用户名: 密码: 验证码:
光纤激光水听器技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤激光水听器是随着近年来掺杂光纤制作技术、光敏光刻技术和光纤激光器技术的发展而出现的一种新型高精度光纤水声传感手段。光纤激光水听器采用线型腔光纤激光器作为水声敏感基元,采用非平衡干涉仪对水声信号进行解调,具有灵敏度高、体积小、复用结构简单等优点,特别适合用于构造大规模超细光纤水听器阵列。本文结合实验室多年来对光纤水听器系统理论、实验及工程研究的经验,对光纤激光水听器技术进行深入分析,寻求光纤激光水听器工程应用的正确方法。
     论文的研究内容包括线型腔光纤激光器技术、光纤激光水听器信号解调技术、封装技术和复用技术。对线型腔光纤激光器的模式控制和噪声水平进行了深入分析,实验制作了线型腔光纤激光器并对其各项指标进行了详细测试;建立了光纤激光水听器的声压模型,分析了最小可测声压强度,建立了多纵模光纤激光水听器的信号处理模型,分析了采用相位载波方案(PGC,Phase Generated Carrier)对多纵模光纤激光水听器进行解调时的信号衰落现象并得到实验验证,采用干涉仪臂差匹配方案实现了多纵模光纤激光水听器的稳定解调;设计了一种金属和弹性材料混合封装结构,在增敏和频率响应平坦化两个方面取得良好效果;对波分复用阵列中传感基元的特性变化进行了对比分析和测试,对串联形式的阵列复用容量进行了理论和实验综合分析,测量了光纤激光水听器波分复用阵列的信道串扰。论文的主要研究成果和创新性如下:
     1.论文对掺铒和铒镱共掺线形腔光纤激光器分别建立了强度噪声模型,设计并研制成上述结构的光纤激光器,实验与理论模型结果一致。
     2.基于PGC原理,采用干涉仪臂差匹配方案,成功对多纵模光纤激光水听器实现了稳定解调。
     3.设计并研制成一种金属和弹性材料混合封装光纤激光水听器,其最大声压灵敏度接近目前报导的最高值,波动指标优于之前报导的各种结构。
     4.建立了波分复用阵列中光纤激光水听器基元的强度噪声模型,提出利用驰豫振荡频率随泵浦功率变化的规律判定阵列中各基元的实际泵浦功率的方法,并对强度噪声随基元数目而增加进行了初步实验研究。
Fiber laser hydrophone takes the advantages of recent revolution in doped fiber fabrication, fiber grating and fiber laser techniques to perform as a novel acoustic sensing scheme with high sensitivity. It utilizes short linear cavity laser to act as in-fiber acoustic sensing device and has a number of perceived benefits, such as high sensitivity, easily multiplexing capability, miniature size, and so on, which provides a promising way for ultra thin hydrophone array. In this thesis, we investigate the engineering-oriented fiber laser hydrophone techniques according to what we have learned in the research on interferometric fiber hydrophones during the past decades.
     Our work on fiber laser hydrophone relates to short linear cavity fiber laser, acoustic signal processing, mounting or coating structure design and wavelength division multiplexing (WDM) technique. The effective lasing mode control and laser noise are investigated and we fabricate several linear cavity fiber lasers and their performances are carefully measured. The acoustic response of fiber laser hydrophone is modeled and pressure resolution is analyzed. Phase Generated Carrier (PGC) algorithm is applied to demodulation of multimode fiber laser hydrophone and the abnormal demodulation results are analyzed in detail. A novel mounting structure is designed, which generates enhanced acoustic pressure sensitivity and flat frequency response. The performances of sensing units in WDM array integrated in a single fiber are investigated. The multiplexing capacity is evaluated and crosstalk is measured.
     The main results of this thesis are as follows:
     1. The intensity noise models of Er~(3+)-doped and Yb~(3+)/Er~(3+) co-doped fiber grating lasers are investigated. Relaxation oscillation of laser with Er~(3+)-doped fiber exhibits lower frequency and larger amplitude than that of Yb~(3+)/Er~(3+) co-doped fiber grating laser, which is confirmed by both theory and experiment.
     2. The multimode fiber laser hydrophone is modeled and multimode interference is processed using PGC algorithm. By particular design of the optical path difference (OPD) of interrogation interferometer, the multimode fiber laser hydrophone is demodulated correctly and stably.
     3. A promising fiber laser hydrophone with a novel mounting structure is presented. The acoustic pressure sensitivity is enhanced up to-18dB re Hz/uPa, approaching to the highest reported value; the measured frequency response fluctuation is the least to the best of our knowledge.
     4. A model to describe the intensity noise of the laser hydrophone in WDM array is established, and the results show that the external injected laser can enhance the intensity noise level, but the relaxation oscillation is not affected, providing a effective method to estimate the actual pump power for each sensing unit in the WDM array.
引文
1 D.J. Hill, P.J. Nash, D.A. Jack, et al.. A fiber laser hydrophone array [J]. In Proc. of SPIE, 3860. 2005.
    2 Geoffrey A.Cranch, Scott Foster, Clay K.Kirkendall. Fiber laser strain sensor: enableing a new generation of miniaturized high performance sensors [J]. Proc. of SPIE, 2009, Vol.7503, paper 750352-1, UK.
    3 Single Frequency Fiber Lasers for Defense, Security and Military Applications, NPphotonics, white paper.
    4 Scott Foster.Listening with light[q].Australian Defense Science.2005, 13( l):10~11.
    5 K. H. Wanse. Fundamental Phase Noise Limit in Optical Fibres Due To Temperature Flu Ctu Ation S [J]. Elec. Lett., 1992, 28 (1):53~54.
    6佟盛,国外水声系统技术发展动向[J],声学与电子工程,2006,49:101~104.
    7 D.J.Hill, P.J.Nash, S.D.Hawker, et al, Progress toward an ultra thin optical hydrophone array [J], In Proc. of SPIE, 1998, Vol.3483:301~304.
    8 J.H.Bucaro, H.D.Dardy and E.F.Carom. Fiber Optic hydrophone [J], J.Acoust.Soc.Am. 1977,62(5):1136~1140.
    9 P.Nash. Review of inteferometric optical fiber hydrophone technology [J], IEEE Proc. Rador Sonar Navig., 1996, 143(3):204~209.
    10余华兵,孙长瑜,李启虎.第四讲探潜先锋-拖曳线列阵声纳,物理,2006(5):420~423.
    11单秉彝,潜用拖曳线列阵声呐的发展及战术使用,声学与电子工程,1991(1):24~29.
    12 Underwater Systems Group Surface Impact Detection And Scoring[C], 1996, Document 406-96.
    13 A.D.Kersey. Demonstration of a hybrid time/wavelength division multiplexed interferometric fiber sensor array [J]. Electronics letters, 1991, 27(7): 554~555.
    14 Geoffrey A.Cranch, Philip J.Nash. Large-scale multiplexing of interferometer fiber-optic sensors using TDM and DWDM [J]. Journal of Lightwave Technology, 2001,19(5):687~699.
    15 C.K.Kirkendall, A.R.Davis, A.Dandridge, et al, 64-channel all-optical deployable array [J], NRL Review, 1997, 63~65.
    16 G.B.Havsagard, C.Wang, P.Skagen, et al, Four channel fiber optical hydrophone system [J], In Proc. of SPIE, 2000, Vol.4185:122~125.
    17 Hodgson, C.W., M.J.F. Digonnet, and H.J. Shaw. Large-scale interferometric fiber sensor arrays with multiple optical amplifiers [J]. Optical Letters, 1997, 22(21): 1651~1653.
    18 Su.F. Developing large-scale multiplexed fiber optic arrays for geophysical applications, an interview with Mark Houston (Litton) and Philip Nash (DERA) [J], OE Report, 2000, 5.
    19 Crickmore, R.I., P.J. Nash, and J.P.f. Wooler. Fiber Optical Security System for Land and Sea Based Applications, in Unmaned/unattended Sensors and Sensor networks [J]. In Proc. of SPIE, 2004, 79~86.
    20 Hill, D. and P. Nash, Fibre-Optic Hydrophone Array for Acoustic Surveillance in the Littoral, in Photonics for Port and Harber and Security [J]. In Proc. of SPIE, 2005, 1~10.
    21 Nash, P. and A. Strudley, High efficiency TDM/WDM Architectures for Seismic Reservior Monitoring[J].In 20th International Conference on Optical Fiber Sensors, 2009, T1~T4.
    22 Nobuaki Takahashia, Kanta Tetsumuraa, Kazuo Imamurab,et al, Fiber-Bragg-grating WDM underwater acoustic sensor with directivity [J],SPIE Vol. 3541:18~26.
    23 Nobuaki Talahashi, Akihiro Hirose and Sumio Takahas, Underwater Acoustic Sensor with Fiber Bragg Grating [J], OPTICAL REVIEW, 1997, 4(6), 691~694.
    24罗洪,拖曳线列阵用光纤水听器研究[D],国防科技术大学博士论文,2007.
    25郑承栋,郑黎,何俊华等,光纤Bragg光栅水听器特性及实验研究[J],光子学报,2006,35(12):1934~1938.
    26王燕花,任文华,刘艳等,基于光纤Bragg光栅的光纤水听器[J],光通信技术,2007,2:31~32.
    27王俊杰,姜德生,谢官模,梁宇飞,黄俊彬,一种平面型光纤光栅水听器探头的研究[J],声学学报,2007,32(4):343~348,.
    28安勇龙,叶敦范.光纤光栅传感器的工作原理和应用实例[J],仪器仪表与分析监测,2005, 1:5~11.
    29王俊杰,姜德生,胡勇勤,梁宇飞,罗裴,黄俊斌.基于可调谐滤波器的带中心波长自动跟踪光纤光栅动态波长解调技术的研究[J],2005,23(6):881~883.
    30胡勇勤,王俊杰,罗裴.光纤光栅水听器波长解调技术的研究[J],传感器世界,2005,8:13~16.
    31 C. Kirkendall, T. Barock, A. Tveten, and A. Dandridge. Fiber Optic Towed Array [J], NRL REVIEW, 2007:121-123.
    32 Navy orders two production-version TB-33 fiber optic thin-line towed-array submarine sonar systems [EB/OL], http://www.omeda.com/mae/news.
    33 J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, et al.. Short single frequency erbium-doped fibre laser[J], Electronics Letters,1992,28(15):1385~1387.
    34 G.A.Ball and W.H.Glenn. Design of single-mode linear-cavity Erbium fiber laser utilizing Bragg reflectors [J]. Journal of Light wave Technology, 1992, 10(10): 1338~1343.
    35 G. A. Ball, W. W. Morey, and P. K. Cheo, Single- and Multipoint Fiber-Laser Sensors[J], IEEE Photonics Technology Letters,1993,5(2):267~270.
    36 G.A.Ball, W.W.Morey and W.H.Glenn. Standing-wave monomode Erbium fiber laser [J], IEEE Photonic Technology Letters,1991,3(7):613~615.
    37 G.A.Ball, W.W.Morey, W.H.Glenn, et al..Modeling of short, single-frequency, and fiber lasers in high-gain fiber [J], IEEE Photonic Technology Letters, 1993, 5(6):649~651.
    38 M.Sejka, P.Varming, J.Hubner and M.Kristensen. Distributed feedback Er3+-doped fibre laser [J]. Electron. Lett. 1995, 31(17):1445.
    39 Scott Foster, Alexei Tikhomirov, Mark Milines, et.al... A Fibre Laser Hydrophone [J], 17th international conference on optical fibre sensors, Proceeding of SPIE, Vol.5855, 2005, Bellingham, 627-630.
    40 Scott Foster, Alexei Tikhomirov, and Mark Milnes,Fundamental Thermal Noise in Distributed Feedback Fiber Lasers[J],IEEE Journal Of Quantum Electronics,2007,43(5):378~384.
    41 K. P. Koo and A. D. Kersey, Bragg Grating-Based Laser Sensors Systems with Interferometric Interrogation and Wavelength Division Multiplexing [J], Journal of Lightwave Technology, 1995, 13(7):1243~1249.
    42 K.P. Koo and A.D. Kersey, Fibre laser sensor with ultrahigh strain resolution using interferometric interrogation, Electronics Letters,1995,31(14):1180-1182.
    43 K. P. Koo and A. D. Kersey, Noise and cross talk of a 4-element serial fiber laser sensor array [J], OFC’96 Technical Digest.
    44 Paul Wysocki and Vincent Mazurczyk, Polarization Dependent Gain in Erbium-Doped Fiber Amplifiers: Computer Model and Approximate Formulas [J], Journal of Lightwave Technology, 1996,14(4):572~584.
    45 Erlend R?nnekleiv, Michael N. Zervas, and Jon Thomas Kringlebotn,Modeling of Polarization-Mode Competition in Fiber DFB Lasers [J] ,IEEE Journal of Quantum Electronics, 1998,34(9):1559~1569.
    46 Erlend R?nnekleiv, Morten Ibsen, and Gregory J. Cowle, Polarization Characteristics of Fiber DFB LasersRelated to Sensing Applications [J], IEEE Journal of Quantum Electronics, 2000,36(6):656~664.
    47 Juan Herna′ndez-Cordero, Valery A. Kozlov, et al.. Polarization effects in a high-birefringence elliptical fiber laser with a Bragg grating in a low-birefringence fiber [J], Applied Optics, 2000, 39(6):972~977.
    48 Yunqi Liu, Kin Seng Chiang, and Pak Lim Chu,Fiber-Bragg-grating force sensor based on a wavelength-switching actively mode-locked erbium-doped fiber laser [J],APPLIED OPTICS,2005,44(23):4822~4829
    49 Karim Haroud, Klaus Bohnert, Andreas Frank, et al.. Dispersion effects in a highly birefringent fiber laser sensor with fiber Bragg grating reflectors [J],OPTICS LETTERS,2002,27(11):897~899.
    50 Oliver Hadeler, Erland R?nnekleiv, Morten Ibsen, et al.. Polarimetric distributed feedback fiber laser sensor for simultaneous strain and temperature measurements [J] ,APPLIED OPTICS,1999,38(10):1953~1958.
    51 Geoffrey A. Cranch, Mark A. Englund, et al.. Intensity Noise Characteristics of Erbium-Doped Distributed-Feedback Fiber Lasers [J]. IEEE Journal Of Quantum Electronics, 2003, 39(12):1579~1586.
    52 D.Pureur, M.Douay, P.Bernage, et al.. Single-polarization fiber lasers using Grabb gratings in Hi-Bi fibers [J], Journal of Lightwave Technology, 1995, 13(3):350~355.
    53 Serge M. Melle, A. Tino Alavie, Shawn Karr,et al.. A Bragg Grating-Tuned Fiber Laser Strain Sensor System[J], IEEE Photonics Technology Letters, 1993,5(2):263~266.
    54 Peng-Chun Peng, Hong-Yih Tseng,Sien Chi, Accurate temperature sensor system based on linear-cavity fiber laser array[J]. IEEE,2002:183~186.
    55 A. Frank, K. Bohnert, K. Haroud, et al.. Distributed Feedback Fiber Laser Sensor for Hydrostatic Pressure[J], IEEE Photonics Technology Letters, 2003, 15(12): 1758~1760.
    56 Poul Varming, Jorg Hubner,Martin Kristensen, DFB fiber laser as source for optical communication systems [J], OFC’97 Technical Digest, 169
    57 L.V.Hansen, F. Kullander. Modelling of hydrophone based on a DFB fiber laser [J]. XXIICTAM, 15-21 August 2004, Warsaw, Poland.
    58 O.Hadeler, D.J.richards and J.P.Dakin, DFB fibre laser sensor for simultaneous stain and temperature measurements in concrete structure [J], SPIE, Vol. 3670, 332~341.
    59 J.T.Kringglebotn, Fibre DFB lasers for sensor applicatios [J], 2000, IEEE,151
    60 A. Frank, K. Haroud, E.Rochat, et al.. High resolution fiber laser sensor for hydrostatic pressure, 2002, IEEE, 359~362.
    61 Poul Varming, Jorg Hubner, Marin Kristensen, Five wavelength DFB fiber laser source[J],OFC’97 Technology digest,31~32.
    62 D.J.Hill, B.Hodder, J.D. Freitas, et al... DFB fibre-laser development [J]. 17th international conference on optical fibre sensors, Proceeding of SPIE, Vol.5855, 2005, Bellingham, 904~907.
    63 Alexei Tikhomirov and Scott Foster.DFB FL Sensor Cross-Coupling Reduction [J], J. Lightw. Technol., 2007, 25(2): 533~538.
    64 Steven Goodman, Alexei Tikhomirov, Scott Foster. Pressure Compensated Distributed Feedback Fibre Laser Hydrophone [J]. In Proc. SPIE, 2008, Vol.7004, paper 700426.
    65 Geoffrey A. Cranch, Gordon M. H. Flockhart, and Clay K. Kirkendall. Distributed feedback fiber laser strain sensors [J]. IEEE Sensors J., 2008, 8, (7): 1161~1172.
    66 Steven Goodman, Scott Foster, John Van Velzen, Heyshan Mendis. Field Demonstration of a DFB Fibre Laser Hydrophone Seabed Array in Jervis Bay, Australia [J], In Proc. of SPIE, 2009, Vol.7503, paper 75034L-1.
    67 Wentao Zhang, Faxiang Zhang, Fang Li, Yuliang Liu, Pressure-gradient fiber laser hydrophone [J], In Proc. of SPIE, 2009, Vol.7503, paper 75033.
    68 Zhihao Chen, Junhong Ng, Long distance (2.1km) DFB fibre laser hydrophone system [J], In Proc. SPIE, 2009, Vol.7503, paper 75034.
    69 S. Tanaka, A. Wada, N. Takahashi, Fiber Bragg grating hydrophone array using multi-wavelength laser simultaneous multipoint underwater acoustic detection[J], In Proc. SPIE, 2009,Vol.7503, paper 75031.
    70 G. M. H. Flockhart, M. McGuire, S. G. Pierce, G. Thursby, G. Stewart, G. Hayward and B. Culshaw, Direct monitoring of underwater ultrasonic transducers in the near field using fibre Bragg grating sensors[J], In Proc. SPIE, 2009,Vol.7503, paper 750331.
    71 Geoffrey A.Cranch1, Scott Foster, Clay K.Kirkendall. Fiber Laser Strain Sensors: Enabling a new generation of miniaturized high performance sensors [J], In Proc. SPIE, 2009, Vol.7503, paper 750352.
    72 M. Pang and W. Jin, Phase Sensitivity of Hollow-core Photonic Bandgap Fiber to Acoustic Pressure [J], In Proc. SPIE, 2009, Vol.7503, paper 75035.
    73 Wei Jin, Novel sensors based on hollow-core photonic bandgap fibers [J]. In Proc. SPIE, 2009, Vol.7503, paper 750304.
    74 Philip Jackson, Scott Foster?, and Steven Goodman, A Fibre Laser Acoustic Vector Sensor [J], In Proc. SPIE, 2009, Vol.7503, paper 750329.
    75 Yang Zhang, and Bai-Ou Guan, Dual-polarization fiber grating laser displacement sensor [[J], In Proc. SPIE, 2009, Vol.7503, paper 75033.
    76 SONG Zhangqi, Yang Mingye, Zhang Xueliang, Cao Chunyan, Xiong Shuidong, Research on a novel fiber-optic acoustic/rotation sensor array based on the Sagnac interferometer[J], In Proc. SPIE, 2009, Vol.7503, paper 75034.
    77 Ole Henrik Waagaard, Erlend R?nnekleiv, Stig Forbord and Dag Thingb?, Suppression of Cable Induced Noise in an Interferometric Sensor System[J], In Proc. SPIE, 2009, Vol.7503, paper 75034Q-1.
    78 Bai-Ou Guan, Yang Zhang, Hong-Jun Wang, Da Chen, and Hwa-Yaw Tam, High temperature resistant fiber Bragg grating lasers for sensing applications[J], In Proc. SPIE, 2009, Vol.7503, paper 75037h-1.
    79 P. Nash, A. Strudley, High Efficiency TDM/WDM Architectures for Seismic Reservoir Monitoring [J], In Proc. SPIE, 2009, Vol.7503, paper 75037T-1.
    80 Jon Thomas Kringlebotn, Hilde Nakstad, and Morten Eriksrud, Fibre optic ocean bottom seismic cable system–from innovation to commercial success [J], In Proc. SPIE, 2009, Vol.7503, paper 75037U-1.
    81 Yang Zhang, Bai-Ou Guan, and Hwa-Yaw Tam, Ultra-short distributed Bragg reflector fiber lasers for sensing applications [J], In Proc. SPIE, 2009, Vol.7503, paper 75032K-1.
    82 S. Molin, I. Abadaa, D. Dolfi, J.-P. Huignard, M. Doisy, Dynamic strain sensor based on two waves mixing in optical fibers[J], In Proc. SPIE, 2009, Vol.7503, paper 75032P-1.
    83 Li-Yang Shao, Sien-Ting Lau, Xinyong Dong, A. Ping Zhang, H. L. W. Chan, H.Y. Tam, and Sailing He. High-frequency ultrasonic hydrophone based on a cladding-etched DBR fiber laser [J], IEEE Photon. Technol. Lett. , 2008, 20(8) :
    548~550.
    84丁瑶芳,姜德生,周次明,黄娟.DBR光纤激光应变传感研究[J],传感技术学报,2006, 19(6):2405~2407.
    85姜典杰,刘海涛,陈向飞等.DFB光纤激光器[J],光电子·激光,2004,15卷增刊,126~129.
    86刘海涛,陈建平,陈向飞等.低掺杂铒纤上分布反馈布拉格光纤激光器的制作[J],中国激光,2006,33(7):873~876.
    87朱清,陈小宝,陈建平等.相位掩模板移动法制作DFB光纤激光器[J],光纤与电缆及其应用技术,2006,1(1):17~20.
    88黄文财,明海,陈曦曜等.单频分布布拉格反射光纤激光器及温度传感实验研究[J],中国激光,2003,30(8):695~697.
    89张治国,王旭,于志辉等.基于线型腔掺饵光纤激光器的光纤光栅传感实验研究[J],2006,32(6):935~938.
    90徐团伟,李芳,刘育梁等.分布反馈光纤激光器模式特性分析[J],中国激光,2007,34(10):1538~1562.
    91 Wentao Zhang, Yuliang Liu, Fang Li, and Hao Xiao.Fiber laser hydrophone based on double diaphragms: Theory and experiment [J], J. Lightw. Technol., 2008, 26(10): 1349~1352.
    92 Hao Xiao, Fang Li, and Yuliang Liu. Crosstalk analysis of a fiber laser sensor array system based on digital Phase-Generated Carrier scheme [J], J. Lightw. Technol., 2008, 26(10):1249~1255.
    93梁迅,熊水东,胡永明,姚琼,马丽娜.激光器强度噪声对光纤水听器PGC解调影响分析[J].中国激光, 2008, 35(5):716~721
    94俞本立,甄胜来,低噪声光纤激光器的实验研究[J],光学学报, 2006,26(2):217~220.
    95倪明,熊水东,孟洲等.数字化相位载波解调方案在光纤水听器系统中的实现[J],应用声学,2004,23, (6):5~11.
    96梁迅,姚琼,胡永明等.基于非平衡光纤干涉仪的窄线宽激光光源跳模实时测试方法[J].光学学报,2009,29(2):437~442.
    97罗洪,熊水东,胡永明等.基于相位载波调制解调技术的全保偏光纤水听器[J],半导体光电,2006,27(1):12~14.
    98 Ni Ming, Hu Yongming, Meng Zhou, Xiong Shuidong.Dynamic Range of Fiber Optic Hydrophone Using Digitized Phase Generated Carrier[J], Progress toward laser & Photonics, 2005, 42(2):33~37.
    99熊水东,罗洪,胡永明,孟洲.干涉型保偏光纤微振动矢量传感器研究[J].中国激光,2004,31(7),843~847.
    100罗洪,熊水东,胡永明,倪明,三分量全保偏光纤加速度传感器研究[J].中国激光,2005,32(10),1382~1386.
    101胡永明,廖延彪,陈哲,孟洲,倪明.双偏振结构保偏光纤偏振器的研制[J].光学学报,2001 21(6):741~743.
    102胡永明,孟洲,熊水东等.干涉型全保偏光纤水听器阵列的研制[J].声学学报, 2003,28(2),155~158.
    103 A. Dandridge, A. B. Tveten, and T. G. Giallorenzi. Homodyne demodulation scheme for fiber optic sensors using phase generated carrier [J]. IEEE Trans. Microw. Theory Tech., 1982, MTT-30(10): 1635~1641.
    104国防科工委科技与质量司.声学计量[M],原子能出版社,2002,北京.
    105廖延彪.光纤光学[M].清华大学出版社,2000.
    106 C Randy Giles, Desurvire. Modeling Erbium-Doped Fiber Amplifiers [J]. Journal of Light wave Technology, 1991, 9(2): 271-~282.
    107马丽娜,胡正良,胡永明,等, 980 nm抽运时掺铒光纤放大器中的上转换发光效应研究[J],中国激光,2005,32(11):1463~1468.
    108 Inna Nusinsky and Amos A. Hardy, Analysis of the Effect of Upconversion on Signal Amplification in Erbium-Doped Fiber Amplifiers (EDFAs)[J], IEEE Journal Of Quantum Electronics, 2003,39(4):548~554.
    109 Piotr Myslinski, Dung Nguyen, and Jacek Chrostowski, Effects of Concentration on the Performance of Erbium-Doped Fiber Amplifiers[J], Journal Of Lightwave Technology, 1997, 15( 1):112~120.
    110 Eldad Yahel and Amos A. Hardy, Modeling and Optimization of Short Er3+–Yb3+ Codoped Fiber Lasers[J], IEEE Journal Of Quantum Electronics,2003, 39(11):1444~1451.
    111 Kuthan Yelen, Louise M. B. Hickey, and Mikhail N. Zervas, Experimentally Verified Modeling of Erbium–Ytterbium Co-Doped DFB Fiber Lasers [J], IEEE Journal Of Lightwave Technology,2005, 23(3):1380~1392.
    112 C-C Ye, and R P Tatam, Ultrasonic sensing using Yb3+/Er3+-codoped distributed feedback fibre grating lasers[J], Institute Of Physics Publishing,2005,14: 170~176.
    113周炳琨,高以智,陈徟嵘等.激光原理[M].国防工业出版社,北京,2002.
    114刘德明,向清,黄德修.光纤光学[M]。国防工业出版社,北京,1995.
    115 H.K.Kim and S.K.Kim, polarization and mode properties of rare earth doped fiber lasers [J], In Proc. of SPIE, 1992, Vol.1817:104~113.
    116胡永明,保偏光纤偏振器研究[D],清华大学博士论文,1999.
    117李智忠,双折射光纤光栅传感特性的理论和实验研究[D],国防科学技术博士论文,2006.
    118 Kuthan Yelen, Mikhail N. Zervas, and Louise M. B. Hickey, Fiber DFB Lasers With Ultimate Efficiency [J], Journal Of Lightwave Technology, 2005,23,(1), 32~43.
    119 W. Fang, A. Hsu, S. L. Chuang, T. Tanbun-Ek, and A. M. Sergent, Measurement and Modeling of Distributed-Feedback Lasers with Spatial Hole Burning[J], Ieee Journal Of Selected Topics In Quantum Electronics, 1997,3(2),547~554.
    120 Makoto Yamada and Kyohei Sakuda,Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach[J],Applied Optics, 1986, 26(16):3474~3478.
    121 C.Ferreira Fernandes, Transfer Matrix Modelling Of DFB Fiber Laser [J], Miacroelectronic Engineering, 1998, 43(44):553~560.
    122 Wang Jin-yu, Sui Qing-mei, Chang Jun, et. al.. A new DFBfiber laser hydrophone [J], OpticElectronics Letters, 2007, 3(4):0264~0266.
    123 Erlend R?nnekleiv, Morten Ibsen, and Gregory J. Cowle, Polarization Characteristics of Fiber DFB Lasers Related to Sensing Applications [J], IEEE Journal Of Quantum Electronics, 2000, 36(6): 656~664.
    124申铉国,张铁强.光电子学[M],兵器工业出版社,1994.
    125蔡伯荣,谭志飞,孙守瑶,刘永智.集成光学[M],电子科技大学出版社1990.
    126 Scott Foster, Spatial Mode Structure of the Distributed Feedback Fiber Laser [J], IEEE Journal of Quantum Electronics, 2004, 40(7): 884~894.
    127 Wei Fan, Bai Chen, Xuechun Li, Lanrong Chen, Zunqi Lin, Stress-induced single polarization DFB fiber lasers [J], Optics Communications, 2002,20(4):157~161.
    128 Erlend Rφnnekleiv, Frequency and Intensity Noise of Single Frequency Fiber Bragg Grating Lasers[J], Optical Fiber Technology, 2001,7:206~235.
    129 T. ACSENTE, Laser Diode Intensity Noise Induced By Mode Hopping [J], Romanian Reports in Physics, 2007, 59(1): 87~92.
    130 Irshaad Fatadin, David Ives, and Martin Wicks, Numerical Simulation of Intensity and Phase Noise From Extracted Parameters for CW DFB Lasers[J], IEEE Journal Of Quantum Electronics, 2006, 42(9): 934~941.
    131 Geoffrey A. Cranch, Mark A. Englund, and Clay K. Kirkendall, Intensity Noise Characteristics of Erbium-Doped Distributed-Feedback Fiber Lasers [J], IEEE Journal of Quantum Electronics, 2003, 39(12):1579~1586.
    132 S.Taccheo, P.Laporta1, O.Svelto, G. De Geronimo. Theoretical and experimental analysis of intensity noise in a codoped erbium–ytterbiumglass laser [J], Appl. Phys. B, 1998, 66:19~26.
    133 A.dandridge, A.B.Tveten, R.O.Miles, D.A.Jackson, and T.G.Giallorenzi, single mode diode-laser phase noise [J], Applied Physics Letters, 1981, 38(2):77~78.
    134孟洲.基于光频调制PGC解调的光纤水听器阵列技术研究[D].国防科技大学博士学位论文, 2003.
    135胡贵军,郭玉彬,李晓滨,王燕.半导体激光器噪声的测量[J],半导体技术,2001,26(1):53~56.
    136皇埔堪,现代数字信号处理[M].电子工业出版社,2003.
    137熊水东,光纤矢量水听器研究[D],国防科学技术大学博士论文, 2003.
    138 W. K. Marshall, B. Crosignani, A. Yariv. Laser phase noise to intensity noise conversion by lowest-ordergroup-velocity dispersion in optical fiber: exact theory [J], OPTICS LETTERS, 2000, 25(3):165~167.
    139倪明.光纤水听器关键技术研究[D].中国科学院研究生院博士论文, 2003.
    140田志伟,偏振光及应用[M].上海科学技术出版社,1957.
    141羊国光,高等物理光学[M].中国科学技术大学出版社,1991.
    142 Richard G. Priest, Analysis of Fiber Interferometer Utilizing 3 X 3 Fiber Coupler [J], IEEE Journal of Quantum Electronics, 1982, QE18 (10):1601~01603.
    143 James H. Cole, Clay Kirkendall, Anthony Dandridge, Gary Cogdell and T. G. Giallorenzi, Twenty-five Years of Interferometric Fiber Optic Acoustic Sensors at Naval Research Laboratory.
    144 Yang Liu, Liwei Wang, Changdong Tian, Min Zhang, and Yanbiao Liao. Analysis and Optimization of the PGC Method in All Digital Demodulation Systems [J]. J. Lightw. Technol., 2008, 26(18): 3225~3233.
    145 A. Dandridge, A. B. Tveten, and T. G. Giallorenzi. Homodyne demodulation scheme for fiber optic sensors using phase generated carrier [J]. IEEE Trans. Microw. Theory Tech., 1982, MTT-30(10):1635~1641.
    146 Yan Li, Wanjun Sun, Zhongxiang Zhou, YongyuanJiang and Kebin Xu, Homodyne detection of phase-modulated optical signals through photorefractive crystals[J],In Proc. of SPIE, 2866, 79~82.
    147王照霞,曹家年,陈琴仙等.干涉型光纤水听器PGC解调处理研究[J],声学与电子工程,2002,3:1~7.
    148袁大岭,李平,张仁和.干涉型光纤水听器PGC解调的DSP实现[J],传感器技术,2005,24(8):57~59.
    149岳士举,丁昕,曹家年.干涉型光纤水听器PGC解调方案的研究[J],应用科技,2006,33(6):110~114.
    150丁昕,岳士举,曹家年.干涉型光纤水听器PGC解调方案研究[J],弹箭与制导学报,2006,26(1):296~298.
    151柏林厚,廖延彪,张敏等.干涉型光纤水听器PGC解调系统数字化实现的研究[J],激光杂志,2005,26(5):72~73.
    152倪明,胡永明,孟洲等.数字化解调光纤水听器的动态范围[J],激光与光电子学进展,2005,42(2):33~37.
    153 Z.F. Wang, Y.M.Hu, Z.meng, M.Ni. Fiber-optic hydrophone using a cylindrical Helmholtz resonator as a mechanical anti-aliasing filters [J]. Optical Letters, 2008, 33(1):37~39.
    154 Steven Goodman, Alexei Tikhomirov, Scott Foster, Pressure Compensated Distributed Feedback Fibre Laser Hydrophone [J], In Proc. SPIE, 2008, Vol.7004, paper 700426.
    155赵红霞,鲍吉龙,陈莹.光纤光栅聚合物封装及传感特性研究[J],光电子技术与信息, 2005,18(5),39~42.
    156李智忠,朱海,汤志宏,胡永明.光纤光栅边孔封装技术[J],光学学报, 2007,6.
    157彭仕玉,田梵.Bragg光纤光栅压力传感器增敏技术研究[J],湖南理工学院学报,2005,18(4):41~43.
    158曹晔,刘波,刘丽辉,罗建花,赵健,高宏伟,张伟刚,开桂云,董孝义.对温度不敏感的光纤光栅压力传感器[J],传感技术学报, 2005,18(1):178~179.
    159李婷,乔学光,王宏亮,振安,傅海威.光纤光栅传感据聚合物封装增敏技术[J],光通信技术,2005,12:39~41.
    160范典.光纤光栅金属化封装及传感特性试验研究[J],传感技术学报,2006,19(4):1234~1237.
    161文庆珍,苑秉成,黄俊.光纤光栅压力传感器封装增敏技术[J],海军工程大学学报,2005, 17(3):1~4.
    162刘云启,郭转运,刘志国,葛春风,赵东晖,董孝义.聚合物封装的高灵敏度光纤光栅压力传感器[J],中国激光,2000,27(3):211~214.
    163梁宇飞.光纤光栅动态微压传感技术研究[D],武汉理工大学硕士论文,2007.
    164 Wentao Zhang, Lihui Liu, Fang Li, and Yuliang Liu. Fiber Bragg grating pressure sensor with enhanced sensitivity [J], Chinese Optics Letters, 2007, 5(9):507~509.
    165 Gregory H. Ames, and Jason M. Maguire.Erbium Fiber Laser Accelerometer [J], IEEE Sensors Journal, 2007, 7(4):557~561.
    166倪明,胡永明,孟洲等.数字化解调光纤水听器的动态范围[J],激光与光电子学进展,2005,42(2):33~37.
    167罗记成.光纤水听器动态范围及消偏振衰落技术的研究[D],哈尔滨工程大学硕士论文,2000.
    168 Yi Jiang.Wavelength division multiplexing addressed four-element fiber optical laser hydrophone array [J], Applied Optics, 2007., 40(15), 2939~2948
    169 S. Foster, A. Tikhomirov, M. Englund, H. Inglis, G. Edvell, and M. Milnes. A 16 channel fibre laser sensor array [J]. Presented at the 18th Int. Conf. Optical Fiber Sensors, Oct. 2006.
    170 R.M.Measures,T.A.Lavic,R.Maaskant,M.Ohn,S.Karr,S.Hhuang,D.Glennic,C.Wade,A.Guha-Thakurta,G.Tadros,And S.Rizkalla. Multiplexed Bragg Grating Laser Sensors For Civil Engineering[J], In Proc.of SPIE, 2071, 21~29.
    171 Nobuaki Takahashia, Kanta Tetsumuraa, and Sumio Takahashi. Multipoint Detection of Acoustic Wave in Water with WDM Fiber Bragg Grating Sensor [J], In Proc.of SPIE, 1999, Vol. 3740:270~273.
    172 Klaus Peterman. External Optical Feedback Phenomena in Semiconductor Lasers[J], IEEE Journal of Selected Topics in Quantum Electronics,1995, 1(2):480~489..
    173 N.Cchunk, K.Petermann. Stability Analysis for Laser Diodes with Short External Cavities [J], IEEE Photon.Techno.Lett. , 1989, 1(3):49~51.
    174 Francois Favre. Theoretical Analysis of External Optical Feedback on DFB Semiconductor Lasers [J], IEEE Journal of Quantum Electronics,1987, QE-23(1): 81~88.
    175 Erlend R?nnekleiv, Oliver Hadeler, Guillaume Vienne. Stability of an Er–Yb-doped fiber distributed-feedback laser with external reflections [J], Optical Letters,1999, 24(9):617~619.
    176 Ch. Spiegelberg, J. Geng, Y. Hu, T. Luo, et al.. Compact 100 mW fiber laser with 2 kHz linewidth [J], NP Photonics White Paper, 2005.
    177 Djafar.K.Mynbaev, Lowell L.Scheiner. Fiber Optic Communications Techinology [M]. Prentice Hall, pp:477~478,2001.
    178王晓林,王茂法.拖线阵水听器流噪声预报与实验研究[J],声学与电子工程,2006,3,6~11.
    179顾振福,崔晓文,龚凯,肖翔.细线阵流噪声恶化的抑制[J],声学与电子工程, 2004,3,8~11.
    180张道礼,陈晓平,周东祥,龚树萍.拖曳线列阵声纳护套用聚氨酯的声学性能及材料体系功能材料[J], 2002 ,33 (2):145~151.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700