用户名: 密码: 验证码:
全光纤滤波技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着宽可调谐激光光源、全波光纤和超宽带光放大器的出现,密集波分复用日益成为光纤通信的主流技术,作为复用/解复用器核心的光滤波技术备受关注。单信道速率不断提高以及网络拓扑由单一的点对点传输向可上下载的环网和可动态选择波长路由的智能型格形光网络演进,对光滤波器的常规性能指标、时域特性和动态可调谐特性提出了更加苛刻的要求,鉴于此,本论文全面研究了全光纤熔锥型奇偶交错滤波技术、数字光滤波技术、基于G-T全通滤波器的奇偶交错滤波技术以及熔锥型全波耦合器和偏振泵浦合波器。内容包括:
    1. 首次开发出了连续精确熔拉两个3dB耦合器和准确控制干涉臂长差的新工艺,使滤波器的隔离度达到了15.7dB。对耦合器分光比精度和干涉臂扭转应力对器件隔离度的影响做了理论分析和实验研究。提出了多个耦合器级联并令耦合器的分光比按一定规律分布来降低旁瓣提高隔离度的技术方案,并做了数值模拟。
    2. 对全光纤反射式奇偶交错滤波器进行了理论分析和数值模拟,发现当两个耦合器的分光比均为15%时产生了平顶高隔离度的通带频响特性,做了相关实验,结果与理论分析基本符合。
    3. 将成熟的电子学里的格型数字滤波器的概念和设计算法移植到光学滤波器,给出了根据目标滤波传递函数求解光格型阵列具体参数的算法。用傅立叶级数展开数值逼近的方法进行了高隔离度平顶通带频响全光纤奇偶交错滤波器的优化设计,提出了隔离度大于45dB通带平坦滤波器的制作方案。
    4. 对基于光全通滤波技术的奇偶交错滤波器进行了理论分析、数值模拟和实验研究工作。详细分析了滤波器的群时延特性和色散特性,讨论了该滤波器的动态可调谐性质。
    5. 首次提出熔锥型全波耦合器的概念,应用耦合模理论对器件的耦合机理做了详尽的分析,得出了在模传播常数失配的情况下耦合器分光比带宽增加的结论。提出了非对称熔拉带宽拓展工艺,并应用自行研制的拉锥机制作了全波耦合器,其带宽达到了390nm(1260-1650nm),覆盖了光通信系统的O+E+S+C+L波段,均匀性1dB;附加损耗0.1dB。最后专门针对全波耦合器的偏振相关损耗(PDL)特性进行了研究,得到了降低PDL的具体方案并经过了实验验证。另外研制了全光纤偏振泵浦合波器,消光比达到了16.5dB。
As the key component of multiplexer/demultiplexer, optical filter technology has been fueling great interest with the emergence of wide range tunable laser source, all-wave fiber, and wide band optical amplifiers, which is promoting DWDM to a leading edge of optical fiber communication. The increasing of single channel capacities and evolution of optical networks topology, from simple point-to-point to intelligent optical networks, call for strict demands to optical filters. In this paper, the crucial technologies of optical filters such as Interleaver, optical digital filter, fused biconical taper all-wave coupler as well as polarization-pump combiner have been studied experimentally and theoretically, which include:
    
    1. A new process, cascaded FBT (fused biconical taper) with precise control as well as strict interference arm length difference, is proposed for the first time to our knowledge. The influences of couple ratio accuracy and twist stress of interference arms on device's isolation have been investigated theoretically and experimentally. The isolation can reach about 17.5dB. At the same time, the design of cascaded coupler with a given ratio distribution is proposed, which can lead to higher isolation by suppressing sidelobe.
    
    2. According to theoretical analysis and numerical simulation, the Interleaver can show flat-top and high isolation pass band characteristic when the two couplers' ratio is assigned to 15 percent. The experiment demonstrates that the simulated calculations are in good agreement with experimental results.
    . The conception and algorithm simulation of lattice digital filter in electronics are transplanted into optical filter, with a novice algorithm to resolve optical lattice array concrete parameter. Based on the Fourier series digital approximation method, the optimal design of flat-top and high isolation pass band frequency response Interleaver has been studied. At last a solution of high isolation ( >45dB )
    
    3 and flat pass band is introduced according to all fiber Interleaver scheme.
    
    4 . By theoretical analysis, numerical simulation and experiment research, the Interleaver based on optical all-pass filter technique is investigated. Group delay and dispersion characters are analyzed according to the above filter. In addition, the dynamic tunable feature is discussed.
    
    5 . All-wave coupler is proposed for the first time to our knowledge. This paper, on the basis of coupled-mode equations, analyzed the bandwidth characteristic of asymmetric FBT coupler, proposed and proved a solution of all-wave coupler (O+E+S+C+L band). We also succeeded in making all-wave couplers with a bandwidth of 390nm, while the excess loss is only 0.1 dB and the uniformity is about 1 dB. A specific solution to decrease the PDL (polarization dependent loss) of all-wave coupler is presented and demonstrated by experiment. Moreover, all fiber polarization-pump combiner is successfully developed with 16.5dB extinction ratio.
引文
第一章
    [1] Tucker R.S. Eisenstein G. Korotky S.K. Optical time-division multiplexing for very high bit-rate transmission, Journal of Lightwave technology, 1988, 6(11): 1737 -1749
    [2] Monnard R. Srivastava A.K. et al., 16 channel 50 GHz channel spacing long-haul transmitter for DWDM systems, Electronics Letters , 1998, 34 (8): 765 -767
    [3] Letaief K.B. Analysis of optical CDMA communications systems, Electronics Letters , 1993,(29) 8: 673 -674
    [4] 徐文成 陈伟成 罗爱平等,双折射光纤中偏振复用技术的三阶色散抑制和补偿,光学学报,2002 Vol.22 No.2:153
    [5] Takashi Ono and Yutaka Yutaka Yano, Key technologies for Terbit/s WDM systems with high spectral efficiency of over 1 bit/s/Hz, J.Quantum Electrons, 1998, 34(11):2080-2088
    [6] N.E.Hecker, E.Gottwald, K.Kotten et al., Automated polarization control demonstrated in a 1.28 Tbit/s(16×2×40Gbit/s)polarization multiplexed DWDM field trial, ECOC'01, 2001, Mo.L.3.1:86-87
    [7] 顾婉仪,李国瑞,光纤通信系统,北京:北京邮电大学出版社,1999,266
    [8] K.Fukuchi, T.Dasamatsu, et al., 10.92 Tbit/s (273×40Gbit/s)triple-band/ultra-dense WDM optical-repeatered transmission experiment, OFC'01, 2001:PD24
    [9] S.Bigo, Y.Frignac et al., 10.2 Tbit/s (256×42.7Gbit/sPDM/WDM) transmission over100km Tera-LightTM fiber with 1.28bit/s/Hz spectral efficiency, OFC'01, 2001:PD25
    [10] L. Gruner, dispersion compensating fibers and perspectives for future development, ECOC'00, Vol. 1, pp. 91~93, Munich, Germany, 2000
    [11] Quang Le N. T.,Torben Veng, and Lars Grüner-Nielsen, New dispersion compensating module for compensation of dispersion slope of non-zero dispersion fibres in the C-band, OFC'01, Paper TuH5-1, Anaheim, USA, 2001
    [12] A. H. Gnauck, L. D. Garrett, Y. Danziger et al., Dispersion and dispersion slope compensation of NZ-DSF for 40Gbps operation over the entire C band, OFC'00, Paper PD8, Baltimore, USA, 2000
    [13] Seoyong Shin, Inyoung Yeo, and Hongsuk Song, Real-time endless polarization tracking and control system for PMD compensation, OFC'01, Paper TuP7-1, Anaheim, USA, 2001
    [14] M. J. Li and D. A. Nolan, Fiber spin-profile designs for producing fibers with low polarization mode dispersion, Optics Letters, 1998, 23(12):1659~1661
    T. N. Nielsen, A. J. Stentz, K. Rottwitt, et al., 3.28 Tb/s (82/spl times/40 Gb/s) transmission over 3/spl times/100 km nonzero-dispersion fiber using dual C- and L-band hybrid
    
    [15] Raman/erbium doped inline amplifiers, OFC'00, Vol.4, pp. 236~238 Baltimore, USA, 2001
    [16] H. Masuda, K. I. Suzuki, S. Kawai et al., Ultra-wideband optical amplification with 3 dB bandwidth of 65 nm using a gain equalized two-stage erbium-doped fiber amplifier and Raman amplification, Electron. Lett., 1997, 33 (9):753~754
    [17] Omar AIT SAB, FEC techniques in submarine transmission systems, OFC2001', 2001:TuF1-1~ TuA1-3
    [18] M. Tomizawa and Y. Yamabayashi, Parallel FEC code in high-speed optical transmission systems, Electron. Lett., 1999, 35 (8): 1367~1368
    [19] 杨志勇, 杨铸, 前向纠错码在高速光纤通信系统中的应用, 光通信研究, 2001,(3):1~3
    [20] T. Morioka, S. kawanishi, H. Takara et al., 100 Gbit/s ( 4 ch, 100 km repeaterless TDM-WDM transmission using a single supercontinuum source, Electron. Lett., 1996, 32 (5): 468~490
    [21] J. M. Oh, H. B. Chod, and D. Lee, Efficient tunable fiber ring laser for 1580 nm band with a fiber Bragg grating, OFC'01, Paper WA6-1, Anaheim, USA, 2001
    [22] Shinji Yamashita and Teruyuki Baba, Multiwavelength fiber lasers with tunable wavelength spacing, OFC'01, Paper WA8-1, Anaheim, USA, 2001
    [23] T. Ono, Y. Yano, K. Fukuchi Characteristics of optical dubinary signals in terabit/s capacity,high-spectral efficiency WDM systems, J. Lightwave Technol., 1998, 16 (5): 788~797
    [24] O. Brox, S. Bauer, C. Bornholdt, D. Hoffmann, Optical 3R Regenerator Based on Q-Switched Laser, OFC'01, 2001:MG6-1~MG6-3
    [25] Yikai Su, Lijun Wang, Anjali Agarwal, and Prem Kumar, Simultaneous 3R regeneration and wavelength conversionusing a fiber-parametric limiting amplifier, OFC'01, 2001: MG4-1~MG4-3
    [26] A.Vengsarkar, J.Pedrazzani, J.Judkins et al., Long period fiber grating based gain equlizers, Opt.Lett., 1996, 21(5): 336~338
    [27] Y.Li, C.Henry, E.Laskowski et al., Waveguide EDFA gain equalisation filter, Electron. Lett., 1995, 34(23): 2005~2006
    [28] K.Takiguchi, K.Okamoto, and K.Moriwaki, Dispersion compensation using a planar lightwave circuit equalizer, IEEE Photon. Technol. Lett., 1994, 6(4):561~64
    [29] C.Madsen and G.Lenz, Optical all-pass filter for phase response design with application for dispersion compensation, IEEE Photon. Technol. Lett., 1998, 10(7):994~996
    [30] L. R. Chen, Flexible Fiber Bragg Grating Encoder/Decoder for Hybrid Wavelength-Time Optical CDMA, IEEE Photon. Technol. Lett., 2001, 13(11):1233~1235
    [31] Neal S.Berfano et al.,640Gb/s Transmission of sixty-four 10Gb/s WDM Channels Over 7200 km with 0.33(bit/s)/Hz spectral Efficiency, OFC'99, 1999:PD2-1
    J.JPAn and Y.Shi, Dense WDM Multiplexer and Demultiplexer With a 0.4 nm Channel
    
    [32] Spacing, OECC'98, 1998: 16C4-1
    [33] 胡台光. 波分复用器现状. 光通信技术, 2000, Vol.24 ,No.2, P79~84
    [34] Francois Gonthier, Fused couplers increase system design options, Laser Fous World, 1998,34(6): P83~88
    [35] Haus H A,lai Y. Narrow-Band channel dropping filters, J.Lightwave Technol,1992,10:P57-62
    [36] Kuznetsov M.Caseded coupler Mach-Zehnder channel dropping filters for Wavelength Division Multiplexed optical system.J.Ligthwave Technol,1994,12:P226-230.
    [37] 廖延彪,光纤光学,北京: 清华大学出版社.2000年, P121-123
    [38] 许远忠,DWDM系统中的光波分复用/解复用器,光纤通信技术,1999,8: 7~9
    [39] M.A.Scobey, D.E.Spock, Passive DWDM components using microplasma optical interference filters, OFC '96 , 1996: 242 -243
    [40] C. K. Carniglia, Design of thin-film interference filters for telecommunications applications, OFC'2000, Baltimore, Maryland ,2000: WF4-1~WF4-2
    [41] M.A.Scobey, R.M.Fortenberry, L.F.Stokes et al., Thin film interference filters for 25GHz channel spacing, OFC'2002, Anaheim,USA, 2002: 398~399
    [42] Smit M.K.,New focusing and dispersive planar component based on an optical phased amay, Electron. Lett.,1998,24(7): 385~386
    [43] Vellekoop A.R, Smit M.K., low loss planar optical polarization splitter with small dimensions, Electron. Lett., 1989,25(15) :385~386
    [44] Takahashi H, Suzuki S, Kato K, Nishi I, Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution, Electron. Lett., 1990,26(2) :87~88
    [45] Dragone C. An N×N optical multiplexer using a planar arrangement of two star couplers, IEEE Photon. Tech. Lett., 1991,3(9):812~815
    [46] 王道义,严英白,金国藩,PHASAR解复用器的原理及其性能综述与分析,光通信技术,2000,24(3):213
    [47] 贾东方,李世忱等,阵列波导光栅复用器的原理、设计及应用,光通信研究,1999,6:47~48
    [48] 蔡燕民,陈高庭,方祖捷,波分复用系统中的交错复用器(Interleaver)技术,激光与光电子学进展,2002,39(1):3
    [49] Y.Hida, Y.Hibino, T.Kitoh, et al., 400-channel 25-GHz spacing arrayed-waveguide grating convering a full C-band and L-bands, OFC'01, Paper WB2, Anaheim, USA, 2001
    [50] K.Takada, M.Abe, M.Shibata, et al., Low-crosstalk 10 GHz-spaced 512-channel arrayed-waveguide grating multi/demultiplexer fabricated on 4-in wafer, IEEE Photon.Technol. Lett., 2001,13(11):1182~1185
    K.Takada, M.Abe, M.Shibata, et al., 10-GHz-spaced 1010-channel tandem AWG filter consisting of one primary and ten secondary AWGs, IEEE Photon. Technol. Lett.,
    
    [51] 2001,13(6):577~579
    [52] Amersfoort M.R., et al., Phased-arrayed wavelength demultiplexer with flattened wavelength response, Electron. Lett., 1994, 30(4):300~302
    [53] Okamoto K, Yamada H., Arrayed-waveguide grating multiplexer with flat spectral response, Opt. Lett., 1995,20(1):43~44
    [54] Paiam M.P.,Macdonald R.I.,Design of phased-array wavelength division multiplexers using multimode interference couplers, Appl. Opt., 1997,36(2):5097~5107
    [55] Takahashi H, Okamoto K, Inoue Y, Arrayed-wavelength multiplexers for WDM systems, NTT Review, 1998:10(1):37~44
    [56] Spiekman L.H., Amersfoom M.R.,et al., Design and realization of polarization independent phased array wavelength demultiplexers using different array orders for TE and TM, Journal of Lightwave technology, 1996, 14(6): 991~995
    [57] Soole J B D,Amersfoon M R, et al., Polarization-independent InP arrayed waveguide filter using square cross-section waveguides, Electron. Lett., 1996,32(4):323~324
    [58] Bissessur H, Gaborit F, et al., Polarization-independent phase-array demulitplexer on InP with high fabrication tolerance, 1995,31(6):1372~1373
    [59] T. Tanaka, 2.1 Tbit/s WDM transmission over 7221 km with 80-km repeater sapcing, ECOC'00, Paper PD1.8, Munich, Germany, 2000
    [60] G. Vareille, F. Pitel, and J. F. Marcerou, 3 Tbit/s (300(11.6 Gbit/s) transmission over 7380 km using C+L band with 25 GHz channel sapcing and NRZ format, OFC'01, Paper PD22, Anaheim, USA, 2001
    [61] K.O.Hill, Y.Fuji, D.C.Jonson and B.S.Kawasaki. Appl. Phys. Lett., 32 (1978) 647
    [62] G.Meltz, W.W.Morey and H.Glenn, Formation of Bragg gratings in optical fibers by a transverse holographic method, Opt. Lett., 14 (1989) 823
    [63] K.O.Hill, B. Malo, F. Bilodeau, D.C. Johnson and J. Albert, Appl. Phys. Lett., 62 (1993) 1035
    [64] P.J. Lemaire, R.M. Atkins, V. Miarahi and W.A. Reed, Electron. Lett., 29 (1993) 1191
    [65] K.O. Hill, Appl. Opt. 13 (1974) 1853
    [66] G.A.Ball and W.W.Morey, Opt. Lett. 1994, 19(23):1979
    [67] M.E.Fermann, K.Sugden and I.Bennnion, Opt. Lett. 1995, 20(1):172
    [68] Shenping Li, Hao Ding and K.T.Chan, Electon. Lett. 1997, 33(8)52
    [69] Komukai T, Miyajima Y and Nakazawa M, Jpn. J.APPl. Phys. 34(2B):230
    [70] O.Gautheron, et al. Elec. Lett., 1996;32(11):1019
    [71] T.J.Cullen, et al. Elec. Lett., 1994;30(25):2160
    [72] F.Bilodeau, et al. IEEE Photonics Tech. Lett., 1995;7(4):388
    [73] Simon Thibault, Jocelyn Lauzon, Opt.lett. 1995, 20(6):647
    [74] M.J.Cole, H.Geiger, R.I. Laming, et. al., Electron. Lett. , 1996,33(1):1907
    
    
    [75] R.I.Laming, N.Robinson, P.L.Scrivener, et. al., IEEE Photon. Technol. Lett., 1996,18(3):428
    [76] L.Ahang, K.Sugden, I.bennion, et. al. Electron Lett. 1995, 31(6):477
    [77] G.E.Town, K.Sugden, J.A.R.Williams, et. al. IEEE Photon. Technol. Lett. 1995, 7(1):78
    [78] R.Kaskyap, P.G.Mckee, et. al., Electron. Lett, 1993, 29(2):154
    [79] J.A.R.Williams, N.J.Soran and K.Sugden, Electron. Lett. 1994, 30(10):985
    [80] R.Kashyap, S.V.Cher, P.G.Mckee, et. al., Electron. Lett. 1994, 30(11):1078
    [81] 林学煌,光无源器件,北京:人民邮电出版社,1998,134
    [82] 陈智浩,彭江得,顾东华,周炳琨,双锥光纤滤波器的研制,光学学报,1997,17(8):1117-11120
    [83] L.C.Bobb, P.M.Shankar, Taper optical fiber components and sensors, Microwave J., 1992,35(5):218-288
    [84] F.Gonthier, S.Lacroix er al. Broadband all-fiber filters for wavelength division multiplexing application. Appl. Pnys. Lett., 1989,54(14):1290~1292
    [85] A.V.Belov, E.M.Dianov et al., Gain spectrum flattening of erbium-doped fiber amplifier using tapered fiber filter. Proc. Topical Metting of Optical Amplifier and their Application. Switzerland, OSA, 1995:32~35
    [86] Lacroix S, Gonthier F, Bures J, All-fiber wavelength filter from successive biconical tapers, Optics Letters, 1986, 11(10): 671~673
    [87] Boucouvalas A C, Georgiou G. Biconical taper coaxial coupler filter, Electron.Lett., 1985, 21(22): 1033~1034
    [88] Kwok-Wai Cheung, "Acoustooptic tunable filters in Narrowband WDM networks: System Issues and network applications", IEEE Journal on Selected Areas in Commun. , 1990,8(6) : 1015-1025.
    [89] David A.Smith , Rohini S. Chakravarthy et.al, "Evolution of the acousto-optic wavelength routing switch", J. Lightwave Technology, 1996,14(6) : 1005-1019.
    [90] Timothy E. Dimmick, Duane A. Satorius, and Geoffrey L. Burdge, All-fiber acousto-optic tunable bandpass filter, OFC `2001, WJ3-1~3-3.
    [91] 张瑞峰,葛春风 等. 奇偶交错空分滤波器[J]. 光电子·激光,2002,13(6):652-656
    [92] 谭伟,曹明翠 等. 一种新颖的晶体型波长分插解复用器结构设计[J]. 光电子· 激光,2002,13(6):587-589
    [93] 蔡燕民,赵岭 等. C波段偏振光干涉仪型交错滤波器实验研究[J],光电子·激光,2002,13(7):699-702
    [94] Dingel B B et al. Properties of a novel noncascaded type easy-to-design ripple-free optical bandpass filter[J]. Opt.Lett. 1998, 17(8):1461-1469.
    [95] http://www.itfoptical.com; http://www.wavesplitter.com.
    
    
    [96] Li Lin, Fang zujie, Cai haiwen et al., Sampled FBG based optical interleaver, LEOS'01, Paper TuE2-5, 2001,404~405
    [97] 蔡燕民,陈高庭,方祖捷,波分复用系统中的交错复用器(Interleaver)技术,激光与光电子学进展,2002,39(1):4-5
    [98] Ding-wei Huang; Tsung-hsuan Chin; Arrayed waveguide grating DWDM interleaver, 2001. OFC 2001: wdd80-1 -wdd80-3
    [99] M.R.Amersfoort, et al., Passband brosdening of integrated arrayed waveguide filters using multimode interference couplers, Electron. Lett., 1996, 32:449-451
    [100] 寥先炳,Optical Interleaver-新型DWDM器件,世界产品与技术/ECN,2002,1:27
    [101] 顾希,陈险峰等,波长交错复用器(Interleaver)综述,光纤通信,2002,2:40
    [102] 赵伟,郑小平,张汉一,复用器/解复用器滤波特性研究,光学学报,2002,22(9):1084-1087
    [103] 阎小琴,李振华等,Bragg光纤光栅用作滤波器时的输出光脉冲形状波形分析,光子学报,2002,31(8):965-969
    [104] China S R, Error-rate performance of optical amplifiers with Fabry-Perot filters, Electron Letters,1995,31(9):756-757
    第二章
    [1] W.A.Gambling, Fiber-integrated optics, Internationsl Conf. of Optical Fiber Technology, May 1994, (China),3
    [2] Michalis N. Zervas and Ricardo Feced, Synthesis of fiber gratings, OFC'2000, TuH1-1~1-4
    [3] R. Feced, M.N. Zervas, M.A. Muriel. An Efficient Inverse Scattering Algorithm for the Design of Nonuniform Fibre Bragg Gratings. IEEE Journal of Quantum Electronics, 1999, 35(8):1105~1115
    [4] K. Okamoto and J. Noda, Fiber-Optic Spectral Filters Consisting of Concatenated Dual-Core Fibers, Electron. Lett., 1986, 22: 211~212
    [5] M. S. Yataka, D. N. Payne, and M. P. Varnham, All-fiber Wavelength Filters Using Concatenated Fused-Taper Couplers, Electron. Lett., 1985, 21: 248~249
    [6] A.V.Belov, E.M.Dianov et al., Gain spectrum flattening of erbium-doped fiber amplifier using tapered fiber filter. Proc. Topical Metting of Optical Amplifier and their Application. Switzerland, OSA, 1995:32~35
    [7] M.Eisenmann and E.Weidel, Single-node fused biconical couplers for wavelength division multiplexing with channel spacing between 100 and 300 nm, J.Lightwave Tehcnol., 1998,6(1): 113~117
    M.Eisenmann and E.Weidel, Single-mode fused biconical coupler optimized for polarization
    
    [8] beamsplitting, J.Lightwave Tehcnol., 1990,9(7): 640~642
    [9] J.D.Minelly, M.Suyama, Wavelength combining fused-taper couplers with low sensitivity to polarization for use with 1480nm-pumped erbium-deped fiber amplifiers, Electron. Lett., 1990, 26(5)
    [10] D. O. Culverhouse, S. H. Yun, D. J. Richardson, T. A. Birks, S. G. Farwell, and P. St. J. Russell, "Low-loss all-fiber acousto-optic tunable filter," Opt. Lett. 22, 96-98 (1997).
    [11] S. H. Yun, D. J. Richardson, D. O. Culverhouse, and T. A. Birks, "All-fiber acoustooptic filter with low-polarization sensitivity and no frequency shift," IEEE Photon. Tech. Lett. 9, 461-463 (1997).
    [12] J.Bures et al., All-fiber dense wavelength division multiplexer, Proc. SPIE, 2321(1994): 455~457
    [13] 刘铮. DWDM 系统中的滤波器技术. 中国光纤在线http://www.c-fol.net.2000,9.
    [14] 葛春风,光纤通信系统中的部分关键技术的研究,[博士学位论文],天津,南开大学光学所,1999
    [15] 张国顺,光纤传感技术,北京:水利电力出版社,1998,206~208
    [16] Joon Tae Ahn, Hak Kyu Lee, Continuously tunable multi-wavelength transmission filter based on a stabilized fiber-optical interferometer. Optical communication 165(1999), 33-37.
    [17] 曾庆济,黄勇,全光纤密集型波分复用器,光学学报,1996,16(9):1337~1340
    [18] 叶培大,光纤理论,上海:知识出版社,1985,169~170
    [19] Otto Schwelb, All-optical tunable filters built with discontinuity-assisted ring resonators, J.Lightwave Technol., 2001, 19(3): 380~386
    [20] Otto Schwelb, Characteristics of lattice networks and spectral filters built with 2×2 couplers, J.Lightwave Technol.,1999, 19(8): 1470~1480
    [21] Otto Schwelb,Generalized analysis for a class of linear interfermetric networks: Part1-Analysis, IEEE Trans.Microwave Theory Tech., 1998, 46(10): 1339~1408
    [22] Otto Schwelb,Generalized analysis for a class of linear interfermetric networks: Part2-Simulations, IEEE Trans.Microwave Theory Tech., 1998, 46(10): 1409~1418
    [23] Colin A.Millar, David Harvey and Paul Urquhart, Fiber reflection mach-zehnder interferometer, optics comunication, 1989, 70(4): 304~307
    第三章
    [1] Y.P.Li, C.H.Henry, Silica-based optical integrated circuits, IEE Proc.-Optoelectron., 1996, 143(5): 263~280
    [2] Masao Kawachi, Kannme Jinguji, Planar lightwave circuits for optical signal processing, 1994, OFC'94: 281~282
    
    
    [3] K.Takiguchi, K.Jinguji, K.Okamoto, et al ., Variable group-delay dispersion equalezer using lattice-form programmable optical filter on planar lightwave circuit, IEEE J.Seleted Areas commun., 1996, 2(2): 270~276
    [4] Y.Li, C.Henry, et al., Waveguide EDFA gain equalisation filter, Electron. Lett., 1995, 31(23): 2100~2101
    [5] C.Madsen and G.Lenz, Optical allpass filters for phase response design with application for dispersion compensation, IEEE Photon. Technol. Lett., 1998, 10(7): 994~996
    [6] B.Moslehi, J.W.Goodman, M.Tur et al., Fiber-optic lattice signal processing, Proc. IEEE, 1984, 72(7) : 909~930
    [7] K.P.Jackson, S.A.Newtons, B.Moslehi et al., Optical fiber delay-line signal processing, IEEE Trans. Microwave Tech., 1985, 33(3): 193~208
    [8] K.P.Jackson, G.Xiao, and H.J.Shaw, Coherent optical fiber delay-line processor, Electron. Lett., 1986, 22(25): 1335~1337
    [9] K.Sasayama, M.Okuno, and K.Habara, Coherent optical transversal filter using silica-based waveguides for high-speed signal processing, J.Lightwave Technol., 1991, 9(10): 1225~1230
    [10] 尚洪臣,微波网络,北京理工大学出版社,1988,39~34
    [11] 梁联倬,微波网络,北京电子工业出版社,1990,96~98
    [12] 丁玉美,高西全,数字信号处理,西安电子科技大学出版社,2001,195~221
    [13] 陈亚勇等,Matlab信号处理详解,人民邮电出版社,2001,103~125
    [14] C. K.madsen and J.H.Zhao, Optical filter Desigan and Analysis: A Signal Processing Approach, John Wiley&Sons, New York, 1999
    [15] K.Jinguji, et al., Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations, J.Lightwave Technol., 1996, 14(10):2301~2310
    [16] C K Madsen. General IIR optical filter design for WDM applications using all-pass filters[J]. J.Lightwave Technol.,2000 ,18(6): 860~868
    [17] 张瑞峰,葛春风 等. 奇偶交错空分滤波器[J]. 光电子·激光,2002,13(6):652-656
    [18] 蔡燕民,赵岭 等. C波段偏振光干涉仪型交错滤波器实验研究[J],光电子·激光,2002,13(7):699-702
    [19] Li Lin, Fang zujie, Cai haiwen et al., Sampled FBG based optical interleaver, LEOS'01, Paper TuE2-5, 2001,404~405
    [20] Dingel B B et al. Properties of a novel noncascaded type easy-to-design ripple-free optical bandpass filter[J]. Opt.Lett. 1998, 17(8):1461-1469.
    [21] M Kuznetsov. Cascaded coupler Mach-Zehnder channel dropping filters for wavelength division multiplexed optical systems. J.Lightwave Technol. 1994, 12(2) :226-230.
    Oguma M, Jinguji K, et al. Flat-passband interleave filter with 200 GHz channel spacing based on planar lightwave circuit-type lattice structure. Elecront. Lett. 2000, 36(15):
    
    [22] 1299-1300.
    [23] Oguma M, Jinguji K, et al. Flat-top and low-loss WDM filter composed of lattice-form interleave filter and arrayed-waveguide gratings on one chip. OFC2001 , 2001: WB3-1.
    [24] Chiba T et al. Novel architecture of wavelength interleaving filter with fourier transform-based MZIs. OFC2001, 2001:WB5-1.
    [25] 李世忱,超高速率ns-亚ns脉冲光闸,天津大学学报,1985,18(2):93~98
    第四章
    [1] Oguma M, Jinguji K, et al. Flat-top and low-loss WDM filter composed of lattice-form interleave filter and arrayed-waveguide gratings on one chip. OFC2001 , 2001: WB3-1.
    [2] K.Jinguji and M.Kawachi, Synthesis of coherent two-port lattice form optical delay-line circuit, J.Lightwave Technol., 1995, 13(1): 73~82
    [3] C. K.madsen and J.H.Zhao, Optical filter Desigan and Analysis: A Signal Processing Approach, John Wiley&Sons, New York, 1999, 199~207
    [4] F.Gires and P.Tournois, Interferometer utilisable pour compression impulsions lumineuses modulees en frequence, C.R.Acad. Sci. 1964, 258(5): 612
    [5] Dingel B B et al. Properties of a novel noncascaded type easy-to-design ripple-free optical bandpass filter[J]. Opt.Lett. 1998, 17(8):1461-1469.
    [6] G.Lenz, B.J.Eggleton, C.K.Madsen, et al., Optimal dispersion of optical filters for WDM system, IEEE Photon. Technol. Lett., 1998,10: 567~569
    第五章
    [1] David B.Mortimore et al 1988 J.Ligtwave Technol. 6 1417
    [2] Nakazawa M,Suzuki K, Yamada E et al 1996 Electron. Lett. 32 1122
    [3] Han M et al 2000 Acta Phys.Sin. 49 751 (in Chinese) [韩明等2000物理学报 49 751]
    [4] Stokes L F, Chodorow M, Shae H J et al 1982 Opt.Lett. 6 288
    [5] Pang Y et al 1996 SPIE-Int Soc for Opt Engineering (Bellingham), WA USA p110
    [6] Govind P. Agrawal. 2001 Applications of Nonlinear Fiber Optics (Academic Press, Incorporated) p63
    [7] Yu C Y et al 2001 Acta Phys.Sin. 50 904 (in Chinese) [俞重远等2001物理学报 50 904]
    [8] Shu X W et al 2000 Acta Phys.Sin. 49 1731 (in Chinese) [舒学文等2000物理学报 49 1731]
    [9] Gu B S et al 1995 Journal of applied sciences 13 288(in Chinese)[顾炳生等 1995 应用科学学报 13 288]
    [10] A.Mori, H.Masuda, K.Shikano et al 2001 Electron. Lett. 37 1442
    [11] Sarlet G et al 1999 IEEE Photon. Technol. Lett. 11 1351
    
    
    [12] T.Moriok, K.Uchiyama,S.Kawanishi et al 1995 Electron. Lett. 31 1064
    [13] T.Morioka, S.Kawanishi, K.Mori and M.Saruwatari. 1994 Electron. Lett. 30 790
    [14] Snyder A W.andLove J D. 1983 Optical Waveguide theory(Chapman and Hall, London) p574
    [15] 黄勇,曾庆济,掺铒光纤放大器用1480/1550nm波分复用器的优化设计,中国激光,1995,22(8):627~631
    [16] J.D.Minelly, M.Suyama, Wavelength combining fused-taper couplers with low sensitivity to polarization for use with 1480nm-pumped erbium-doped fiber amplifiers, Elcetron.Lett., 1990,26(5) :571~572
    第六章
    [1] Suzuki Hiro, et al. 1-Tb/s (100(10Gb/s) super-dense WDM transmission with 25-GHz channel spacing in the zero-dispersion region employing distributed Raman amplification technology. IEEE Photon. Tech. Lett., 2000, 12(7): 903~905
    [2] P. B. Hansen, L. Eskildsen, S. G. Grubb et al, Capacity upgrades of transmission systems by Raman amplification, IEEE Photon. Technol. Lett., 1997, 9 (2) : 262~264
    [3] J. Kani. M. Jinno K. Oguchi, Fibre Raman amplifier for 1520nm band WDM transmission, Electron. Lett., 1998, 34 (18) : 1745~1747
    [4] Y. Emo, K. Tanaka, and S. Namiki, 100nm bandwidth flat-gain Raman amplifiers pumped and gain-equalized by 12-wavelength-channel WDM laser diode unit, Electron. Lett., 1999, 35 (16) : 1355~1356
    [5] S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, Triple wavelength pumped silica-fibre Raman amplifiers with 114nm bandwidth, Electron. Lett., 1999, 35 (16) : 1761~1762
    [6] H.Masuda and S.Kawai, Ultra wide-band amplification with a total gain bandwith of 132 nm of two gain-bands around 1.5(m, ECOC'99, Paper We D3.2, Nice ,France, 1999
    [7] 李凤敏,胡鸿璋,指向耦合器型TE/TM模分离器结构参数优化设计,中国激光,2001,28(4):362~364
    [8] O.Mikami, LiNbO3 coupled-waveguide TE/TM mode splitter, Appl.Phys.Lett., 1980,36(7):491~493
    [9] M.S.Yataki, D.N.Payne, All-fiber polarization beam splitter, Electron.Lett., 1985,21: 249~251
    [10] T.Bricheno, V.Baker, All-fiber polarization splitter/combiner, Electron.Lett., 1981:21:251~252
    [11] M.Eisenmann, E.Weidel, Single-mode fused biconical coupler optimized for polarization beam splitting, J.Lightwave Technol., 1991,9(7):853~858
    K.Morishita,K.Takashina, Polarization properties of fused fiber couplers and polarization
    
    [12] beam splitters, J.Lightwave Technol., 1991,9:1503~1506
    [13] F.P.Payne, C.D.Hussey, and M.S.Yataki, Modelling fused single-mode-fiber couplers, Electrno.Lett., 1985, 21:461
    [14] J.D.Minelly, M.Suyama, Wavelength combining fused-taper couplers with low sensitivity to polarization for use with 1480nm-pumped erbium-doped fiber amplifiers, Elcetron.Lett., 1990,26(5) :571~572
    [15] I.Yokohama, K.Okamoto, and J.noda, Analysis of fiber-optical polarizing beam splitters consisting of fused-taper couplers, J.Lightwave Technol., 1986,4(9): 1352~1359
    [16] K.Morishita, T.Yamaguchi, Wavelength tunability and polarization characteristics of twisted polarization beamsplitting single-mode fiber couplers, J.Lightwave Technol., 2001,19(5): 732~738

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700