Hybrid excited flux-switching permanent magnetmachines,13th European Conf. Power Electronics and Applications, EPE2009,2009:1-10.
    [149] J. Yan, H. Lin, Y. Huang, H. Liu, and Z.Q. Zhu, Magnetic field analysis of a novel fluxswitching transverse flux permanent magnet wind generator with3-D FEM, Power ElectronicsSpecialist Conf.,2009, Taipei, Taiwan.
    [150] J. T. Chen, Z. Q. Zhu, S. Iwasaki, and R. Deodhar, Low cost flux-switching brushless ACmachines, IEEE Vehicle Power and Propulsion Conf.,2010: Paper RT6/95-13475.
    [151] M. Lin, L. Zhang, X. Zhao, X. Li, and Z.Q. Zhu, Finite element processing methods toperipheral flux leakage in axial field flux-switching PM machines, Compumag2011.
    [152] Z.Q. Zhu, and Z. Azar, Influence of cross-coupling and end-effect on torque-speedcharacteristics of switched flux permanent magnet machines, IEEE8th Int. Conf. PowerElectronics-ECCE Asia (ICPE2011-ECCE Asia),2011.
    [153] Z.Q. Zhu, and X. Liu, individual and global optimization of switched flux permanent magnetmotors, Int. Conf. Electrical Machines and Systems, ICEMS2011,20-23August2011, Beijing,China.
    [154] R. Owen, Z.Q. Zhu, J.B. Wang, D. A. Stone, and I. Urquhart, Mechanically adjustedvariable-flux concept for switched-flux permanent-magnet machines, Int. Conf. ElectricalMachines and Systems, ICEMS2011,20-23August2011, Beijing, China.
    [155] H. Liu, Z.Q. Zhu, E. Mohamed, Y. Fu, and X. Qi, Flux-weakening control of PMSM havinglarge winding inductance, accounting for resistive voltage drop and inverter nonlinearities,IEEE Trans. Power Electronics, in press.
    [156] J. B. Wang, W. Y. Wang, K. Atallah, and D. Howe, Design considerations for tubularflux-switching PM machines, IEEE Trans. Magnetics,2008,44(11):4026-4032.
    [157] J. B. Wang, W. Wang, R. Clark, K. Atallah, and D. Howe, A tubular flux-switching permanentmagnet machine, J. Applied Physics,2008,103:07F105-07F105-3.
    [158] S. Iwasaki, and R. Deodhar, An electrical machine, UK Patent, GB0904690.1, Mar.2009.
    [159]花为,程明,端部效应对新型定子永磁型双凸极电机反电势的影响研究,中国电机工程学报,2007,27(24):63-67。
    [160] J. Zhang, M. Cheng, and Z. Chen, Investigation of a new stator interior PM machine, Proc. IETElect. Power Appl.,2008,2(2):77-87.
    [161] W. Hua, G. Zhang, M. Cheng, and X. Sun, Comparison of flux-regulation capability of ahybrid-excited flux-switching machine with different magnet materials,14th Biennial IEEEConf. Electromagnetic Field Computation,2010:1.
    [162] W. Hua, G. Zhang, M. Cheng, and X. K. Sun, Comparison of flux-regulation capability of ahybrid-excited flux-switching machine with different magnet materials,14th Biennial IEEEConf. Electromagnetic Field Computation,2010:1-1.
    [163] H. Jia, M. Cheng, W. Hua, W. Zhao, and W. L. Li, Torque ripple suppression in flux-switchingPM motor by harmonic current injection based on voltage space-vector modulation, IEEE Trans.Magnetics,2010,46(6):1527-1530.
    [164] W. Hua, M. Cheng, W. Lu, and H. Jia, A new stator-flux orientation strategy for flux-switchingpermanent magnet motor based on current-hysteresis control, Journal of Applied Physics,2009,105(7):07F112-07F112-3.
    [165] W. Zhao, M. Cheng, W. Hua, and H. Jia, A redundant flux-switching permanent magnet motordrive for fault-tolerant applications, IEEE Vehicle Power and Propulsion Conference,2008:1-6.
    [166] W. Hua, M. Cheng, H. Jia, and X. Fu, Comparative study of flux-switching and doubly-salientPM machines particularly on torque capability, IEEE Industry Applications Society AnnualMeeting,2008:1-8.
    [167] H. Jia, M. Cheng, W. Hua, W. Zhao, and W. Lu, A new stator-flux orientation strategy forflux-switching permanent motor drive based on voltage space-vector, Int. Conf. ElectricalMachines and Systems, Wuhan, China,2008:3032-3036.
    [168] H. Jia., M. Cheng, W. Hua, W. Lu, and X. Fu, Investigation and implementation of controlstrategies for flux-switching permanent magnet motor drives, IEEE Industry ApplicationsSociety Annual Meeting,2008:1-6.
    [169] W. Hua, M. Cheng, J. Z. Zhang, and X. Y. Zhu, Optimal design of flux-switching permanentmagnet machine based on finite element analysis,12th Biennial IEEE Conf. ElectromagneticField Computation,2006:333.
    [170] W. Hua, and M. Cheng, Inductance characteristics of3-phase flux-switching permanent magnetmachine with doubly-salient structure, IEEE Int. Power Electronics and Motion Control Conf.,2006:1-5.
    [171] W. Z. Fei, and J. X. Shen, Novel PM switching flux motors, Proc.41st Int. Universities PowerEng. Conf.,2006:729-733.
    [172] Y. Wang, Z. W. Huang, J. X. Shen, and C. F. Wang, Comparison and study of6/5-and12/10-pole permanent magnet flux-switching motors considering flux-weakening capability, Int.Conf. Electrical Machines and Systems,2008:3262-3265.
    [173] Z. X. Fang, Y. Wang, J. X. Shen, and Z. W. Huang, Design and analysis of a novelflux-switching permanent magnet integrated-starter-generator, IET Conf. Power Electronics,Machines and Drives,2008:106-110.
    [174]黄志文,沈建新,方宗喜,汪昱,用于弱磁扩速运行的三相6/5极永磁开关磁链电机的分析与优化设计,中国电机工程学报,2008,28(30):61-66。
    [175]花为,程明,Z.Q. Zhu,D. Howe,新型两相磁通切换型双凸极永磁电机的静态特性研究(英文),电工技术学报,2006,21(6):70-77。
    [176] K. Wang, J. X. Shen, and S. Z. Dong, Sensorless control and initial position estimation ofpermanent magnet flux switching motor, Int. Conf. Electrical Machines and Systems,2007:487-491.
    [177] W. Z. Fei and J. X. Shen, Comparative study and optimal design of PM switching flux motors,Proc.41stInt.Universities Power Engineering Conf.,2006:695-699.
    [178] W. Z. Fei and J. X. Shen, Novel permanent magnet switching flux Motors,” Proc.41stInt.Universities Power Engineering Conf.,2006:729-733.
    [179] J. Yang, Q. Ma, Y. Deng, and Y. Liu, Flux-weakening capability of flux-switching permanentmagnet motor, Int. Conf. E-Product E-Service and E-Entertainment,2010:1-4.
    [180] A. Chen, R. Nilssen, and A. Nysveen, Investigation of a three-phase flux-switching permanentmagnet machine for downhole applications, Int. Conf. Electrical Machines,2010:1-5.
    [181] A. Chen, N. Rotevatn, R. Nilssen, and A. Nysveen, Characteristic investigations of a newthree-phase flux-switching permanent magnet machine by FEM simulations and experimentalverification,Int. Conf. Electrical Machines and Systems,2009:1-6.
    [182] D. C. J. Krop, L. Encica, and E. A. Lomonova, Analysis of a novel double sided flux switchinglinear motor topology, Int. Conf. Electrical Machines,2010:1-5.
    [183] E. Ilhan, J. Paulides, L. Encica, and E. Lomonova, Tooth contour method implementation forthe flux-switching PM machines, International Conf. Electrical Machines,2010:1-6.
    [184] S. Kayano, M. Sanada, and S. Morimoto, Power characteristics of a permanent magnet fluxswitching generator for a low-speed wind turbine, Int. Power Electronics Conf.,2010:258-263.
    [185] K. Lu; P.O. Rasmussen, S.J. Watkins, and F. Blaabjerg, A new low-cost hybrid switchedreluctance motor for adjustable-speed pump applications, IEEE Trans. Industry Applications,2011,47(1):314-321.
    [186] J. F. Bangura, Design of high-power density and relatively high-efficiency flux-switchingmotor, IEEE Trans. Energy Conversion,2006,21(2):416-425.
    [187] L. Jung Ho, L. Tae Hoon, and L. Seung Chul, Optimum design criteria for maximum torquedensity& minimum torque ripple of Flux Switching Motor using response surfacemethodology, Int. Conf. Electrical Machines and Systems,2010:1848-1851.
    [188] L. Jung Ho, L. Tae Hoon, and J. Ah Ram, Optimum design criteria for maximum torque densityand minimum torque ripple of flux switching motor using response surface methodology, IEEEConf. Electromagnetic Field Computation,2010:1-1.
    [189] W. Xu, J. Zhu, Y. Zhang, Y. Wang, Y. Li, and J. Hu, Flux-switching permanent magnetmachine drive system for plug-in hybrid electrical vehicle, Australasian Universities PowerEngineering Conf.,2010:1-6.
    [190] B. Sarlioglu, Y. F. Zhao and T. A. Lipo, A novel doubly saliency single phase permanentmagnet generator, Proc. IEEE Industry Applications Society Annual Meeting,1994:9-15.
    [191] Y. Liao, F. Liang and T. A. Lipo, A novel permanent magnet machine with doubly saliencystructure, IEEE Trans. Industry Applications,1995,3(5):1069-1078.
    [192] R. P. Deodhar, S. Andersson, I. Boldea and T. J. E. Miller, The flux-reversal machine: a newbrushless doubly-salient permanent-magnet machine, IEEE Trans. Industry Applications,1997,33(4):925-934.
    [193] C. Wang, S. A. Nasar and I. Boldea, Three-phase flux reversal machine, IEE Proc.-ElectricPower Applications,1999,146(2):139-146.
    [194] Y. Liao, F. Liang, and T. A. Lipo, A novel permanent magnet motor with doubly salientstructure, Proc. IEEE Industry Application Society Annual Meeting,1992:308-314.
    [195] Y. Li and T. A. Lipo, A doubly salient permanent magnet motor capable of field weakening,Proc. IEEE Power Electronics Specialists Conf.,1995:565-571.
    [196] K. T. Chau, M. Cheng, and C. C. Chan, Nonlinear magnetic circuit analysis for a novel statordoubly fed doubly salient machine, IEEE Trans. Magnetics,2002,38(5):2382-2384.
    [197] Y. Fan, K. T. Chau, and S. Niu, Development of a new brushless doubly fed doubly salientmachine for wind power generation, IEEE Trans. Magnetics,2006,42(10):3455-3457.
    [198] A.S. Thomas, Novel flux switching permanent magnet machines for aerospace applications,PhD thesis, University of Sheffield,2009.
    [199] Z. H. Zhang, Z.R. Zhang, H.H. Qing, Structure and principle of hybrid excited electricalmachines, Book in Chinese, Science Publisher,2010.
    [200] Weizhong Fei, Patrick Chi Kwong Luk, Jianxin Shen, Torque Analysis of Permanent Magn etFlux Switching Machines with Rotor Step Skewing, IEEE Trans. Magnetics,2012,48(10):2664-2673.
    [201] R. Owen, Z.Q. Zhu, J.B. Wang, D. A. Stone, and I. Urquhart, Review of variable-fluxpermanent magnet machines, Int. Conf. on Elec. Machines and Systems,2011:1-6.
    [202] Craig E, Mecrow B C, Atkinson D J, A fault detection procedure for single phase bridgeconverters, UPEA Conf93,1993,4:468-471.
    [203] Jack A G, Mecrow B C, Haylock J, A comparative study of permanent magnet and switchedreluctance motors for high-performance fault-tolerant applications, IEEE Transitions on IndustryApplications,1996,32(4):889-895.
    [204]郝振洋,胡育文,黄文新,余文涛,李勇,电力作动器中永磁容错电机的电感和谐波分析,航空学报,2009,30(6):1063-1069。
    [205]花为,新型磁通切换型永磁电机的分析、设计与控制,[博士学位论文],南京,东南大学,2004。
    [206]朱孝勇,程明,定子永磁型混合励磁双凸极电机设计、分析与控制,中国科学:技术科学,2010,40(9):1061-1073。
    [207] Pulle and D.W.J., Performance of split-coil switched reluctance drive, Electric PowerApplications, IEE Proceedings B,1988,135(6):318-323.
    [208]张卓然,周竞捷,朱德明,严仰光,周波,多极低速电励磁双凸极风力发电机及整流特性,中国电机工程学报,2009,29(6):67-72。
    [209] B.J. Chalmers, R. Akmese, L. Musaba, Design and field-weakening performance ofpermanent-magnet/reluctance motor with two-part rotor, IET Electr. Power Appl.,1998,145(2):133-139.
    [210] N. Naoe, T.Fukami, Trial production of a hybrid excitation type synchronous machine, in Proc.Int. Con. on Electrical Machines andDrives (IEMDC), Cambridge, USA, August2001, pp:545-547.
    [211] Zhang Zhuoran, Zhou Jingjie, Yan Yangguang, Zhou Bo, Construction and operation principleof a novel coordinate structure hybrid excitation synchronous machine, Proceedings of thechinese society for electrical engineering,2009,29(33):83-89
    [212] Chen Zhihui, Sun Yaping,Yan Yangguang, Static characteristics of a novel hybrid excitationdoubly salient machine, in Proc.2005international conference on electrical machines andsystems (ICEMS),2005,1:718-721.
    [213] Dawei Zhi, Lie Xu, B.W.Williams, Model-based predictive direct power control of doubly fedinduction generators, IEEE Trans. Power Electron.,2010,25(2):341-351.
    [214] G.Abad, M.A.Rodriguez, G.Iwanski, J.Poza, Direct power control ofdoubly-fed-induction-generator-based wind turbines under unbalanced grid voltage, IEEE Trans.Power Electron.,2010,25(2):442-452.
    [215] J.Alonso-Martínez, J.E.Carrasco, S.Arnaltes, Table-based direct power control: A criticalreview for microgrid applications, IEEE Trans. Power Electron.,2010,25(12):2949-2961.
    [216] A.Sato, and T.Noguchi, Voltage-source PWM rectifier-inverter based on direct power controland its operation cCharacteristics, IEEE Trans. Power Electron.,2011,26(5):1559-1567.
    [217]许大中,交流电机调速理论,浙江,浙江大学出版社,1991。
    [218] N.R.N.Idris and A.H.M.Yatim, An improved stator flux estimation in steady-state operation fordirect torque control of induction machines, IEEE Trans. Ind. Appl.,2002,38(1):110-116.
    [219] Myoung-Ho Shin, Dong-Seok Hyun, Soon-Bong Cho, and Song-Yul Choe, An improved statorflux estimation for speed sensorless stator flux orientation control of induction motors, IEEETrans. Power Electron.,2000,15(2):312-318.
    [220] Hu J, and Wu B, New integration algorithms for estimating motor flux over a wide speed range,IEEE Trans. Power Electron.,1998,13(5):969-977.
    [221] M.Cirrincione, M.Pucci, G.Cirrincione and G.A.Capolino, A new adaptive integrationmethodology for estimating flux in induction machine drives, IEEE Trans. Power Electron.,2004,19(1):25-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700