用户名: 密码: 验证码:
利用符号计算解析研究光脉冲相互作用的若干问题
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在光通信系统中,信息以一系列光脉冲的形式进行传输。为了提高系统通信容量,总是尽可能减小相邻光脉冲的间距。当孤子技术应用于光通信系统中时,就涉及到光孤子相互作用问题。光孤子相互作用会使得光孤子波形畸变、传输恶化,从而导致光通信系统的误码率上升,传输距离变短,并最终影响到系统的通信质量和容量。因此,随着传输速率的提高,为了在相同码率下获得尽可能大的传输距离,需要对光孤子相互作用进行研究。
     通常利用非线性Schrodinger(NLS)类模型来描述光孤子在光纤中的传输。在光通信系统中,一般采用数值方法研究该类模型,计算处理的数据和输出的结果都是数值的。如果能找到该类模型的解析解,将有助于了解模型所描述的非线性现象的本质特征。为了得到该类模型的解析解,通常需要忽略一些物理效应和降低计算精度等,同时计算过程也繁琐。随着科学技术的发展,符号计算被用于该类模型的解析求解。利用符号计算,通过设计问题的代数算法,可以借助计算机进行复杂的数学演算和推理,从而解析地处理数据和运算,并得到该类模型没有误差的解析解。
     在本论文中,作者结合光孤子研究领域的发展现状,借助于符号计算和双线性方法,解析研究光通信系统中NLS类模型的孤子解和光孤子相互作用的若干问题。解决的主要问题包括:如何尽量减小光孤子间距而又使光孤子相互作用减弱?光孤子相互作用时,能否在保持原有光孤子间距的条件下将光孤子压缩,从而减小光孤子相互作用?是否可以实现光孤子的自发放大而不需要周期性地添加集中放大器?是否可以利用传输介质的相关特性对光孤子进行控制?主要研究内容包括四个方面:光纤正常色散区中明、暗孤子的产生及其相互作用;孤子效应脉冲压缩及其相互作用;光孤子放大及其相互作用;孤子控制及其相互作用。要点如下:
     (1)光纤正常色散区明、暗孤子的产生及其相互作用研究:借助于符号计算,通过对NLS模型、高阶NLS模型、变系数NLS模型和带损耗的变系数NLS模型这四个非线性模型的解析研究,得到它们的解析单、双孤子解。发现在光纤的正常色散区能够产生明、暗孤子,并得到在光纤的正常色散区产生明、暗孤子的条件。利用渐近分析法分析光孤子相互作用情形,发现在高阶NLS模型中,明、暗孤子间的相互作用是非弹性的;而在另外三个NLS模型中,光孤子相互作用是弹性的。在相互作用前后它们的能量是守恒的。通过改变高阶NLS模型的双孤子解的物理参数可以改变光孤子的传输模式。当传输媒质为非均匀光纤时,可以选择色散递减光纤(DDF)不同的色散曲线函数进行孤子控制。并且这种孤子控制方法对于光孤子相互作用没有影响。另外,对带损耗的变系数NLS模型的孤子解进行了稳定性分析,验证了孤子解的稳定性。
     (2)孤子效应脉冲压缩和光孤子相互作用研究:借助于符号计算,通过求解用于描述孤子效应脉冲压缩的高阶NLS模型,得到该模型的解析单、双和三孤子解,从而解析地研究孤子效应脉冲压缩技术。当两个光孤子间距较小时,会发生相互作用,产生孤子效应脉冲压缩现象,并且光孤子在传输过程中呈现周期性的变化。当光孤子间距较大时,可以实现光孤子间无相互作用的传输。同时,利用三孤子解验证所得结论的正确性。发现由于受激Raman散射(SRS)、自陡峭效应(SS)和三阶色散(TOD)的共同作用,三阶孤子效应脉冲压缩的压缩因子更高。但是由于TOD效应的存在,三阶孤子带有基座,会导致光孤子压缩质量下降,光孤子带宽也会被展宽。
     (3)光纤反常色散区光孤子放大及其相互作用研究:借助于符号计算,解析研究高阶NLS模型、变系数高阶NLS模型以及带损耗的变系数NLS模型,得到它们的解析单、双孤子解。研究发现利用DDF和色散位移光纤(DSF)能够实现光孤子放大。对于变系数高阶NLS模型,主要借助于具有不同色散曲线函数的DDF实现光孤子放大。DDF的色散曲线函数不同,光孤子放大增益也不相同。对于高阶NLS模型,主要利用DSF研究光孤子放大。光孤子相互作用后,会发生能量交换,从而实现光孤子放大功能。同时,借助带损耗的变系数NLS模型,还研究一种具有新型色散曲线函数的DDF,发现光孤子在较短距离能被放大,并且放大的速度还能够被控制。
     (4)孤子控制及其相互作用研究:借助于符号计算,解析研究变系数NLS模型和变系数高阶NLS模型,得到它们的解析单、双和三孤子解。研究发现选择DDF不同的色散曲线函数,光孤子振幅或速度会发生相应的改变,从而达到孤子控制的目的。并且该孤子控制方法不会对光孤子相互作用产生影响。依据DDF的色散曲线函数,当选择不同的群速度色散(GVD)参数时,光孤子振幅会以相应的方式发生改变。在研究暗孤子时,发现当TOD系数函数与DDF的色散曲线函数成比例时,也能够实现孤子控制,即使存在高阶效应对孤子控制也没有影响。在利用Gauss型DDF进行光孤子传输时,在光孤子间距很小的情况下,光孤子也不会发生相互作用,这有利于增大系统的通信容量。另外,利用渐近分析法揭示在系统中光孤子相互作用是弹性的,在相互作用过程中能量是守恒的。
In optical communication systems, the information transmitted are usually some optical pulse trains. Minimizing the distance between two adjacent pulses has been used to improve the capacity of the communication systems. When the soliton technique is applied to the optical communication systems, the problems of the interactions between two solitons have arisen, which cause soliton distortion and transmission deterioration in the optical communication systems, accordingly bring rising bit error rate and shorter transmission distance, and finally negatively affect the quality and capacity of the optical communication systems. With increasing data transfer rate, the interactions between two solitons should be studied in order to obtain the greatest possible transmission distance under the same bit rate.
     The common mathematical model describing the optical soliton transmission in the optical fibers is the nonlinear Schrodinger (NLS)-type model. In optical communication systems, numerical methods have been used to study the model, and the input data and output results all are numerical values. Obtaining the analytic solutions for the model is helpful for the understanding of the nature of the nonlinear phenomena described by the model. Typically, to obtain the analytic solutions for the model, ignoring some physical effects and reducing the computational accuracy would be required, so would be the complicated calculation process. With the development of science and technology, symbolic computation has been used to obtain the analytic solutions for the model. With the symbolic computation and the algebraic algorithm, the complex mathematical calculations and deductions can be conducted with computer to ensure the acquisition of the analytic solutions with absolute accuracy for the model.
     Integrating the current development of the optical soliton field, this dissertation an-alytically study the soliton solutions and interactions for the NLS-type models by means of symbolic computation and the bilinear methods. Main problems to be solved include: How the distance between optical solitons be minimized with the optical soliton inter-action diminished? Can optical solitons be compressed while maintaining its original space, thereby reduces the optical soliton interaction? Can spontaneous soliton amplifi-cation be achieved without requiring the periodical focus amplifier? Can optical solitons be controlled with the properties of optical transmission medium? What are under in-vestigation include the following four aspects:the generation of the bright and dark solitons and their interactions in the normal group velocity dispersion (GVD) regime of optical fibers; soli ton-effect pulse compression and their interactions; optical soliton amplification and their interactions; soliton control and their interactions. Specifically, the work is outlined as follows:
     (1) Generation of the bright and dark solitons and their interactions in the normal GVD regime of optical fibers:By analytic studies on the NLS model, higher-order NLS (HNLS) model, variable-coefficient NLS (vcNLS) model and vcNLS model with the losses, their one- and two- soliton solutions are obtained with symbolic computation. It concludes that the bright and dark solitons can be obtained in the normal GVD regime of optical fibers and the corresponding conditions for their generation are also given. Making the asymptotic analysis of the interactions between two solitons qualitatively, results indicate that the interactions between bright and dark solitons are inelastic in the HNLS model, while the interactions in the other three types of NLS models are elastic, with the energy conserved before and after the interactions. Changes in the physical parameters of the two-soliton solutions in the HNLS model can alter the optical soliton transmission mode. In the nonuniform fiber transmission medium, the dispersion decreasing fibers with different dispersion profiles can be selected to conduct soliton control, which exerts no effect on the optical soliton interactions. In addition, stability analysis of the soliton solutions for the vcNLS model is conducted to verify their stability.
     (2) Soliton-effect pulse compression and soliton interaction:The HNLS model is used to describe the soliton-effect pulse compression. The one-, two- and three-soliton solutions for the model are derived with symbolic computation, and the soliton-effect pulse compression mechanism is studied analytically. When the spacing between two optical solitons is comparatively small, the interaction will occur, which results in the phenomena of the soliton-effect pulse compression with optical solitons exhibiting pe-riodic changes. When the spacing between two optical solitons is comparatively large, optical solitons propagate without interactions. The above conclusions are verified by the three-soliton solution. Third-order soliton-effect pulse compression is confirmed to manifest higher compression factor being influenced by the combined effects of third- order dispersion (TOD), self-steepening (SS) and stimulated Raman scattering (SRS). However, due to the TOD effect, the third-order optical soliton is attached with an os-cillating structure, which leads to the lower-quality compressed optical solitons with the optical soliton width broadening.
     (3) Optical soliton amplification and their interactions in the anomalous GVD regime of optical fibers:Analytic studies on the three models(the vcHNLS model, HNLS model and vcNLS model with losses) are performed to acquire the one- and two- soliton solutions with symbolic computation. The dispersion-shifted fiber (DSF) and dispersion-decreasing fiber (DDF) are verified to realize the optical soliton amplification. For the vcHNLS model, the DDF with different dispersion profiles can be used to achieve the optical soliton amplification, with different dispersion profiles corresponding to different optical soliton amplification gain. While the HNLS model is mainly utilized in the DSF to investigate the optical soliton amplification, which can be realized via the energy exchange after the optical soliton interaction. In the vcNLS model with losses, the in-vestigation on the DDF with a new kind of dispersion profile suggests that the optical soliton can be amplified within a comparatively short distance with the amplification speed being controlled.
     (4) Soliton control and interaction:The vcNLS model and vcHNLS model are ana-lytically studied and their one-, two- and three-soliton analytical solutions are obtained via symbolic computation. With the DDF of different dispersion profiles conducting the change of the optical soliton amplitude or speed, soliton control can be realized and have no impact on optical soliton interaction. According to the dispersion profiles of the DDF, the optical soliton amplitude varies with the GVD parameter. Research on the dark soliton indicates that dark solitons can be controlled when the TOD coefficient function is proportional to the dispersion profiles of the DDF, even if there is higher-order effect. When the optical solitons propagate in the Gaussian DDF, provided that the optical soliton spacing is comparatively small, the optical solitons will not interact, and the capacity of the optical communication system will be improved. In addition, it is found via asymptotic analysis that the optical soliton interactions are elastic in the systems with the energy conserved.
引文
[1]谷超豪等.孤立子理论与应用,浙江科学技术出版社,1990.
    [2]Russell J S. Report on waves,14th meeting of the British association for advancement of science, London, John Murray,1844,311-390.
    [3]倪皖荪,魏荣爵.水槽中的孤波,上海科技教育出版社,1997.
    [4]郭柏灵.非线性演化方程,上海科技教育出版社,1995.
    [5]Ablowitz M J, Clarkson P A. Solitons, nonlinear evolution equations and inverse scattering, Cambridge Univ. Press, Cambridge,1991.
    [6]张少武.若干非线性系统中孤子结构与传输特性的研究[学位论文],华中科技大学,2008.
    [7]庞小峰,孤子物理学,四川科学技术出版社,2003.
    [8]杨红,谭子尤.非线性媒质中时空光孤子之间的相互作用,怀化学院学报,28,2009,74-76.
    [9]Newell A C, Moloney J V. Nonlinear optics, Addison-Wesley, Redwood,1992.
    [10]Agrawal G P, Nonlinear fiber optics,4th ed. Academic Press, San Diego,2007.
    [11]Agrawal G P. Nonlinear optic communication systems, Wiley, New York,2002.
    [12]Boyd R W. Nonlinear optics, Academic, New York,2003.
    [13]Kivshar Yu S, Agrawal G P. Optical solitons:From fibers to photonic crystals Academic, San Diego,2003.
    [14]杨祥林,温扬敬.光纤孤子通信理论基础,国防工业出版社,2000.
    [15]Brezzi F, Markowich P A. The three-dimensional Wigner-Poisson problem:Exis-tence, uniqueness and approximation, Math. Method. Appl. Sci.14,1991,35-61.
    [16]Kengne E, Chui S T, Liu W M. Modulational instability criteria for coupled non-linear transmission lines with dispersive elements, Phys. Rev. E 74,2006,036614.
    [17]Hasegawa A. Optical solitons in fibers,2nd ed. Springer-Verlag, Berlin,1990.
    [18]Dodd R K, Eilbeck J C, Gibbon J D et al. Solitons and nonlinear wave equations, Academic, New York,1982.
    [19]Dalfovo F, Giorgini S, Pitaevskii L P et al. Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys.71,1999,463-512.
    [20]Davydov A S. Biology and quantum mechanics, Pergamon, Oxford,1982.
    [21]Davydov A S. Solitons in molecular systems, Reidel, Dordrecht,1985.
    [22]Segev M. Solitons:A universal phnomenon of self-trapped wave packets, Opt. Pho-ton. News 13,2002,27.
    [23]Porkolab M, Goldman M V. Upper-hybrid solitons and oscillating-two-stream in-stabilities, Phys. Fluids 19,1976,872-881.
    [24]Pecseli H L, Rasmussen J J. Nonlinear electron waves in strongly magnetized plas-mas, Plasma Phys.22,1980,421-438.
    [25]Davydova T A, Fishchuk A I. Upper-hybrid nonlinear wave structure, Ukr. J. Phys. 40,1995,487-494.
    [26]Hasegawa A, Tappert F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fiber, Ⅰ. anomalous dispersion, Appl. Phys. Lett.23,1973, 142-144.
    [27]Hasegawa A, Tappert F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fiber, Ⅱ. normal dispersion, Appl. Phys. Lett.23,1973,171-172.
    [28]刘彬.基于Ginzburg-Landau方程的空间孤子传输及其动力学特性研究[学位论文],中山大学,2010.
    [29]Mollenauer L F, Stolen R H, Gordon J P. Experimental observation of picosecond pulse narrowing and solitons in optical fibers, Phys. Rev. Lett.45,1980,1095-1098.
    [30]Emplit P, Hamaide J P, Reynaud F et al. Picosecond steps and dark pulses through nonlinear single mode fibers, Opt. Commun.62,1987,374-379.
    [31]Kivshar Yu S, Luther-Davies B. Dark optical solitons:Physics and applications, Phys. Rep.298,1998,81-197.
    [32]Krokel D, Halas N J, Giuliani G et al. Dark pulse propagation in optical fibers, Phys. Rev. Lett.60,1988,29-32.
    [33]Weiner A M, Heritage J P, Hawkins R J et al. Experimental observation of the fundamental dark soliton in optical fibers, Phys. Rev. Lett.61,1988,2445-2448.
    [34]Yang J K, Pelinovsky D E. Stable vortex and dipole vector solitons in a saturable nonlinear medium, Phys. Rev. E 67,2003,016608.
    [35]Cohen O, Lan S, Carmon T et al, Spatial vector solitons consisting of counterprop-agating fields, Opt. Lett.27,2002,2013-2015.
    [36]Musslimani Z H, Segev M, Christodoulides D N et al. Composite multihump vector solitons carrying topological charge, Phys. Rev. Lett.84,2000,1164-1167.
    [37]Ghofraniha N, Conti C, Ruocco G et al. Shocks in nonlocal media, Phys. Rev. Lett. 99,2007,043903.
    [38]方云团,沈廷根,谭锡林.一阶孤子和高斯准孤子在传输中相互作用的研究,激光技术,27,2003,577-579.
    [39]余杨,张旭萍.大气激光通信机的光学模型和物理实现研究,激光杂志,27,2006,6-63.
    [40]白世武,龚育良.空间准直性对激光外差干涉信噪比的影响,光学仪器,16,1994,1-5.
    [41]钟鸣宇,曹文华.基于初始载波频移的孤子互作用抑制方法,半导体光电,28,2007,410-413.
    [42]Segev M. Optical spatial solitons, Opt. Quantum Electron.30,1998,503-533.
    [43]Barnett M P, Capitalni J F, VonZurGathen J et al. Symbolic calculation in chem-istry:Selected examples, Int. J. Quantum Chem.100,2004,80-104.
    Yan Z Y, Zhan H Q. Symbolic computation and new families of exact soliton-like solutions to the integrable Broer-Kaup (BK) equations in (2+l)-dimensional spaces, J. Phys. A 34,2001,1785-1792.
    [45]Duffy B R, Parkes E J. Travelling solitary wave solutions to a seventh-order gener-alized KdV equation. Phys. Lett. A 214,1996,271-272.
    [46]范恩贵.可积系统与计算机代数,科学出版社,2004.
    [47]衷仁保,马建.计算机代数学,科学出版社,1996.
    [48]张树功,刘停战,冯果忱.计算机代数基础,吉林大学出版社,1997.
    [49]吴文俊.数学机械化,科学出版社,1999.
    [50]周梦.计算代数与应用,武汉大学出版社,2002.
    [51]陶庆生.计算机代数及其应用,浙江大学出版社,1991.
    [52]赵东方.数学模型与计算,科学出版社,2007.
    [53]张韵华.符号计算系统Mathematica教程,科学出版社,2001.
    [54]田播.计算机符号计算在非线性研究中的若干应用[学位论文],北京航空航天大学,2003.
    [55]李娟.基于计算机符号计算的若干变系数非线性模型可积性质的研究[学位论文],北京邮电大学,2005.
    [56]李丽莉.基于计算机符号计算的非线性模型孤子解研究[学位论文],北京邮电大学,2008.
    [57]Gao X S, Zhang J Z, Chou S C. Geometry expert, Taipei,1998.
    [58]王东明.符号计算选讲,清华大学出版社,2003.
    [59]王东明.计算机代数,清华大学出版社,2004.
    [60]张宝善Mathematica符号运算与数学实验,南京大学出版社,2007.
    [61]张海强,基于计算机符号计算研究非线性模型的可积性质及其物理应用[学位论文],北京邮电大学,2010.
    Liu W J, Tian B, Zhang H Q et al. Solitary wave pulses in optical fibers with normal dispersion and higher-order effects, Phys. Rev. A 79,2009,063810.
    [63]Liu W J, Tian B, Xu T. Symbolic computation study of bright solitonic pulses in the normal dispersion region, J. Nonl. Opt. Phys. Mater.17,2008,235-242.
    [64]Liu W J, Tian B, Xu T et al. Bright and dark solitons in the normal dispersion regime of inhomogeneous optical fibers:Soliton interaction and soliton control, Ann. Phys.325,2010,1633-1643.
    [65]Liu W J, Tian B, Jiang Y et al. Bright and dark solitons in the normal dispersion regime of inhomogeneous optical fibers, J. Mod. Opt.57,2010,1498-1503.
    [66]Liu W J, Meng X H, Cai K J et al. Analytic study on soliton-effect pulse compression in dispersion-shifted fibers with symbolic computation, J. Mod. Opt.55,2008,1331-1344.
    [67]Liu W J, Tian B, Zhang H Q et al. Soliton interaction in the higher order nonlinear Schrodinger equation investigated with Hirota's bilinear method, Phys. Rev. E 77, 2008,066605.
    [68]Liu W J, Tian B, Xu T et al. Pulse amplification in dispersion-decreasing fibers with symbolic computation, Commun. Theor. Phys.52,2009,1076-1080.
    [69]Liu W J, Tian B, Zhang H Q. Types of solutions of the variable-coefficient nonlinear Schrodinger equation with symbolic computation, Phys. Rev. E 78,2008,066613.
    [70]Liu W J, Tian B, Li L L et al. Analytic study on the pulse transmission control system in dispersion decreasing fibers, J. Mod. Opt.56,2009,1151-1158.
    [71]Liu W J, Tian B, Wang P et al. A new approach to the analytic soliton solutions for the variable coefficient higher-order nonlinear Schrodinger model in inhomogeneous optical fibers, J. Mod. Opt.57,2010,309-315.
    [72]吴剑,胡波.掌握和精通Mathematiea4.0,机械工业出版社,2001.
    [73]徐安农Mathematica数学实验,电子工业出版社,2004.
    [74]阳明盛,林建华Mathematica基础及数学软件,大连理工大学出版社,2006.
    [75]Wolfram S著,赫孝良,周义仓译Mathematica全书,西安交通大学出版社,2002.
    [76]Chu P L, Desem C. Mutual interaction between solitons of unequal amplitudes in optical fiber, Electron. Lett.21,1985,1133-1134.
    [77]Istrin O, Malomed B A. Interactions between dispersion-managed solitons with unequal powers, J. Opt. Soc. Am. B,27,2010,844-851.
    [78]Kodama Y, Wabnitz S. Reduction and suppression of soliton interaction by band-pass filters, Opt. Lett.18,1993,1311-1313.
    [79]张介秋,陈砚圃,冯大毅等.用正弦变频滤波器抑制孤子间的相互作用,光学学报,22,2002,148-152.
    [80]钟鸣宇,曹文华.基于初始载波频移抑制孤子互作用,激光与红外,37,2007,351-354.
    [81]Franconis P L, Georges T. Reduction of averaged soliton interaction forces by am-plitude modulation, Opt. Lett.18,1993,583-585.
    [82]Simith N J, Firth W J, Blow K J et al. Suppression of soliton interactions by periodic phase modulation, Opt. Lett.19,1994,16-18.
    [83]傅兴隆,李洪柞,郝晋英等.利用非对称色散图分析色散管理孤子相互作用,科技创新导报,28,2010,6-9.
    [84]钟卫平,易林.色散补偿光纤通信系统中孤子之间的相互作用,光学学报,26,2006,491-496.
    [85]钟卫平,黄辉.双芯耦合光纤中高阶色散对光孤子相互作用的影响,光学学报,15,1995,202-205.
    [86]王润轩.光纤暗孤子相互作用,激光技术,28,2004,88-90.
    [87]杨伯君,赵玉芳.高等数学物理方法,北京邮电大学出版社,2003.
    [88]冯启元,李建新,冯璐等.损耗对双折射光纤中孤子相互作用的影响,内蒙古大学学报,28,1997,489-492.
    [89]陈陆君,梁昌洪,吴鸿适.光纤中双孤子相互作用的等价粒子理论,光学学报.14,1994,113-117.
    [90]Wald M, Malomed B A, Lederer F. Interactions of dispersion-managed solitons in wavelength-division-multiplexed optical transmission lines, Opt. Lett.13,2001, 965-967.
    [91]Ablowitz M J, Biondini G, Olson E S. Incomplete collisions of wavelength-division multiplexed dispersion-managed solitons, J. Opt. Soc. Am. B 5,2001,577-583.
    [92]Peleg A, Chertkov M, Gabitov I. Interchannel interaction of optical solitons, Phys. Rev. E 68,2003,026605.
    [93]Kanna T, Lakshmanan M. Exact soliton solutions of coupled nonlinear Schrodinger equations:Shape-changing collisions, logic gates, and partially coherent solitons, Phys. Rev. E 67,2003,046617.
    [94]王润轩.单模光纤中暗孤子的相互作用,西南师范大学学报(自然科学版),28,2003,572-575.
    [95]Chertkov M, Chung Y, Dyachenko A et al. Shedding and interaction of solitons in weakly disordered optical fibers, Phys. Rev. E 67,2003,036615.
    [96]Chung Y, Lebedev V V, Vergeles S S. Radiation-induced interaction of optical solitons in fibers with randomly varying birefringence, Phys. Rev. E 69,2004,046612.
    [97]Radhakrishnan R, Lakshmanan M. Suppression and enhancement of soliton switch-ing during interaction in periodically twisted birefringent fibers, Phys. Rev. E 60, 1999,2317-2321.
    [98]杨爱玲,秦宇,王晶等.色散缓变光纤中孤子的相互作用,光电子激光,15,2004,495-498.
    [99]岳进,杨荣草.五阶非线性效应下源啁啾飞秒孤子间相互作用,量子电子学报,25,2008,499-504.
    [100]薄明霞,李仲豪,田慧平等.源啁啾飞秒孤子间相互作用的数值研究,量子光学学报,8,2002,1-7.
    [101]王涛,田慧平,李仲豪等.飞秒暗孤子间相互作用的数值研究,光学学报,23,2003,680-683.
    [102]张利娜,蔡炬,龙瑞平等.三阶色散对色散控制孤子相互作用的影响,24,2004,27-31.
    [103]张妍,李康,孔繁敏.脉冲内拉曼散射影响下的孤子之间的相互作用及其控制,光学技术,31,2005,614-617.
    [104]郝瑞宇,师晓娟,李录等.在孤子控制下两个飞秒光孤子间的相互作用,光学与光电技术,5,2007,44-46.
    [105]马慧,徐建波.光纤通信系统中孤子的相互作用,河北师范大学学报(自然科学版)28,2004,376-378.
    [106]Serkin V N, Hasegawa A, Belyaeva T L. Nonautonomous solitons in external po-tentials, Phys. Rev. Lett.98,2007,074102.
    [107]Ibragimov E, Struthers A A, Kaup D J et al. Three-wave interaction solitons in optical parametric amplification, Phys. Rev. E 59,1999,6122-6137.
    [108]苗润才,王飞,曾祥梅.二阶孤子间相互作用引起孤子衰变,光子学报,33,2004,927-930.
    [109]Decem C, Chu P L. Soliton interaction in the presence of loss and periodic ampli-fication in optical fibres, Opt. Lett.12,1987,349-351.
    [110]Kodama Y, Nozaki K. Soliton interaction in optical fibres, Opt. Lett.12,1987, 1038-1040.
    [111]Georges T, Favre F. Influence of soliton interaction on amplifier noise-induced jitter:A first-order analytical solution, Opt. Lett.16,1991,1656-1658.
    [112]Musslimani Z H, Soljacie M, Segev M et al. Interactions between two-dimensional composite vector solitons carrying topological charge, Phys. Rev. E 63,2001,066608.
    [113]Morandotti R, Eisenberg H S, Mandelik D et al. Interactions of discrete solitons with structural defects, Opt. Lett.28,2003,834-836.
    [114]Soljacic M, Steiglitz K, Sears S M et al. Collisions of two solitons in an arbi-trary number of coupled nonlinear Schrodinger equations, Phys. Rev. Lett.90,2003, 254102.
    [115]Rotschild C, Cohen O, Mannela O et al. Interactions between spatial screening solitons propagating in opposite directions, J. Opt. Soc. Am. B 21,2004,1354-1357.
    [116]Ku T S, Shih M F, Sukhorukov A A et al. Coherence controlled soliton interactions, Phys. Rev. Lett.94,2005,063904.
    [117]楼森岳,唐晓艳.非线性数学物理方法,科学出版社,2006.
    [118]Hirota R. Exact solution of the KdV equation for multiple collisions of solitons, Phys. Rev. Lett.27,1971,1192-1194.
    [119]Hirota R. A new form of Backlund transformations and its relation to the inverse scattering problem, Progr. Theor. Phys. Suppl.52,1974,1498-1512.
    [120]Hirota R. The direct method in soliton theory, Cambridge Univ. Press, Cambridge, 2004.
    [121]Matsuno Y. Bilinear transformation method. Academic Press, New York,1984.
    [122]Tam H W. A Generalized Leznov lattice:Bilinear form, Backlund transformation and Lax pair, Appl. Math. Lett.17,2004,35-42.
    [123]Hu X B, Li C X, Nimmo J J et al. An integrable symmetric (2+l)-dimensional Lotka-Volterra equation and a family of its solutions. J. Phys. A 38,2005,195-204.
    [124]Hietarinta J. One-dromion solutions for generic classes of equations, Phys. Lett. A 149,1990,113-118.
    [125]Zhang Y, Ye L Y, Lii Y N et al. Periodic wave solutions of the Boussinesq equation, J. Phys. A 40,2007,5539-5549.
    [126]Li L L, Tian B, Zhang C Y et al. On a generalized Kadomtsev-Petviashvili equation with variable coefficients via symbolic computation, Phys. Scr.76,2007,411-417.
    [127]Li L L, Tian B, Zhang C Y et al. N-soliton solutions, auto-Backlund transformation and Lax pair for a nonisospectral and variable-coefficient Korteweg-de Vries equation via symbolic computation, Int. J. Mod. Phys. B 23,2009,2383-2393.
    [128]Zhang C Y, Yao Z Z, Zhu H W et al. Exact analytic N-soliton-like solution in Wronskian form for a generalized variable-coefficient Korteweg-de Vries model from plasmas and fluid dynamies, Chin. Phys. Lett.24,2007,1173-1176.
    [129]Zhang C, Tian B, Li L L et al. Analytical analysis on a generalized (2+1)-dimensional variable-coefficient Korteweg-de Vries equations using symbolic com-putation. Int. J. Mod. Phys. B,24,2010,5359-5370.
    [130]Weiss J, Tabor M, Carnevale G. The painleve property for partial differential equations, J. Math. Phys.24,1983,522-526.
    [131]Steeb W H, Euler N. Nonlinear evolution equations and Painleve test, World Scientific, Singapore,1988.
    [132]Conte R. Invariant painleve analysis of partial differential equations, Phys. Lett. A 140,1989,383-390.
    [133]Piekering A. A new truncation in painleve analysis. Phys. Lett. A 26,1993,4395-4405.
    [134]Kodama Y, Hasegawa A. Nonlinear pulse propagation in a monomode dielectric guide, IEEE J. Quantum Electron.23,1987,510-524.
    [135]Kodama Y. Optical solitons in monomode fiber, J. Stat. Phys.39,1985,597-614.
    [136]Abdullaev F, Darmanyan S, Khabibullaev P. Optical solitons, Springer, Berlin, 1991.
    [137]Nakkeeran K. Exact soliton solutions for a family of N coupled nonlinear Schrodinger equations in optical fiber media, Phys. Rev. E 62,2000,1313-1321.
    [138]Papaioannou E, Frantzeskakis D, Hizanidis K. An analytical treatment of the effect of axial inhomogeneity on femtosecond solitary waves in the zero dispersion point, IEEE J. Quantum Electron.32,1996,145-154.
    [139]Hao R Y, Li L, Li Z H et al. Exact multisoliton solutions of the higher-order nonlinear Schrodinger equation with variable coefficients Phys. Rev. E 70,2004, 066603.
    [140]Yang R C, Li L, Hao R Y et al. Combined solitary wave solutions for the in-homogeneous higher-order nonlinear Schrodinger equation, Phys. Rev. E 71,2005, 036616.
    [141]Ablowitz M J, Musslimani Z H. Dark and gray strong dispersion-managed solitons, Phys. Rev. E 67,2003,025601.
    [142]Inoue T, Sugahara H, Maruta A et al. Interactions between dispersion managed solitons in optical-time-division-multiplexed system IEEE Photon. Technol. Lett.12, 2000,199-301.
    [143]Ponomarenko S A, Agrawal G P. Interactions of chirped and chirp-fee of similari-tons in optical fiber amplifiers, Opt. Exp.15,2007,2963-2973.
    [144]Xu Z Y, Li L, Li Z H et al. Exact soliton solutions for the core of dispersion-managed solitons, Phys. Rev. E 68,2003,046605.
    [145]Kuehl H H. Solitons on an axially nonuniform optical fiber, J. Opt. Soc. Am. B 5, 1988,709-713.
    [146]McKinnon K I, Smyth N F, Worthy A L. Optimization of soliton amplitude in dispersion-decreasing nonlinear optical fibers, J. Opt. Soc. Am. B 16,1999,441-447.
    [147]Serkin V N, Hasegawa A. Novel soliton solutions of the nonlinear Schrodinger equation model, Phys. Rev. Lett.85,2000,4502-4505.
    [148]Wang L Y, Li L, Li Z H et al. Generation, compression and propagation of pulse trains in the nonlinear Schrodinger equation with distributed coefficients, Phys. Rev. E 72,2005,036614.
    [149]Serkin V N, Hasegawa A. Exactly integrable nonlinear Schrodinger equation mod-els with varying dispersion, nonlinearity and gain:application for soliton dispersion, IEEE J. Sel. Top. Quantum Electron.8,2002,418-431.
    [150]Zhang J F, Dai C Q, Yang Q et al. Variable-coefficient F-expansion method and its application to nonlinear Schrodinger equation, Opt. Commun.252,2005,408-421.
    [151]Li B, Chen Y. On exact solutions of the nonlinear Schrodinger equations in optical fiber, Chaos Soliton. Fract.21,2004,241-247.
    [152]Chen S H, Liu H P, Zhang S W et al. Compression of Hermite-Gaussian pulses in an engineered optical fiber absorber with varying dispersion and nonlinearity, Phys. Lett. A,353,2006,493-496.
    [153]Yang R C, Hao R Y, Li L et al. Dark soliton solution for higher-order nonlinear Schrodinger equation with variable coefficients, Opt. Commun.242,2004,285-293.
    [154]Weiner A M. Optical solitons:Theory and experiment, Cambridge Univ. Press, Cambridge,1992.
    [155]Kivshar Y S. IEEE J. Quantum Electron.29,1993,250-264.
    [156]李善甫,文双春.基于光子晶体光纤中脉冲俘获的超高速光开关,光子学报,36,2007,270-274.
    [157]梁炎斌.光束在强非局域介质铅玻璃中传输的研究[学位论文],华南师范大学,2009.
    [158]Vicencio R A, Molina M I, Kivshar Y S. Polarization instability, steering, and switching of discrete vector solitons, Phys.Rev. E 71,2005,056613.
    [159]Yang J K. Multisoliton perturbation theory for the Manakov equations and its applications to nonlinear optics, Phys. Rev. E 59,1999,2393-2405.
    [160]Radhakrishnan R, Lakshmanan M, Hietarinta J. Inelastic collision and switching of coupled bright solitons in optical fibers, Phys. Rev. E 56,1997,2213-2216.
    [161]Mak W C, Malomed B A, Chu P L. Solitons in coupled waveguides with quadratic nonlinearity, Phys. Rev. E 55,1997,6134-6140.
    [162]Alcala R G, Dengra A. Vector soliton switching by using the cascade connection of saturable absorbers, Opt. Lett.31,2006,3137-3139.
    [163]张霞萍,刘友文.依据强非局域介质中光孤子相互作用实现全光互联,应用光学,30,2009,210-214.
    [164]张书敏,吕福云,董法杰等.色散缓变光纤中飞秒高阶孤子脉冲的增强压缩,光子学报,33,2004,1360-1363.
    [165]崔虎,徐文成,陈昭喜等.光纤环镜中无基座脉冲产生的特性分析,激光与光电子学进展,42,2005,18-22.
    [166]Senthilnathan K, Li Q, Nakkeeran K et al. Robust pedestal-free pulse compression in cubic-quintic nonlinear media, Phys. Rev. A 78,2008,033835.
    [167]曹文华,刘颂豪.掺铒光纤环镜中超短光孤子的放大与压缩Ⅰ.基本原理,光学学报,24,2004,1067-1072.
    [168]雷大军,傅喜泉,姚敏等.掺铒非线性光纤环镜中增益带宽对超短光孤子放大的影响,光通信技术,31,2007,43-46.
    [169]周晓萍,孙琳.高阶效应对ED-NALM中超短光孤子放大的影响,通信技术,42,2009,189-190.
    [170]Vicencio R A, Molina M I, Kivshar Y S. Opt. Lett.29,2004,2905-2907.
    [171]Ponomarenko S A, Agrawal G P. Do solitonlike self-similar waves exist in nonlinear optical media? Phys. Rev. Lett.97,2006,013901.
    [172]Zakharov V E, Shabat A B. Interaction between solitons in a stable medium, Zh. Eksp. Teor. Fiz.64,1973,1627-1632.
    [173]Swartzlander G A. Dark-soliton prototype devices:Analysis by using direct-scattering theory, Opt. Lett.17,1992,493-495.
    [174]Davies B L, Yang X P. Waveguides and Y junctions formed in bulk media by using dark spatial solitons, Opt. Lett.17,1992,496-498.
    [175]Hirota R. Exact solution of the KdV equation for multiple collisions of solitons, Phys. Rev. Lett.27,1971,1192-1194.
    [176]Hirota R. Exact envelope-soliton of a nonlinear wave equation, J. Math. Phys.14, 1973,805-814.
    [177]Nimmo J J, Freeman N C. The use of Backlund transformations in obtaining N-soliton solutions in Wronskian form, J. Phys. A 17,1984,1415-1424.
    [178]Hirota R. Direct method of finding exact solutions of nonlinear evolution equations, Lecture Notes in Math.515,1976,40-68.
    [179]Hasegawa A, Kodama Y. Solitons in optical communications, Oxford Univ. Press, Oxford,1995.
    [180]Vyas V M, Patel P, Panigrahi P K et al. Chirped chiral solitons in the nonlinear Schrodinger equation with self-steepening and self-frequency shift, Phys. Rev. A 78, 2008,021803.
    [181]Zhang H, Tang D Y, Zhao L M et al. Observation of polarization domain wall solitons in weakly birefringent cavity fiber lasers, Phys. Rev. B 80,2009,052302.
    [182]Trillo S, Wabnitz S, Wright E M et al. Optical solitary waves induced by cross-phase modulation, Opt. Lett.13,1988,871-873.
    [183]Hook A, Serkin V N. Soliton-supported femtosecond pulses at normal dispersion in optical fibers, IEEE J. Quantum Electron.30,1994,148-154.
    [184]Nijhof J H, Doran N J, Forysiak W et al. Stable soliton-like propagation in dis-persion managed systems with net anomalous, zero and normal dispersion, Electron. Lett.33,1997,1726-1727.
    [185]Radhakrishnan R, Lakshmanan M. Exact soliton solutions to coupled nonlinear Schrodinger equations with higher-order effects, Phys. Rev. E 54,1996,2949-2955.
    [186]Nakkeeran K. Exact dark soliton solutions for a family of N coupled nonlinear Schrodinger equations in optical fiber media, Phys. Rev. E 64,2001,046611.
    [187]Wang F J, Tang Y. Small amplitude solitons in the higher-order nonlinear Schrodinger equation in an optical fiber, Chin. Phys. Lett.20,2003,1770-1772.
    [188]Tian B, Gao Y T, Zhu H W. Variable-coefficient higher-order nonlinear Schrodinger model in optical fibers:Variable-coefficient bilinear form, Backlund transformation, brightons and symbolic computation, Phys. Lett. A 366,2007,223-229.
    [189]Wai P K, Menyuk C R, Chen H H. Stability of solitons in randomly varying birefringent fibers, Opt. Lett.16,1991,1231-1233.
    [190]SotoCrespo J M, Akhmediev N, Ankiewicz A. Motion and stability properties of solitons in discrete dissipative structures, Phys. Lett. A 314,2003,126-130.
    [191]Shi X J, Li L, Hao R Y et al. Stability analysis and interaction of chirped fem-tosecond soliton-like laser pulses, Opt. Commun.241,2004,185-194.
    [192]Minzoni A A, Smyth N F, Worthy A L. A variational approach to the stability of an embedded NLS soliton at the edge of the continuum, Physica D 206,2005, 166-179.
    [193]Ahmed K A, Chan K C, Liu H F. Femtosecond pulse generation from semicon-ductor lasers using the soliton-effect compression technique, IEEE J. Select. Topics Quantum Electron.1,1995,592-600.
    [194]曹文华,刘颂豪.孤子效应脉冲压缩中的三阶色散抑制,中国激光,26,1999,70-74.
    [195]曹文华,刘颂豪.一种基于交叉相位调制的增强型孤子效应脉冲压缩方法,中国科学E辑,30,2000,230-239.
    [196]罗爱平,徐文成,陈伟成等.基于交叉相位调制的孤子脉冲压缩效应研究,中国激光,28,2001,412-425.
    [197]张书敏,徐文成,罗爱平等.色散缓变光纤中飞秒光脉冲的增强压缩,中国激光,28,2001,599-602.
    [198]张书敏,罗爱平,徐文成等.基于交叉相位调制的高阶孤子压缩效应的研究,光电子激光,14,2003,877-880.
    [199]赵春梅.常规光纤及色散渐减光纤中皮秒脉冲的孤子效应压缩[学位论文],内蒙古大学,2004.
    [200]余华清,郭开惠,姜向东.啁啾对存在离散效应时孤子脉冲压缩的影响,激光杂志,25,2004,41-42.
    [201]董琳琳,杨性愉.飞秒光脉冲基于交叉相位调制的压缩脉冲对的产生,光子学报,38,2009,566-569.
    [202]Mollenauer L F, Stolon R H, Gordon J P et al. Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers, Opt. Lett.8,1983,289-291.
    [203]Desem C, Chu P L. Mutual interaction between solitons of unequal amplitudes in optical fiber, Electorn. Lett.23,1987,260-262.
    [204]Afanasjev V V, Vysloukh V A, Serkin V N. Decay and interaction of femtosecond optical solitons induced by the Raman self-scattering effect, Opt. Lett.15,1990, 489-491.
    [205]Chu P L, Desem C. Gaussian pulse propagation in nonlinear optical fibre, Electorn. Lett.19,1983,956-957.
    [206]Anderson D, Lisak M. Bandwidth limits due to mutual pulse interaction in optical soliton communication systems, Opt. Lett.11,1986,174-176.
    [207]Kanna T, Lakshmanan M, Dinda P T et al. Soliton collisions with shape change by intensity redistribution in mixed coupled nonlinear Schrodinger equations, Phys. Rev. E 73,2006,026604.
    [208]Kanna T, Vijayajayanthi M, Lakshmanan M. Periodic energy switching of bright solitons in mixed coupled nonlinear Schrodinger equations with linear self-coupling and cross-coupling terms, Phys. Rev. A 76,2007,013808.
    [209]屈柯楠,张伟刚,刘卓琳等.超短光脉冲压缩系统和传输系统的色散补偿,中国激光,37,2010,449-453.
    [210]马文文,李曙光,尹国冰等.反常色散锥形微结构光纤中高效率脉冲压缩研究,物理学报59,2010,4720-4725.
    [211]陆新颖,唐棣芳.基于光子晶体光纤的光脉冲压缩研究,电子技术,47,2010,65-67.
    [212]曹冬梅,曾祥梅.三阶色散和自频移效应对孤子压缩的影响,常熟理工学院学报,21,2007,38-41.
    [213]张婧,潘炜,闫连山等.基于光纤自相位调制多波长全光再生的色散管理优化,物理学报,59,2010,7002-7007.
    [214]侯建平,盖双龙,李鹏等.一种微纳光纤损耗测试方法的实验研究,半导体光电,31,2010,747-750.
    [215]安伟,明海,许立新等.1053nm掺Yb光纤放大器脉冲放大实验研究,量子电子学报,19,2002,254-257.
    [216]熊英,曹文华等.脉冲内喇曼散射对光脉冲放大的影响及其抑制,半导体光电,30,2009,112-120.
    [217]Liu W J, Tian B, Jiang Y. Soliton amplification in dispersion-decreasing fibers with a new dispersion profile, submitted to Annals of Physics, Manuscript Number: AOP-68186.
    [218]Tian B, Gao Y T, Zhu H W. Variable-coefficient higher-order nonlinear Schrodinger model in optical fibers:Variable-coefficient bilinear form, Backlund transformation, brightons and symbolic computation, Phys. Lett. A 366,2007,223-229.
    [219]殷德京.三阶色散效应下的二阶光孤子裂变分析与控制,光电子激光,12,2001,1305-1309.
    [220]徐铭,杨祥林,蔡炬等.色散控制光孤子系统性能分析,光学学报,23,2003,1-36.
    [221]雷永强,杨性愉.使用滑频滤波器实现对孤子位相的控制,激光与红外,33,2003,360-362.
    [222]徐铭,蒲涛,杨淑雯.三阶色散效应对色散控制孤子传输的影响,电子科技大学学报,33,2003,228-230.
    [223]宗丰德,戴朝卿,杨琴等.光纤中变系数非线性Schrodinger方程的孤子解及其应用,物理学报,55,2006,3805-3812.
    [224]郝瑞宇,琚爱堂.具有高阶非线性的高色散光学介质中的光孤子控制,长治学院学报,25,2008,1-3.
    [225]吴小玲,张利剑,晋卓群等.一种新型光格子中孤子的控制,量子光学学报,15,2009,190-195.
    [226]连建,诸波.光孤子传输控制方案的探讨,光通信技术,34,2010,50-52.
    [227]林洪榕,杨爱霞,钱胜等.应用相敏光放大器抑制光孤子互作用的研究,中国激光,32,2005,411-417.
    [228]诸波,杨祥林.超短DM光孤子系统中自频移影响及其抑制方法,南京邮电大学学报(自然科学版),29,2009,26-30.
    [229]钟鸣宇,朱宗玖.基于互相位调制的孤子互作用控制,激光与红外,40,2010.520-523.
    [230]阮航宇,可积模型中孤子相互作用的研究,物理学报,50,2001,369-376.
    [231]苏捷峰.光纤中孤子相互作用的变分研究[学位论文],湖北大学,2007.
    [232]王志斌,李志全,刘洋.高阶孤子在光纤中传输的数值研究,光子学报,36,2007,1641-1644.
    [233]周青春,曾小祥.非线性光纤中时间光孤子对相互作用等效粒子理论,江苏科技大学学报(自然科学版),24,2010,99-101.
    [234]李淑青,王爱国,冯中营等.相邻亮、暗孤子相互作用的比较,山西大同大学学报(自然科学版),26,2010,39-41.
    [235]Liu W J, Tian B. Symbolic computation on soliton solutions for variable-coefficient nonlinear Schrodinger equation in nonlinear optics, submitted to J. Mod. Opt. Manuscript Number:TMOP-2011-0024.
    [236]Tian B, Gao Y T. Symbolic-computation study of the perturbed nonlinear Schrodinger model in inhomogeneous optical fibers, Phys. Lett. A,342,2005,228-236.
    [237]Turitsyn S K, Smyth N F, Turitsyna E G. Solitary waves in nonlinear dispersive systems with zero average dispersion, Phys. Rev. E 58,1998, R44-R47.
    [238]Inoue T, Sugahara H, Maruta A et al. Interactions between dispersion managed solitons in optical-time-division-multiplexed system, IEEE Photon. Technol. Lett. 12,2000,299-301.
    [239]Lakoba T I, Agrawal G P. Optimization of the average-dispersion range for long-haul dispersion-managed soliton systems, IEEE J. Lightwave Technol.18,2000,1504-1512.
    [240]Joshi N. Painleve property of general variable-coefficient versions of the Korteweg-de Vries and nonlinear Schrodinger equations, Phys. Lett. A 125,1987,456-460.
    [241]Tian B, Shan W R, Zhang C Y et al. Transformations for a generalized variable-coefficient nonlinear Schrodinger model from plasma physics, arterial mechanics and optical fibers with symbolic computation, Eur. Phys. J. B 47,2005,329-332.
    [242]Xu T, Zhang C Y, Wei G M et al. Symbolic computation construction of transfor-mations for a more generalized nonlinear Schrodinger equation with applications in inhomogeneous plasmas, optical fibers, viscous fluids and Bose-Einstein condensates, Eur. Phys. J. B 55,2007,323-332.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700