用户名: 密码: 验证码:
长周期光纤光栅理论及传感技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光纤及光子器件制造技术的不断完善,光纤光栅已成为目前最具有代表性和最具有发展前途的光纤无源器件之一,广泛应用于光通信和光传感等领域。长周期光纤光栅(LPFG)作为一种新型的光纤光栅,由于其插入损耗小、带宽宽、后向反射低、对外界环境变化的反应灵敏度高、制作简单、成本低廉等优点,受到国内外广大学者的关注。发展短短数年,已经显示出了极为广阔的应用前景。另外,由于对光纤光栅功能需求标准的不断提高,新结构、新特性、多功能光纤光栅的研制已经成为开发新型光子器件的必然发展趋势,在保偏光纤上制作的布拉格光栅以及长周期光纤光栅以其独特的光谱特性获得了重要的应用。
     长周期光纤光栅在通信领域主要用作EDFA增益均衡器、ASE噪声滤波器、光纤耦合器、束状滤波器以及WDM通道隔离器等。在传感领域,由于LPFG的周期相对较长,满足相位匹配条件的是同向传输的纤芯基模和包层模,这一特点决定了LPFG的谐振波长和峰值对外界环境变化非常敏感,具有比布拉格光栅更好的温度、应变、弯曲、扭曲、横向负载、浓度和折射率灵敏度。因此,LPFG具有比布拉格光栅和其他传感器件更多的优点和更加广泛的应用。
     本文在前期对布拉格光纤光栅(FBG)等光子器件的研究基础上,深入分析了长周期光纤光栅的耦合模原理及不同写制方法,对不同方法下写制的长周期光纤光栅的温度和应力特性进行了实验研究;设计并实现了基于长周期光纤光栅的振动和横向负载检测系统;利用机械感生长周期光纤光栅的谐振峰值和谐振波长可调谐性设计了灵敏度可调谐系统;并将可调谐长周期光纤光栅串入光纤激光器环形腔中实现了L波段可调谐激光器的设计;另外,通过在保偏光纤上写制光栅,对保偏布拉格光栅(PM-FBG)以及保偏长周期光纤光栅(PM-LPFG)进行了特性和传感技术应用研究。
     本文的主要内容包括:
     1.根据三层光纤模型,分析了光纤波导中的模式分布,并合理简化,分析研究了长周期光纤光栅中的纤芯基模与一阶低次包层模式的耦合,用耦合常数描述了模式耦合的强弱。同时,对长周期光纤光栅的光谱特性进行分析和数值模拟,为LPFG的制作和传感应用研究提供理论基础。
     2.分析研究了写制长周期光纤光栅的多种方法,其中包括紫外光写入法、CO2激光写入法、腐蚀刻槽法、电弧放电法、离子束注入法、机械微弯变形法等方法。采用机械感生法,紫外光写入法及CO2激光写入法写制了长周期光纤光栅,研究了写制周期、折射率调制深度、光栅长度与长周期光纤光栅透射谱的谐振波长,谐振峰值深度以及带宽等参数间的关系,并研究了不同写制方法下的温度和应变特性。
     3.在全面深入研究MLPFG写制模板周期与透射谱谐振波长之间的关系的基础上,将MLPFG串入环形腔中,设计了一种新颖的L波段可调谐环形掺铒光纤激光器。通过调整待写制光纤与周期性压力槽之间的夹角,改变MLPFG的写制周期,调整MLPFG透射谱,影响环形腔增益最高点,调谐光纤激光器的输出波长。可调谐范围可达42nm(1562.465nm~1604.280nm),激光光谱3dB带宽小于0.04nm,20dB带宽均小于0.08nm,边模抑制比大于45dB。长时间观测,激光功率稳定性优于0.3dBm。具有波长易调谐、线宽窄、调谐范围大、边模抑制比高、性能稳定、及成本低廉等特点。
     4.通过对光纤光栅振动传感解调方案的比较,从有效性、校准简便性、复用性以及成本上考虑,选择长周期光纤光栅作为解调滤波器,设计了光纤光栅振动传感解调系统。在对悬臂梁振动传感理论分析的基础上,探究了梁长、宽、厚与传感器共振频率的关系,设计了新型布拉格光纤光栅高、低频振动振动传感器,结合光电转换,放大,滤波电路设计,实现了高、低频振动传感信号的无失真信号检测,并对传感器的频率,振幅和冲击响应性能进行了分析。低频振动传感器实现了频率范围20~200Hz的无失真振动检测,并将实验结果与其他技术设计的振动传感器进行了性能比较。高频振动传感器实现了频率范围1KHz~5KHz的无失真振动检测,频率检测误差低于0.5%。
     5.在对CO2激光脉冲及紫外光引入的长周期光纤光栅横向负载特性研究的基础上,设计并实验研究了基于机械微应变引入长周期光纤光栅的横向负载传感系统。利用机械线加工技术制作周期性不锈钢压力槽板,测定了槽板对待写制光纤施加的横向压力与长周期光纤光栅谐振峰峰值之间的关系,并借助布拉格光纤光栅搭建了高精度横向压力解调系统,进一步提高了检测实用性。实验表明,在0~60N的范围内,横向压力与MLPFG透射谱深度有很好的线性关系,线性度达0.9950,灵敏度约为0.35dB/N,保持45 N的压力20小时,MLPFG谐振峰峰值最大波动小于0.2dB,具备良好的稳定性。采用中心波长为1542.890nm的FBG实现了系统解调,系统灵敏度为0.12μw/N。
     6.利用机械感生长周期光纤光栅(MLPFG)的谐振边带倾斜度易调谐性,设计了解调灵敏度可调谐的光纤布拉格光栅应变传感系统。紫外激光写入技术制作的光纤布拉格光栅的中心波长位于LPFG的谐振边带范围内时,利用该LPFG作为透射滤波器实现了一种新型的灵敏度可调谐FBG应变传感系统。当施加在LPFG上的压力由20N调节至60N时,测试对FBG施加0~3000με轴向应变(每步调整200με)的灵敏度可调谐传感实验。结果表明,FBG应变传感系统检测灵敏度光功率变化率由0.802nW/με增加到1.204nW/με。
     7.利用保偏光纤光栅和偏振控制器设计了一种线性腔可开关双波长掺铒光纤激光器。通过增设偏振分束器,分别得到了对应保偏布拉格光栅快轴和慢轴的单偏振激光。另外,对保偏LPFG进行了理论研究,并采用机械感生法在熊猫型保偏光纤上写制了LPFG。通过对其温度实验的分析研究,探究了机械感生保偏LPFG在横向负载及温度同时测量,以及在可调谐起偏器中的应用。
With the optical fiber and photon device fabrication technology improving continually, fiber grating has become one of the most representative and promising fiber-optic passive components. And it has been widely used in optical communication, optical sensing and other fields. The long-period fiber grating (LPFG) as a new kind of fiber grating has been studied by many researchers all around the world recently, and has gotten great progresses in a few years. It attracts home and abroad scholars for its advantages, such as low insert-loss, broad-band, low back-reflection, sensitive to the changes of environments, low-cost and easy to be fabricated. It has shown a very broad application prospects within recent development. Futhermore, new structure, new features, and multi-function photonic device design have become an inevitable trend as the requirements of the fiber Bragg grating functional standard improves. The fiber Bragg grating (FBG) and LPFG, which are fabricated in polarization fiber, gain important applications depending on there unique spectral characteristics.
     LPFG is mainly used as EDFA gain equalizer, ASE noise filter, optical fiber coupler, beam filter, and WDM channel isolator in fiber communication. In the sensing field, LPFG has more advantages than FBG. The phase matching conditions are met by the gundermental core mode and cladding modes in the same direction due to its large period. So its resonance wavelength and peak strength are all very sensitive to external environmental changes. And LPFG has higher sensitivity than FBG to temperature, strain, bend, twist, lateral load, concentration and refractive index.
     In this paper, based on the early research of FBG and other photon devices, the coupler-mode theory and fabricated methods of LPFG are investigated in-depth. Furthermore, its temperature and stress characteristics are experimentally studied, and its application in vibration detection, lateral load testing, and sensitivity tunable system as well as in tunable laser manufacture are designed and implemented. Additionally, physical properties and sensing technique applications of PM-FBG and PM-LPFG are also discussed.
     The main contents of this article include:
     1. According to three-layer cylindrical fiber model, the fiber mode distribution is analyzed. And the coupling of fiber core-mode and low first-order cladding mode is also further studied. Then coupling constants are used to describe the strength of mode coupling. Meanwhile, long period fiber grating characteristics analysis and numerical simulation provide a theoretical basis for LPFG fabricated and sensing application development.
     2. A variety of LPFG fabricated methods are described, including UV-fabrication method, high-frequency CO2 laser-fabrication method, corrosion-groove method, arc discharge method, ion beam implantation method, mechanical-induced micro-bend method and et al. UV-fabrication method, CO2 laser-writing method and mechanical-induced micro-bend method are adopted in this paper. The relation of fabricated period, grating length, refractive index modulation depth and resonant wavelength, resonant peak, bandwidth is researched. And the temperature and stress characteristics are experimentally studied.
     3. A tunable L-band ring Er(3+)-doped fiber laser (EDFL) is designed through inserting a mechanically induced long-period fiber grating (MLPFG) into Fiber ring cavity. The gratings period is altered by adjusting the angle between the periodic pressure plate and fiber. Above operation will directly influence the highest gain point of the fiber ring cavity, and make the output laser tunable. Optical fiber laser wavelength-tunable range 42nm (1562.465nm-1604.280nm) is achieved. Output laser's 3dB line-width is less than 0.04nm and the 20dB line-width is less than 0.08nm. While the side mode suppression ratio (SMSR) is more than 45dB. Prolonged observation, laser power stability is better than 0.3dBm.Experimental results show that the tunable EDFL has the advantages of wide bandwidth, narrow line-width and stable performance.
     4. A novel FBG vibration sensor demodulation system is designed through demodulation methods comparison. From the validity of calibration simplicity, reusability, and cost considerations, a special long period fiber grating is chosen as demodulation filter. Based on theoretical analysis of the cantilever beam vibration sensing, the relationship between beam length, width, thickness and the sensor resonant frequency is discussed. And then high-frequency and low-frequency FBG vibration sensor is designed respectively. Not only high-frequency but also low-frequency vibration signals achive exact detection without any distortion, combind with photoelectric conversion, ampliation, and filter circuit design. Furthermore, the sensor's frequency, amplitude and impulse response performance are texperimented. The low-frequency vibration sensor is effective in range of 20-200Hz. The results are compared with vibration sensors based on other technologies. And high-frequency vibration sensor is effective in range of 1~5 kHz. The frequency detection error is less than 0.5%.
     5. A novel transverse load sensing system based on MLPFG is designed based on the research of transverse load characteristic of LPFG fabricated by CO2 laser-irradiation method and UV-exposure method. Mechanical-line processing technology is used to make period stainless steel pressure grooved plate. The relationship between lateral load and LPFG resonant peak is measured. Finally, the high-precision LPFG lateral load demodulation system is realized in virtue of special designed FBG The practicality of detection system is further enhanced. Experiments show that within the range of 0-60N, the lateral pressure and the MLPFG transmission peak strength have a good linear relationship. The linearity is up to 0.9950, and the sensitivity is about 0.35dB/N. Maintaining the pressure of 45 N for 20 hours, we found the fluctuation of the MLPFG resonant peak is less than 0.2dB. A special chosen FBG with center wavelength 1542.890nm is adoted to realize system demodulation. And the demodulation sensitivity 0.12μw/N is achieved.
     6. A demodulation sensitivity tunable system is designed depending on the easy tenability of MLPFG resonant slope. A special designed FBG which is fabricated by UV laser technology is used to make a detection sensor. The system is achieved through tuning MLPFG resonant side-band (FBG center wavelength is in the range of MLPFG resonant slope). Sensitivity tunable experiments are carried out when the pressure applied to the LPFG from 20N to 60N, and the axial strain imposed on the FBG sensor from 0μεto 3000μεwith the step interval 200με. The experiment results show that, FBG strain sensing system detection sensitivity of optical power changes from 0.802 nW/μεto 1.204nW/με.
     7. A linear cavity switchable dual-wavelength erbium-doped fiber laser is designed using a polarization maintaining fiber grating and a polarization controller. Through adding polarizing beam splitter into the formal system, single-polarization laser is derived, corresponding to the PM-FBG fast axis and slow axis, respectively. In addition, PM-LPFG is studied theoretically and fabricated adopting mechanical-induced method. Through temperature characteristic analysis, its application in transverse load and temperature simultaneous measurement, as well as tunable polarization is discussed.
引文
[1]K.O.Hill, Y.Fujii, D.C.Johnson, and B. S. Kawasaki, Photo-sensitivity in optical fiber Waveguides:Application to reflection filters fabrication [J]. Appl. Phys.Lett,1978,32: 647-649.
    [2]G. Meltz, M. M. Morey, and W. H. Glenn. Formation of Bragg gratings in optical fibers by a transverse holographic method [J]. Opt.Lett.1989,14 (5):823-825.
    [3]A.M.Vengsarkar, P.J.Lemaire, J.B.Judkins, V.Bhatia, T.Erdogan, and J.E.Spie. Long-Period fiber gratings as band-rejection filters [J]. J.of Lightwave Technol,1996,14 (1):58-65.
    [4]V.Bhatia, and A.M.Vengsarkkar. Optical fiber long-period grating sensors [J]. Opt. Lett.,1996, 21:692-694.
    [5]T Erdogan. Fiber grating spectra [J]. J.Lightwave Technol,1997,15(8):1277-1294.
    [6]T.Erdogan. Cladding-mode resonances in short and long period fiber grating filters [J].K J.Opt.Soc.Am.A,1997,14(8):1760-1773.
    [7]F.Ouellete. Dispersion cancellation using linearly chirped Bragg grating filters in optical aveguides [J]. Opt., Let.,1987,12(10):847-849.
    [8]V.Mizrahi, and J.E.Sipe. Optical properties of photosensitive fiber phase gratins [J]. J. of Lightwave Technol,1993, 11(10):1513-1517.
    [9]C.R.Giles. Lightwave application of fiber Bragg gratings [J]. J.of Lightwave Technol.,1997, 15(8):1391-1404.
    [10]Y.J.Rao. In-fiber Bragg grating sensors [J]. Meas.Sci.Technol,1997,8:355-375.
    [11]A.D.Kersey, M.A.Davis, H.J.Patrick, et al.. Fiber grating sensors [J]. J.of Lightwave Technol., 1997,15(8):1442-1463.
    [12]何伟,王昌,姜德生,等.长周期光纤光栅横向压力传感特性的研究[J].武汉理工大学学报,2004,26(8):20-22.
    [13]童治,魏淮,简水生,等.环境折射率变化对长周期光栅特性影响的研究[J].光学学报,2002,22(9):1088-1091.
    [14]Gloge D. Weakly guiding fibers [J]. Appl. Opt,1971,10(10):2252-2258.
    [15]Han Y G, Lee B H, Han W T, et al. Controllable transmission characteristics of multi-channel long period fiber gratings[J]. IEICE Trans. Electron.,2001, E84-C (5):610-614.
    [16]姜莉,张东生,袁树忠,董孝义.长周期光纤光栅光谱控制及其在EDFA增益平坦中的应用[J].光子学报,2004,33(7):810-813.
    [17]Ng M N, Chiang K S. Thermal effects on the transmission spectra of long-period fiber gratings [J]. Optics Communications,2002,208(4)321-327.
    [18]Shu X, Zhang L, Bennion I. Sensitivity characteristics of long-period fiber gratings [J]. J. of Lightwave Technology,2002,20(2):255-266.
    [19]Kevin P C, Peter R H, Zhang J. Fabrciation of strong long-period gratings in hydrogen-free fiber with 157nm Fs-laser radiation[J]. Optics Lett.2001,26(11):771-773.
    [20]杜卫冲.用微透镜阵列在单模光纤中写入长周期光纤光栅的新方法[J].光学学报.1998,18(11):1599-1600.
    [21]Von Bibra M L. Robers A. Fabrication of long-period fiber gratings by use of focused ion-beam irradiation [J]. Opt. Lett.,2001,269(8):765-767.
    [22]Von Bibra M L, Robers A. Long-period fiber gratings made with focused ion beam irradiation [J]. Proc.14(th) Inter. Conf. on OFS 2000, TH6-3:604-607.
    [23]Savin S, Digonnet M J F, Kino G S et al. Tunable mechanically induced long-period fiber gratings [J]. Optics Lett.,2000,25(10):710-712.
    [24]G.Rego, J.Fernandes, J.Santos, H. Salgado, and P. Marques, New technique to mechanically induce long-period fibre gratings [J], Opt.Commun.,2003,220(1-3):111-118.
    [25]黎敏,廖延彪,赖淑荣,等.一种新型的光纤光栅制作方法[J].激光杂志,2001,22(1):24-25.
    [26]Toru Mizunami, Hideo Kawashima, Akihiko Hayashi. A flexible fabrication technique of long-period fiber gratings using a tilted amplitude mask [J]. Fiber and Optical Passive Components,2002, Proc. OFS,2002 IEEE/LEOS Workshop,92-97.
    [27]Guan B O, Tam H Y, Ho S L et al. Impact of Hydrogen in long-period gratings after 193nm UV inscription [J]. Proc.14(th) Inter. Conf. on OFS,2000,552-555.
    [28]瞿荣辉,赵浩,方祖捷.长周期光纤光栅的制作方法和应用研究进展[J].激光与光电子学进展.1999,36(12):8-13.
    [29]K.O.Hill, B.Malo, K.A.Vineberg, F.Biloedau, D.C.Johnson, and I.Skinner. Eficient mode conversion in telecommunication fiber using externally written gratings [J]. Electronics Lett.,1990,26:1270-1272.
    [30]D.C.Jo hnson, F.Bilodeau, B.Malo, et al.. Long-length, long-period rocking filters fabricated from conventional monomode telecommunications optical fiber [J]. Opt. Lett.,1992,17 (22): 1635-1637.
    [31]D.D.Davis, T.K.Gaylord, S.C.Mettler, and A.M.Vengsarkar. Long-period fiber grating fabrication with focused CO2 laser pulses [J]. Electronics Lett.,1998,34 (3):302-303.
    [32]Y. J. Rao, Y. P. Wang, Z. L. Ran, Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency C02 laser pulses[J]. Journal of Lightwave Technology, 2003,21(5):1320-1327.
    [33]S.Y.Liu, H.Y.Tam, and M.S.Demokan. Low-cost microlens array for long-period grating fabrication [J]. Electronics Lett.,1999,35(1):79-81.
    [34]In.Kag.Hwang, Seok Hyun Yun, and Byoung Yoon Kim. Long period fiber gratings based on period micobends [J]. Opt.Lett.,1999,24 (18):1263-1265.
    [35]I..Sohn, J.Kim, N.Lee, H.Kwon, and J.Song.Tunable gain-flattening filter using long-period fiber grating based on periodic core deformation:in Design, Fabrication, and Characterization of Photonic Devices [C].2001,Proc. of SPIE 4594:110-117.
    [36]M.Yokota, H.Oka, and T.Yoshino. Mechanically induced long period fiber grating and its application for distributed sensing [C]. OFS'2002:135-138.
    [37]C.Y. Lin, and L.A.Wang. Loss-tunable long period fibre grating made from etched corrugation structure [J]. Electonics Let.,1999,35(21):1872-1873.
    [38]V.I.Karpov, M.VGrekov et al.. Mode-field converters and long-period gratings fabricated by thermodifusion in nitrogen-doped silica-core fibers [C]. OFC'98,1998, ThG3:.279-280.
    [39]艾江,叶爱伦,刘宇乔.一种新的长周期光纤光栅制作方法[J].光学学报,1999,19(5):709-712.
    [40]Yamasaki S, Akiyama M, Nishide K, Wada A, Yamauchi.R. Characteristics of long period fiber grating utilizing periodic stress relaxation under high temperature environment [C]. OFS'13, Proceedings of SPIE.1999,3746:385-388.
    [41]B.H.Kim, T.J.Ahn, Y.Park, D.Y.Kim, B.H.Lee. Y.Chung, U.C. Pack and W.T.Han, Measurement of refractive index change due to CO2 laser irradiation using an LPG pair in optical fibers [C]. APOC'2001, Proceedings of SPIE2001,4579:286-295.
    [42]D.P.Hand, and P, St. J.Russell. Photoinduced refractive-index changes in germano-silicate fibers [J]. Opt.Lett.,1990,15(2):102-104.
    [43]J.P.Bernardin, and N. M.Lawandy. Dynamics of the formation of Bragg grating in Germanosilicate optical fibers [J]. Opt.Lett,1990,15(3):194-199.
    [44]刘勇,叶志清.龙格-库塔法和传输矩阵法求解非均匀光纤光栅问题的比较[J].江西师范大学学报(自然科学版),2001,25(1):57-61.
    [45]Peral E, Capmany J. Generalized Bloch wave analysis for fiber and waveguide gratings [J]. J. Lightwave Technology,1997,15(8):1295-1302.
    [46]黄耐容,王谦,何赛灵.长周期光纤光栅光谱响应与结构参量关系的研究[J].光电子·激光,2001,12(8):831-835.
    [47]柳青,李新碗,叶爱伦,等.长周期光纤光栅包层模场分布及其耦合系数[J].上海交通大学学报,2000,34(2):201-208.
    [48]陈儒.长周期光纤光栅传输谱的matlab仿真[J].计算机仿真,2007,24(4):301-303.
    [49]孔梅,周文,汤伟中.长周期光纤光栅导模与包层模的耦合分析[J].光学学报,1999,19(3):369-373.
    [50]宋宁,郭晓金,殷宗敏.长周期光纤光栅的分析和优化设计[J].光子学报,2003,32(6):735-737.
    [51]刘天山.长周期光纤光栅耦合波长的计算方法[J].河北师范大学学报(自然科学版),2005,29(1):52-54.
    [52]ZHAO Yanyu, PALAIS J C. Simulation and characteristics of long-period fiber Bragg grating coherence spectrum [J].Lightwave Technol,1998,16(4):554-561.
    [53]何万迅,施文康,叶爱伦.长周期光纤光栅耦合常数的研究[J].光学技术,2002,28(6):535-538.
    [54]Turan Erdogan. Cladding mode resonances in short and long period fiber grating filters [J]. J Opt Soc Am A,1997,14 (8):1760-1773.
    [55]Kong Mei, Tang Weizhong, Zhou Wen. Cladding mode resonances in long period fiber gratings [J]. ACTA PHOTONICA SINICA,1998,27(5):433-437.
    [56]舒学文,朱雪梅,王青林.长周期光纤光栅谐振波长的特性研究[J].光学学报,2000,20(8):1100-1105.
    [57]陈根祥,刘春宁,简水生.长周期光纤光栅的研究[J].光学学报,2000,20(5):624-628.
    [58]F.Bilodeau, K. O. Hill et al.. Efficient narrowband LP(01)-LP(02) mode converters fabricated in photosensitive fiber: Spectral response [J]. Electron. Lett.,1991,27 (8):682-684.
    [59]张自嘉,施文康,高侃,等.长周期光纤光栅(LPFGs)的谱结构研究[J].光子学报,2004,33(11):1308-1311.
    [60]Xuewen Shu, Lin Zhang, and Ian Bennion. Sensitivity characteristics of long-period fiber gratings [J]. J.of Lightwave Technology,2002,20(2):255-266.
    [61]G.W.Chem, andL.A.Wang. Transfer-matrix method based on perturbation expansion for periodic and quasi-periodic binary long-period gratings [J]. J.Opt, Soc. Am.A.,1999,16(11): 2675-2689.
    [62]E.Peral and J.Capmany, Generalized Bloch wave analysis for fiber and waveguide gratings [J]. J.Lightwave Technol.,1997,15(8):1295-1302.
    [63]L.Poldian, Graphical and WKB analysis of nonuniform Bragg gratings [J]. Phys.Rev.E.1993, 48(6):4758-4767.
    [64]A.Bouzid and M.A.G Abushagur, Scattering analysis of slanted fiber gratings [J]. Appl. Opt., 1997,36(3):558-562.
    [65]Lam P K, Stevenson A J, Love J D. Bandpass spectra of evanescent coupler with long period fiber grating [J]. Electron. Lett.2000,36(11):967-969.
    [66]Chen W T, Wang L A. Laser-to-fiber coupling scheme by utilizing a lensed fiber integrated with a long-period fiber grating [J]. IEEE Photon. Tech.Lett.1998,12(5):501-503.
    [67]Chen W T, Wang L A. Optical coupling between single-mode fibers by utilizing long-period fiber gratings [J]. Eletron, Lett.1999,35(5):421-423.
    [68]Eggleton B J, Slusher R E, Judkins J B et al. All-optical switching in long-period fiber gratings [J]. Opt. Lett.1997,22(12):883-885.
    [69]Yokota M, Oka H, Yoshino T. Mechanically induced long period fiber grating and its application for distributed sensing[C]. Proc.14th Inter. Cong, on OFS 2000,4185:135-138.
    [70]Patrick H J, Williams G M, Kersey A D et al. Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination [J]. IEEE Photo. Tech. Lett.,1996, 8(9): 1223-1225
    [71]Bhatia V, Burford M K, Zabaronick, et al. Strain and refractive index sensors using temperature-insensitive long-period grating[C]. Proc.11th Inter. Conf. on OFS 1996,13-17.
    [72]Wang Y P, Rao Y J, Ran Z L et al. Bend-insensitive long-period fiber grating sensors [J]. Optics and Lasers in Engineering,2003,21(10):233-239.
    [73]Allsop T, Zhang L, Webb D J et al. Discrimination between strain and temperature effects using first and second-order diffraction from a long-period grating[J]. Optics Communications,2002,211(1):103-108
    [74]张自嘉,王昌明.长周期光纤光栅的轴向应变传感特性研究[J].传感技术学报,2007,20(5):1003-1006.
    [75]Y. Liu, L. Zhang, J. A. R.Williams, and I. Bennion. Optical bend sensor based on measurement of resonance mode splitting of long-period fiber grating [J]. IEEE Photon. Technol. Lett.,2000,12(5):531-533.
    [76]L.Zhang, Y.Liu, L.Everall, J.A.R.Williams, and I.Bennion. Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors [J]. IEEE J. Select. Topics Quantum Electron.1999, 5(5):1373-1379.
    [77]X. Shu, L. Zhang, and I. Bennion. Sensitivity characteristics of long period fiber gratings [J]. J.Lightwave Technol.2002,20(2):255-266.
    [78]S.W.James and R.P.Tatam, Optical fiber long-period grating sensors:Characteristics and applications [M],Meas. Sci. Technol.,2003,14(5):49-61.
    [79]廖毅,饶云江,胡永明,等.低成本长周期光纤光栅传感系统[J].光子学报,2007,36(4):702-705.
    [80]Wang Yiping, Rao Yunjiang, Hu Aizi, et al. A Novel Long Period Fiber Grating Torsion Sensor [J]. Acta Optical Sinica,2002,22(19):1096-1099.
    [81]Guan Baiou, H.Y.Tam, S.L.Ho. Study on Strain/Temperature Two Parameters Sensing with a Single Fiber Grating [J].Chinese Journal Laser,2001,28(4):372-374.
    [82]Wang Muguang, Wei Huai, Tong Zhi, Li Tangjun, Jian Shuisheng. Simultaneous measurement of Strain and Temperature Using a Single Dual-Period Fiber Grating [J]. Acta Optical Sinica,2002,22(7):867-869.
    [83]Lee, B.H., and Nishii, J. Self-interference of long-period fiber grating and its application as temperature sensor. Electron. Lett.1998,34(21):2059-2060.
    [84]T.Allsop, M.Dubov, A.Martinez, F.Floreani, I.Khrushchev, D.J.Webb, I.Bennion. Long Period Grating Directional Bend Sensor Based Upon an Asymmetric Index Modification of Cladding [J]. Electron.Lett.2005,41(13):59-60.
    [85]王义平,饶云江,冉曾令,朱涛,曾祥楷.对弯曲不敏感的长周期光纤光栅传感器[J].光子学报,2002,31(6):725-729.
    [86]何万迅,施文康,叶爱伦.长周期光纤光栅及其在通信传感领域的新应用[J].光学精密程,2001,9(2):104-108.
    [87]V.Bhatia, and A.M.Vengsarkkar. Optical fiber long-period grating sensors [J]. Opt. Lett, 1996,21(9):692-694.
    [88]H. J. Patrick, A. D. Kersey, F. Bucholtz, Analysis of the response of long period fiber gratings to external index of refraction [J]. Journal of Lightwave Technology,1998,16(9): 1606-1612.
    [89]V.Bhatia, D.Campbell, R.O.Claus, and A.M.Vengsarkar. Simultaneous strain and temperature measurement with long-period gratings [J]. Opt. Lett.,1997,22(6):648-650.
    [90]B.H., Lee, J. Nishii, Self-interference of long-period fibre grating and its application as temperature sensor [J]. Electronics Letters,1998,34(21):2059-2060.
    [91]H.J.Patrick, Chang C, S. T. Vohra, Long period fibre gratings for structural bend sensing [J]. Electronics Letters,1998,34(18):1773-1775.
    [92]Xuewen Shu, Xucmei Zhu, Shan Jiang, et al., High sensitivity of dual resonant peaks of long-period fibre grating to surrounding refractive index changes [J]. Electronics Letters, 1999,35(18):1580-1581.
    [93]Xuewen Shu, Lin Zhang, and Ian Bennion. Fabrication and characterization of ultra-long-period fiber gratings [J]. Optics Communications.2003,203(3):277-281.
    [94]M.Yamada, K.Sakuda. Analysis of almost-periodic distributed feedback slab waveguides via a fundamental metric approach [J]. Appl. Opt,1987,26(16):3474-3478.
    [95]王义平,饶云江,胡爱姿,等.长周期光纤光栅扭曲传感器[J].光学学报,2002,22(9):1096-1099.
    [96]H. J. Patrick,,G. M. Williams, A. D. Kersey, et al., Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination, Photonics [J]. Technology Letters, IEEE,1996,8(9):1223-1225.
    [97]贾宏志,李育林,忽满利.长周期光纤光栅传感器温度和应变灵敏度分析[J].光子学报,1999,28(8):711-714.
    [98]刘云启,葛春风,赵东晖,等.长周期光纤光栅强度型温度传感研究[J].光子学报,1999,28(4):356-359.
    [99]刘云启,赵东晖,葛春风,等.长周期光纤光栅温度和应力传感特性研究[J].光子学报,1999,28(2):142-145.
    [100]王义平,饶云江冉曾令等对弯曲不敏感的长周期光纤光栅传感器[J].光子学报,2002,31(6):725-728.
    [101]C.Y. Lin, L. A. Wang, A wavelength-and loss-tunable band-rejection filter based on corrugated long-period fiber grating [J]. Photonics Technology Letters, IEEE,2001, 13(4):332-334.
    [102]W.W.Morey, G.MeltZ, W.H.Glenn. Fiber Bragg grating sensors [C]. Proc, SPIE.1989, 1169:98-107.
    [103]M.sudo, M.Nakai, K.Himeno, et al. Simultaneous measurement of temperature and strain using FANDA fiber grating[C], OFS-12, Williamsburg, VA, USA,1997:170-173.
    [104]A.S.Kurkov, M.Douay, O.Duhem, et al. Long-Period fiber grating as a wavelength selective polarization element [J]. Electron.Lett,1997,33(7):616-617.
    [105]B.ortega, L.Dong, W.Liu, et al. High-performance optical fiber polarizers based on long-period gratings in birefringent optical fibers [J]. IEEE Photon.Techool, Lett.1997, 9(10):1370-1372..
    [106]Eric Udd, Whitten Schulz, John seim. Distributed multi-axis fiber grating strain sensor in Fiber Optic Sensors for constructional material and bridges [J].1998, OFS,98:168-180.
    [107]Whitten Schulz, Eric Udd, John seim. Advanced fiber grating strain sensor systems for bridges, structures, and highways [C]. SPIE,1998,3325:212-221.
    [108]Katy Davol, Eric Udd, Steve kreger, et al. Monitoring of advanced composite weave structures using multi-axis fiber grating strain sensors[C]. SPIE,2003,5278:128-134.
    [109]Sean Calvert. High speed dual-axis strain using a single fiber Bragg grating[C]. SPIE,2004, 5384:229-241.
    [110]Marley, Eric Udd. Use of multidimensional fiber grating strain sensors for damage detection in composite pressure vessels [C]. SPIE,2005,5785:83-92.
    [111]Robert J S, Tsutomu Yamate, Eric Udd. High pressure and temperature sensing for the oil industry using fiber Bragg gratings written onto side hole single mode fiber [C]. SPIE,1999, 3476:72-74.
    [112]夏历,李栩辉,殷玉吉,等.在保偏光纤上制作光纤光栅的应用研究[J].光学学报,2002,22(8):1004-1006.
    [113]Guanghui Chen, Liying Liu, Hongzhi Jia. Simultaneous strain and temperature measurements with fiber Bragg grating written in novel Hi-Bi optical fiber [J]. IEEE Photon. Trchnol. Lett.,2004,16(1):221-223.
    [114]梅加纯,范典,李剑芝,等.保偏光纤光栅传感性能的实验研究[J].光电子.激光,2005,16(4):402-404.
    [115]T. Yamate, RJ. Schroeder, R.T. Ramos, et al.. Separation methods of dual peaks produced by birefringence using polarization control [C]. OFS'03,2003, TuP-2.
    [116]I. Abe, O.Frazao, R.N.Nogueira, et al. Three-parameter simultaneous measurement using super imposed Bragg gratings in high-birefringence optical fibers[C]. OFS'03,2003, TuP-10.
    [117]E.Chehura, C.C.Ye, S.W.James, et al.. Characterization of the response of fiber Bragg grating sensors written in different types of high birefringent fibers subjected to transverse load[C]. OFS'03,2003, Tu4-2.
    [118]莫秋菊,饶云江,冉曾令,朱涛.长周期保偏光纤光栅的偏振特性研究[J].光子学报,2006,35(12):1884-1887.
    [119]牛永昌,饶云江,冉曾令,胡爱姿.新型保偏长周期光纤光栅的制作与理论研究[C].中国光学学会2004年学术大会,2004:296-299.
    [120]饶云江,王义平,朱涛.光纤光栅原理及应用[M],2006.
    [121]Y. Liu, J. A.R.Williams, L. Zhang et al.. Phase shifted and cascaded long-period fiber gratings [J]. Opt. Common.,1999,164:27-31.
    [122]H.Ke, K. S. Chiang, J.H. Peng. Analysis of phase-shifted long-period fiber gratings [J]. IEEE Photon. Technol. Lett.,1998,10(11):1596-1598.
    [123]崔丽萍,吴亚明.级联长周期光栅光谱特性[J].光学学报,2005,25(8):1019-1024.
    [124]Enboa Wu, Rou-Ching Yang, Kuo-Ching San, et al. A highly efficient thermally controlled loss-tunable long-period fiber grating on corrugated metal substrate [J]. IEEE PHOTONICS TECHNOLOGY LETTERS.2005,17(3):612-614.
    [125]Lin H, Li Q, Au A, et al. A loss tunable long-period fiber grating on corrugated silicon with on-chip micro-heater and temperature sensor [C]. Proc. Inter. Conf. on OFC 2002:193-194.
    [126]H. Lin, Q. Li, A. A. Au, Y. Jiang, E. Wu, and H. P. Lee. Strain induced thermally long-period fiber gratings fabricated on a periodically corrugated substrate [J]. J.of Lightwave Techno.,2004,22(7):1818-1827.
    [127]Zhang Nan, Yang Jian-Jun, Wang Ming-Wei and Zhu Xiao-Nong. Fabrication of long-period fiber gratings using 800 nm femtosecond laser pulses [J].2006,23(12): 3281-3283.
    [128]Alexey I. Kalachew, Vincent Pureur, David N. Nikogosyan. Investigation of long-period fiber gratings induced by high-intensity femtosecond UV laser pulse [J]. Optics Communications,2005,246(1):107-115.
    [129]关寿华,于清旭,宋世德.长周期光纤光栅温度特性的理论与实验研究[J].传感技术学报,2007,20(3):543-545.
    [130]彭世玉,元秀华,张国云.光纤光栅传感器温度与轴向应变灵敏度的研究[J].光通信研究,2003,2:46-48.
    [131]王义平,饶云江,冉曾令,朱涛.高频C02激光脉冲写入的长周期光纤光栅传感器的特性研究[J].物理学报,2003,52(6):1432-1437.
    [132]杨石泉,赵春柳,袁树忠,等.L波段线型腔波长可调谐掺铒光纤激光器[J].光学学报,2002,22(6):706-708.
    [133]Chien-Hung Yeh, Chien-Chung Lee, Sien Chi. A tunable S-band erbium-doped fiber ring laser [J]. IEEE Photon.Technol.Lett.2003,15 (8):1053-1054.
    [134]肖磊,郭玉彬,张健生,等.L波段可调谐环形掺铒光纤激光器[J].激光与红外,2004,34(6):445-448.
    [135]李智勇,刘俭辉,葛春风,等.基于F-P干涉技术的通信波段可调谐激光器[J].激光与红外,2004,34(4):266-268.
    [136]贺虎成,杨玲珍,王云才.偏振控制C波段波长可调谐掺铒光纤激光器[J].中国激光,2006,33(12):1597-1600.
    [137]MELO M, FRAZAO O, TEIXEIRA A L J, et al. Tunable L-band erbium-doped fiber ring laser by means of induced cavity loss using a fiber taper[J]. Appl.Phys,2003,30
    (7):139-142.
    [138]YAMASHITA S. Widely tunable erbium-doped fiber ring laser covering both C-band and L-band [J]. Quantum Electronics,2001,7 (1):41-43.
    [139]Johan Nilsson, Shaif-UI Alam, Jose A. Alvarez-Chavez et al. High-power and tunable operation of erbium-ytterbium co-doped cladding pumped fiber lasers [J]. IEEE J. Quantum Electron.,2003,39 (8):987-994.
    [140]杨石泉,赵春柳,蒙红云,等.工作在L波段的可调谐环形腔掺铒光纤激光器[J].中国激光,2002,A29(8):677-679.
    [141]Qinghe Mao, John W. Y. Lit. L-band fiber laser with wide tuning range based on dual-wavelength optical instability in linear overlapping grating cavities [J]. IEEE J. Quantum Electron.2003,39(10):1252-1258.
    [142]陈玖英,刘建国,张玉钧,等.调谐半导体激光吸收光谱自平衡检测方法研究[J].光学学报,2007,27(2):350-353.
    [143]Hajime Sakata, Hitoshi Yoshimi, Yuki Otake. Wavelength tunability of L-band fiber ring lasers using mechanically induced long-period fiber gratings [J]. Optics Communications 2009,282:1179-1182.
    [144]Jian Yao, Jian ping Yao, Yong Wang, et al. Active mode locking of tunable multi-wavelength fiber ring laser [J]. Optics Communications,2001,8(5):341-345.
    [145]张艳,陈伟,任民,等.稳定可调谐的单纵模多环形腔掺铒光纤激光器[J].光学学报,2008,28(3):507-511.
    [146]董新永,赵春柳,关柏鸥,等.可调谐光纤环形腔激光器输出特性的理论与实验研究[J].物理学报,2002,51(12):2750-2755.
    [147]PfeifferT, SchmuckH, BulowH. Output power characteristics of erbium-doped fiber ring lasers [J]. IEEE Photonics Technol.Lett.1992.4 (8):847-849.
    [148]刘颖刚,乔学光,贾振安,等.基于FBG的波长可调谐环形掺铒光纤激光器[J].光学精密工程,2006,14(5):811-815.
    [149]李晓莉.基于光纤光栅调谐的掺铒光纤激光器的实验研究[D].西北大学.硕士学位论文.2009.
    [150]黄章勇.光纤通信用新型光无源器件[M].北京:邮电大学出版社,2003,45-51.
    [151]冯丹琴,盛秋琴,陈凯,等.几种常用滤波器的特性[J].光通信技术,2002,26(1):46-53.
    [152]TIMOTHY E. DIMMICK. Compact all-fiber acoustooptic tunable filters with small bandwidth-length product Techniques. IEEE Photon.Lett.2000,12(12):1210-1212.
    [153]LI SHENGPING, CHIANG K S, GAMBLING W A. Dynamic gain flattening of an
    erbium-doped fiber a high birefringence fiber loop mirror [C].In:Proc of OFC 2001,TuA5.
    [154]TOLIVER P. Routing of 100Gb/s words in a packet-switched optical networking demonstration (POND) node [J]. LightwaveTechnol,1998,16(12):2169-2180.
    [155]谭莉,倪文俊,丁永奎,等.L-band EDFA中980nm泵浦激光器驱动控制电路的设计与调试[J].光子技术,2003,1:38-41.
    [156]Tomas Pliska, Sebastian Arlt, Rainer Battig et al.. Wavelength stabilized 980 nm uncoupled pump laser modules for erbium-doped fiber amplifiers [J]. Optics and Lasers in Engineering,2005,39(3):271-289.
    [157]孙汝蛟,孙利民,等.一种新型光纤布拉格光栅振动传感器研究[J].光子学报,2007,36(1):63-67.
    [158]巩宪锋,衣红钢,周晓敏,等.低频光纤光栅加速度传感器[J].北京科技大学学报,2006,28(1):75-77.
    [159]孙华,刘波,周海滨,等.一种基于等强度梁的光纤光栅高频振动传感器[J].传感技术学报,2009,22(9):1270-275.
    [160]李丽,林玉池,王为,朱萍玉.光纤光栅非平衡M-Z干涉解调技术研究[J].压电与声光,2008,30(2):16-18.
    [161]黄耀,黄旭光.阵列波导光栅解调的光纤光栅振动频率检测技术[J].华南师范大学学报(自然科学版),2009,4:47-51.
    [162]曹哗,刘波,开桂云,董孝义.光纤光栅振动高速精密检测系统的研究[J].光电子.激光,2006,17(1):102-106
    [163]张东生,姜德生,等.基于匹配滤波解调的光纤光栅振动传感器研究[J].传感技术学报,2007,20(2):311-313.
    [164]刘云启,柳贺良,刘志国,张颖,董孝义.基于长周期光栅滤波的全光纤光纤光栅传感器研究[J].传感技术学报,2000,13(4):241-245.
    [165]江毅,黄俊斌.基于波分复用器的光纤光栅振动传感器阵列[J].中国激光,2005,32(11):1525-1528.
    [166]Liu Y, Zhang L, Bennion I. Fiber optic load sensors with high transverse strain sensitivity based on long-period gratings in B/Ge co-doped fiber[J]. Electronics. Lett.1999,35(8): 661-662.
    [167]Liu Y, Zhang L, Bennion I. Long-period fiber grating load sensors with high transverse strain sensitivity[C]. The 14(th) OFS,2000, TH:5-3:580-583.
    [168]王义平,饶云江.新型长周期光纤光栅的横向负载特性及其偏振相关研究[J].光子学报,2005,34(8):1195-1200.
    [169]Juichi Noda. Polarization maintaining fibers and their applications [J]. J. Lightwave Tech., 1986, LT-4(8):1071-1075.
    [170]Pak L Chu. Analytical method for calculation of stresses and maintainin optical fiber [J].J.Lightwave Tech.,1984, LT-2:650-654.
    [171]陈伟,李诗愈,成煜,等.保偏光纤技术进展及发展趋势[J].光通信研究,2003,(6):54-57.
    [172]魏颖,焦明星.保偏光纤Bragg光栅传感特性的实验研究[J].红外与激光工程.2008,37(S):107-110.
    [173]王伟,孟洲,杨华勇.熊猫型保偏光纤光栅温度和压力传感特性的实验研究[J].光学与光电技术.2007,5(2):35-38.
    [174]梅加纯,范典,姜德生.保偏光纤光栅温度传感性能的实验研究[J].应用光学.2006.27(2):137-139.
    [175]冯新焕,孙磊,刘艳格,等.基于保偏光纤光栅的双波长掺铒光纤激光器[J].中国激光,2005,32(2):145~148.
    [176]Suchun Feng, Ou Xu, Shaohua Lu, et al. Switchable dual-wavelength erbium-doped fiber-ring laser based on one polarization maintaining fiber Bragg grating in a Sagnac loop interferometer [J]. Opticas & Laser Technology,2009,41(3):264-267.
    [177]Suchun Feng, Ou Xu, Shaohua Lu, et al. Switchable multi-wavelength erbium-doped fiber ring laser based on cascaded polarization maintaining fiber Bragg gratings in a Sagnac loop interferometer [J]. Opticas & Laser Technology,2009,41(8):6006-6010.
    [178]周赢武,高侃,黄锐,等.保偏光纤长周期光栅特性的研究[J].中国激光,2004,31(9):1103-1106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700