用户名: 密码: 验证码:
倾斜光纤光栅传感解调技术与网络的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤光栅是一种新型的光子器件,它的出现,使许多复杂的全光纤通信网络和传感网络成为可能,并极大地拓宽了光纤技术的应用范围。倾斜光纤光栅(TFBG)是光纤光栅的一种,它除了具有普通光纤布喇格光栅(FBG)的特点之外,还有许多独特的优点。
     本论文主要以TFBG为研究对象,对其传感及解调特性进行了理论与实验研究。根据TFBG所体现出来的不同于FBG的传感特性,利用数据融合理论对被测量进行了更加准确的估测。结合传感器技术、嵌入式计算技术、现代通信与网络技术,将光纤光栅应用到传感器网络中,设计了一种小区制蜂窝传感器网络。
     本论文是在国家“八六三计划”项目(No.2006AA01Z217)、国家自然科学基金重点项目(No.60736039)的支持下完成的。本论文的主要内容为:
     1.阐述了光纤光栅的几种分析方法,并利用耦合模理论与体电流理论分别对FBG与TFBG进行了理论分析。这将为以后的工作打下基础,为实验提供理论依据。
     2.对TFBG的传感特性及应用进行了研究,并且取得诸多进展,包括:
     (1)TFBG的纤芯模与包层模随着温度升高,波长偏移量是基本一致的,通过粘贴热膨胀系数不同的基底材料,可以提高其对温度的敏感度。
     (2)应变可以引起TFBG纤芯模和包层模谐振峰的漂移,而且应变对纤芯模与包层模的影响是不同的。根据TFBG的这一应变特性及温度特性,设计了一种能同时对温度和应变进行感测的系统。
     (3)对简支梁的弯曲进行了理论分析,首次提出了一种利用TFBG的不同模式来测量弯曲半径的方法。简支梁的弯曲只让TFBG各模式的谐振峰波长发生了漂移,而各模式的谐振峰的幅度没有改变。因此可以用TFBG波长来定义简支梁的弯曲半径。TFBG各模式对简支梁弯曲半径的响应是不同的,利用这一特性及TFBG的温度特性,可将TFBG用于温度、弯曲等多参量同时测量。
     (4)在TFBG纯弯曲的实验中发现,TFBG的纤芯模、包层模谐振波长对弯曲不敏感,不同的弯曲半径会使得包层模谐振峰透射功率与曲率成线性关系,纤芯模、包层模透射功率对温度变化不敏感。利用这些性质,可以采用一个TFBG分别测量纤芯模谐振波长和透射谱功率的变化实现对弯曲和温度的同时测量。
     3.对光纤光栅复用解调技术进行了研究,并取得了若干成果,包括:
     (1)在一些工程应用中,往往对系统分辨率没有太高的要求,而是要求结构简单且成本低廉的解调方案。因此,我们设计实现了一种双边沿滤波器构成的解调系统,这种系统具有成本低、响应速度快、使用方便等优点。
     (2)设计实现了一种基于TFBG的温度不敏感的FBG应变解调系统。当周围环境温度变化时,无需另加温度补偿,就可以利用TFBG实现FBG应变信号的动态解调,可以消除温度噪声对应变信号的影响。
     (3)在高双折射光纤环境的透射谱中,有多个边沿呈现线性,因此可将这些线性边沿作为边沿滤波器组来使用。设计了一种基于高双折射光纤环境的复用解调系统,这种系统具有结构简单,线性边沿较宽,易于调节等优点。
     4.利用TFBG的多个模式进行了应变传感的实验,首次提出了一种基于多传感器参数估计数据融合的应变测量方法,这种方法首次采用了TFBG的不同模式作为多个传感器。这种方法计算简便,编程容易,可以获得比有限个传感器的算术平均值更准确的测量结果,具有较高的可靠性,可用于其它测量结果具有正态分布特性的多传感器测量系统。
     5.简单介绍了传感器网络的一般概念,首次提出了一种基于光纤光栅的小区制蜂窝传感器网络。传统的光纤光栅传感器网络在设计时只是考虑了其复用能力,我们设计的蜂窝传感器网络在提高复用能力的情况下,将原来简单的传感器变成一个智能传感器模块。这种传感器能同时测量多个参量,提高了信道的利用率,能与环境中的其它设备进行通信,还可以向中心控制计算机发出请求。采用排队论理论对传感器网络性能进行分析,计算出平均等待时间,提高了传感器系统的可靠性。
Fiber gratings, as novel photonic devices, make many complicated all-fiber communication network and sensor network executable and significantly broaden the scope of the application of optical fiber technology. Tilted fiber Bragg gratings (TFBGs), a kind of fiber gratings, have many unique advantages in addition to characteristics of ordinary fiber Bragg grating (FBG).
     In this dissertation, we mainly study on the sensing and demodulation characteristics of TFBG in theory and experiment. Based on the sensing characteristics of TFBG different from those of FBG, we carry out a more accurate estimate on the measurands using data fusion theory. In combination with sensor technology, embedded computing technology, modern communication and network technology, we apply FBG to the sensor network and design a cellular sensor network.
     With the subjects supported by the National High Technology Research and Development Program of China (Grant No. 2006AA01Z217), the National Natural Science Fund projects (Grant No. 60736039) and the Key Laboratory Fund of Optoelectronic Information Technical Science, Ministry of Education of China, the main contents of this dissertation are as following:
     1. Analysis methods of fiber gratings are presented and FBG and TFBG are analyzed respectively in theory using mode coupling method and volume current method. This is the base of future work and will provide theory foundation for experiment.
     2. Sensing characteristics and applications of TFBG are mainly studied. We have make progress including:
     (1) The wavelength shifts of core mode and cladding modes of TFBG are nearly consistent in temperature sensing experiment .Temperature sensitivity of TFBG can be improved by using different backing material of different thermal-expansion coefficient.
     (2) Strain can make the resonance peaks of TFBG core mode and cladding modes shift and the influences of strain to core mode and cladding modes of TFBG are different. A kind of system of measuring temperature and strain simultaneously is designed based on strain and temperature characteristics of TFBG.
     (3) A kind of method to measure bending radius using different modes of TFBG is presented for the first time by analyzing the bending of simple supported beam in theory. The bending of simple supported beam make the resonance peak wavelength of each mode of TFBG shift and resonance peak amplitude unchangeableness. So the wavelength of TFBG can be used to define the bending radius of simple supported beam. The response of different modes of TFBG are different. Temperature and bending can be measured simultaneously with a single TFBG based on this characteristic and temperature characteristic of TFBG.
     (4) In pure bending experiment of TFBG, it can be concluded that the resonance wavelengths of TFBG core mode and cladding modes are not sensitive to bending, resonance peak transmission power of cladding modes and curvature present linear relationship with different bending radius and transmission power of core mode and cladding modes of TFBG are not sensitive to temperature. Bending and temperature can be measured simultaneously using these characteristics to respectively measure core mode resonance wavelength and transmission power with a single TFBG.
     3. Demodulation and Multiplexing characteristics of fiber gratings are mainly studied. We have make progress including:
     (1) In some project application, it is more important to design a demodulation method which has the characteristics of simple structure and low cost than to design a demodulation method with a high resolution. We design a kind of demodulation system which is composed of double edges filter and has the advantages of low cost, quick response, easy operation and so on.
     (2) A FBG strain demodulation system based on TFBG, which is insensitive to temperature, is designed. When ambient temperature is changed, dynamic demodulation of FBG strain using a single TFBG without additional temperature compensation, which can eliminate the influence of temperature noise to strain signal, can be achieved.
     (3) There are many edges presenting linearity in transmission spectrum of high birefringence fiber loop mirror which can be used as edge filter groups. A multiplexing and demodulation system based on high birefringence fiber loop mirror, which has advantages of simply structure, wide linear edge and easy modulation.
     4. A strain measuring method based on measurands estimation data fusion is presented using many modes of TFBG in strain sensing experiment. Different modes of TFBG are used as different strain sensors in this method for the first time. This kind of method, which can get more accurate result than the method of calculating the arithmetic mean of limited sensors and can be used in sensors measuring system with normal distribution measuring result, has the advantages of easy calculation, easy program and high reliability.
     5. Common concept of sensor network is simply presented and a kind of celluar sensor network based on fiber grating is put forward. The celluar sensor network not only improves the multiplex ability but also change the simple sensor to be an intelligent sensor module while traditional fiber grating sensor network only considers its multiplex ability in design. This kind of sensor can measure several parameters simultaneously, improve the use factor of channel, communicate with other devices and also can ask to the center control computer. Queuing theory is used to analyze th system performance and calculate the average waiting time which can improve the reliability of the system.
引文
[1.1] K.O.Hill,Y.Fuji,D.C.Jonson,et al.Photosensitivity in optical fiber waveguides:Application to reflection filter fabrication. Appl. Phys.Lett. ,1978,32:647-649
    [1.2] G.Meltz, W.W.Morey and H.Glenn. Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt.Lett.,1989, 14: 823-825
    [1.3] K.O.Hill,B.Malo, F.Bilodeau, D.CJohnson,et al. Bragg grating fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Appl. Phys. Lett,. 1993,62:1035-1037
    [1.4] Riant and F.Haller. Study of the photosensitivity at 193nm and comparison with photosensitivity at 240nm influence of fiber tension: type IIA aginging. IEEE Journal of Lightwave Tech., 1997,15(8):1464-1469
    [1.5] W.X.Xie, P.Niay, P.Bernage, et al. Experimental evidence of two types of photorefractive effects occurring during photoinscriptions of Bragg gratings written within germanosilicate fiber. Optics Communications,1993,104:185-195
    [1.6] L.Dong and W.F.Liu. Thermal decay of fiber Bragg gratings of positive and negative index changes formed at 193 nm in a boron-codoped germanosilicate fiber. Applied Optics, 1997,36(31):8222-8226
    [1.7] J.L.Archambault, L.Reekie and P.St.Russell. 100% reflectivity Bragg reflectors produced in optical fibers by single excimer laser pulses. Electron.Lett. ,1993,29(5):453-455
    [1.8] A.Othonos amd K.Kslli. Fiber Bragg Gratings: fundamentals and Applications in Telecommuniccations and Sensing. Artech House,Boston,1999
    [1.9] Bhata and A.M.Vengsarkar. Optical fiber long-period gratings sensors. Opticcs Lett. ,1996,21(9):692-694
    [1.10] V.Bhata, D.Camphbell, R.O.Claus,et al. Simulaneous strain and temperature measurement with long-period gratings. Opticcs Lett. ,1997,22(9):648-650
    [1.11] HJ.Patrick, C.C.Chang, S.T. Vohhra. Long period fiber gratings for structural bend sensing. Electron. Lett. ,1998,34(18):1773-1775
    [1.12] H.J.Patrick,A.D.Kersey,F.Bucholtz,et al. Chemical sensor based on long-period fiber grating response to index of refraction. Lasers and Electro-Optics, 1997,11:420-421
    [1.13] R.Kashyap, R.Wyatt and R.J.Campbell. Wideband gain flattened erbium fiber amplifier using a photosensitive fiber blazed grating. Electron. Lett.,1993, 29(2):154-156
    [1.14]K.O.Hill et al.Efficient mode conversion in telecommunication fiber using externally written gratings.Electron.Lett.,1990,26(13):1270-1272
    [1.15]J.A.R.Williams,I.Bennion,K.Sugden et al.Fiber dispersion compensation using a chirped in-fiber Bragg grating.Electron.Lett..1994,30(12):985-987
    [1.16]姜萌.啁啾光纤光栅二维传感与解调的研究:[硕士学位论文].天津:南开大学,2007
    [1.17]R.Zengerle and O.Leminger.Phase-shifted Bragg Filters with improved transmission characteristics.IEEE Journal of Lightwave Tech.,1995,13:2354-2358
    [1.18]G.P.Agrawal and S.Radic.Phased-shifted fiber Bragg grating and their application for wavelength demultiplexing.IEEE Photonics Technology Lett.,1994,6(8):995-997
    [1.19]H.He,K.S.Chiang and J.H.Peng.Analysis of phase-shifted long-perion fiber grating.IEEE Photonics Technology Lett.,1998,10(11):1596-1599
    [1.20]Y.Liu,J.A.R.Williams,L.Zhang,et al.Phase-shifted and cascaded long-perion fiber gratings.Optics Communicationgs,1999,164:27-31
    [1.21]M.Ibsen,B.J.Eggleton,M.G.Sceats et al..Broadly tunable DBR fiber laser using sampled fiber Bragg gratings.Electron.Lett.,1995,31:37-38
    [1.22]M.A.Putnam,G.M.Williams and R.J.Friebele.Fabrication of tapered,strain-gradient chirped fiber Bragg gratings.Electron.Lett.,1995,31(4):309-310
    [1.23]I.Bennion,J.A.R.Williams,L.Zhang,et al..UV-written in-fiber Bragg grating.Optical and Quantum Electronics,1996,28:93-135
    [1.24]H.Storoy,H.E.Engan,B.Sahlgren,et al..Position weighting of fiber Bragg gratings for bandpass filtering.Opt.Lett.,1997,22(11):784-786
    [1.25]W.L.Schulz,E.Udd,J.M.Seim,et al..Advanced fibre grating strain sensor systems for bridges,structures,and highways.Proc SPIE 1998,3325:212-221
    [1.26]R.M.Measures,R.Maaskant,T.Alavie,et al..Fibre-optic Bragg gratings for bridge monitoring.Cement Concrete Composites,1997,9:21-23
    [1.27]D.R.Hjelme,L.Bjerkan,S.Neegard,et al..Application of Bragg grating sensors in the characterization of scaled marine vehicle modes.Appl Opt.,1997;36:328-3236
    [1.28]T.E.Hammon,A.D.Stokes.Optical fibre Bragg grating temperature sensor measurements in an electrical power transformer using a temperature compensated fibre Bragg grating as a reference.Proc.of the 11~(th) International Conference on Optical Fibre Sensors,1996:566-569
    [1.29]P.D.Foote.Fiber Bragg grating strain sensors for aerospace smart structures.Proc.of SPIE,1994,2361:162-166
    [1.30]S.Gupta,T.Mizunami,T.Yamao.et al..Fiber Bragg grating cryogenic temperature sensors.Appl.Opt,.1996,35(25):5202-5205.
    [1.31]M.LeBlanc,S.Y.Huang,M.Ohn et al..Distributed strain measurement based on a fiber Bragg grating and its reflection spectrum analysis.Opt.Lett.,1996,21(17):1405-1407
    [1.32]A.D.Kersey,M.A.Davis,H.J.Patrick,et al,Fiber grating sensors.J.Lightwave Technology,1997,15(8):1442-1463
    [1.33]童峥嵘,黄勇林、蒙红云等.一种新颖的光纤光栅位移传感的研究.传感技术学报,2002,15(1):10-13
    [1.34]黄勇林,童峥嵘,项阳等.用光纤光栅的啁啾效应实现温度不敏感的位移测量.中国激光,2002,A29(11):1015-1018
    [1.35]T.A.Berkoff and A.D.Kersey.Experimental demonstration of a fiber Bragg grating accelerometer.IEEE Photonics Technology Lett.,1996,8(12):1677-1679
    [1.36]E.J.Friebele,C.G.Atkins,M.A.Putnam,et al..Disatributed strain sensing with fiber Bragg grating array embedded in CRTM composites.Electron.Lett.,1994,30:1783-1784
    [1.37]Zhang Wei-Gang,Huang Yong-Lin,Xiang Yang,Tong,et al..Temperature -independent stress and displacement bi-directional sensing tuned by applying bilateral cantilever beam.Chinese Physical Lett.,2002,19(1)76-78
    [1.38]W.G.Zhang,X.Y.Dong,D.J.Feng,et al..Linear fibre-grating-type sensing tuned by applying torsion stress.Electron.Lett.,2000,36(20):1686-1688
    [1.39]J.L.Arce-Diego,R.Lopez-Ruisanchez,J.M.Lopez-Higuera,et al..Fiber Bragg grating as an optical filter tuned by a magnetic field.Opt.Lett.,1997,22(9):603-605
    [1.40]P.M.Cavaleiro,F.M.Araujo and A.B.Lobo Ribeiro.Metal-coated fiber Bragg grating sensor for electric current metering.Electron.Lett.,1998,34(11):1133-1135
    [1.41]Xinyong Dong,Hongyun Meng,Gui Yun Kai,et al..Bend measurement with chirp of fiber Bragg grating.Smart Materials and Structures,2001,10:1-3
    [1.42]Xinyong Dong,Yunqi Liu,Zhiguo Liu,et al..Simultaneous displacement and temperature measurment with cantilever-based fiber Bragg grating sensor.Opt.Comm,2001,192:213-217
    [1.43]Weigang Zhang,Zhaowen Xu,Xiaopeng Yang,et al..Study of fiber-type sensor of refractive indices and concentration of liquids.Proc.of SPIE,2001,4595:209-212
    [1.44]许兆文,盛秋琴,施可彬等.光纤光栅振动传感实验研究.南开大学学报(自然科学),2001,34(2):79-81
    [1.45]C.Y.Lin,L.A.Wang and G.W.Chern..Corrugated long-period fiber grating as strain,torsion,and bending sensors..Jour.of Lightwave Techn.,2001,19(8):1159-1168
    [1.46]A.D.Kersey..Optical fiber sensors for permanent downwell monitoring applications in the oil and gas industry.IEICE Trans.Electron.,2000,E83-C:400-404
    [1.47]R.Arai,A.Suumita,S.Makino..Large-scale hybrid monitoring system foe temperature,strain and vibration using fiber Bragg grating sensors..Proc.of SPIE,2002,4920:62-72
    [1.48]W.W.Morey,G.Meltz and W.H.Glenn.Fiber Bragg grating sensors.Proc.Of SPIE,1989,1169:98-107
    [1.49]W.W.Morey..Bragg-grating temperature and strain sensors.Proc.Of OFS.Paris,France,1989,526
    [1.50]M.G.Xu,L.Reekie,Y.T.Chow,et al..Optical in-fiber grating high pressure sensor. Electron. Lett., 1993,29(4):398-399
    [1.51] M.GXu, H.Geiger, J.P.Dakin. Fiber grating pressure sensor with enhanced sensitivity using a glass-bubble housing. Electron. Lett., 1996,32(2): 128-129
    [1.52] Yunqi Liu, Zhuanyun Guo, Ying Zhang,et al.. Simultaneous pressure and temperature measurement with a polymer-coated fibre Bragg grating. Electronics Letters.,2000, 36(6): 564-566
    [1.53] Ying Zhang, Dejun Feng, Zhiguo Liu, et al.. High-Sensitivity Pressure Sensor Using a Shielded Polymer-Coated Fiber Bragg Grating. Photonics Technology Letter.,2001,13(6):618-619
    [1.54] D.A.Jackson ,A.B. Lobo Ribeiro, L.Reekie,et al.. Simple multiplexing scheme for a fiber-optic grating sensor network.. Opt. Lett., 1993,18(14):1192-1194
    [1.55] M.A. Davis and A.D.Kersy. Matched-filter interrogation technique for fiber Bragg grating arrays. Electron. Lett. ,1995,31(10):822-823
    [1.56] L.a. Ferreira ,J.L. santos, F. Farahi.Pseudoheterodyne demodulation technique for fiber Bragg grating sensors using two marched gratings.IEEE Photo.Techn.Lett.,Vol.l997,9(4):487-489
    [1.57] A.D.Kersey, T.A.Berkoff and W.W.Morey. Multiplexed fiber Bragg grating sreain-sensor system with a fiber Fabry-Perot wavelength filter. Opt. Lett.,1993,18(16):1370-1372
    [1.58] M.A.Davis, D.GBellemore and M.A.Putnam,et al.. Interrogation of 60 fiber Bragg grating sensors with microstrain resolution capability. Electron. Lett.,1996,32(10): 1393-1394
    [1.59] Y.N.Ning, A.Meldrum, J. Shiw. Bragg Grating sensing instrument using a tunable Fary-perot filter to detect wavelength variations. Meas. Sci.& Teechnol. ,1998,9(6):599-606
    [1.60] Serge M.Melle, Kexing Liu and Raymond M.Measures. A passive wavelength demodulation system for guided-wav Bragg grating sensors. IEEE Photo.Tech.Lett.,1992,4(5):516-518
    [1.61] M.A.Davis and A.D.kersey. All-fiber Bragg grating strain-sensor demodulation technique using a wavelength division coupler. Electron. Lett., 1994,30(1):75-77
    [1.62] A.B.Lobo Riberiro, L.A.Ferreira, M.tsvetkov,et al.. All-fiber interrogation technique for fiber Bragg sensors using a biconical fiber filter.Electron.Lett.,1996,32(4):382-383
    [1.63] A.D.Kersey, T.A.Berkoff and W.W.Morey. High-resokution fiber-grating based strain sensor with interferometric wavelength-shift detection.Electron. Lett.,1992,28(3):236-238
    [1.64] A.D.Kersey and T.A.Berkoff. Dual wavelength fiber interferometer with wavelength selection via fiber Bragg grating elements. Electron. Lett., 1992,28, (13): 1215-1216
    [1.65]R.S.Weis,A.D.Kersey and T.A.Berkoff.A four-element fiber grating sensor array with phase-sensitive detection.IEEE Photo.Tech.Lett.,1994,6(12):1469-1472
    [1.66]Y.J.Rao,D.A.Jackson,L.Zhang,et al..Combined spatial- and time-division -multiplexing scheme for fiber grating sensors with drift-compensated phase-sensitive detection.Opt.Lea.,1995,20(20):2149-2151
    [1.67]余有龙,谭华耀,锺永康.基于干涉解调技术的光纤光栅传感系统.光学学报,2001,21(8):987-989
    [1.68]余有龙,谭华耀.有源波、空分复用光纤光栅传感网络.中国激光,2002,A29(2):131-134
    [1.69]Dong X.P..Mulitiwavelength erbium-doped fibre laser based on a high-birefringence fibre loop mirror.Electron.Lett.,2000,31(19):1609-1610
    [1.70]Y.J.Rao,D.A.Jackson,L.Zhang,et al..Dual-cavity interferometric wavelength-shift detection for in-fiber Bragg grating sensors.Opt.Lett.,1996,21(19):1556-1558
    [1.71]王耀南,李树涛.多传感器信息融合及其应用综述.控制与决策,2001,1 6(5),518-522[1.72]王会清,韩艳玲.基于多传感器与数据融合技术的研究.计算机与现代化,2002,(9),64-67
    [1.73]蓝金辉,马宝华,蓝天等.D-S证据理论数据融合方法在目标识别中的应用.清华大学学报(自然科学版),2001,4 1(2),53-55
    [1.74]刘俊,付警奇,董新平.数据融合在目标识别中的应用.传感器技术,2001,20(6),8-11
    [1.75]罗志增,蒋静坪.相关证据的融合及其在机器人多感觉信息融合中的应用.传感器学报,2000,(3),177-182
    [1.76]庄庆德.传感器网络的研究现状.国外电子测量技术,2005,4:3-7
    [1.77]李志刚,周兴社.传感器网络.计算机应用研,2004,12:9-12
    [2.1]A.Yariv.Coupled-mode theory for guided-wave optics.IEEE J.of Quantum Electron..1973,QE-9:919-933
    [2.2]V.Mizrahi.Optical properties of photosensitive fiber phase gratings.IEEE J.Lightwav.Techn.,1993,11:1513-1517
    [2.3]H.Kogelnik.Filter response of non uniform almost-periodic structures.Bell syst.Tech.J.,1976,55(1):109-126
    [2.4]M.Yamada and K.Sakuda.Analysis of almost periodic distributed feedback slab waveguides via a fundamental matrix approach.Appl.Opts.,1987,26(16):3474-3478
    [2.5]Weller-Brophy L.A.and Hall D.G.Analysis of waveguide gratings:a comparison of the results of Rouard's method and coupled-mode theory.J.Opt.Soc.Am.,1987,A4(1),60-65
    [2.6]H.Kogelnick.Filter response of non uniform almost-periodic gratings.Bellsystem.Tech.J.,1976,55(1):106-126
    [2.7]K.O.Hill.Bragg grating fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask.Applied Physics Letters,1993,62(10):1035-1037
    [2.8]Li Yufeng,Mark Froggatt and Turan Erdogan.Volume current method for analysis of tilted fiber gratings.IEEE Journal of lightwave Technology,2001,19(10):1580-1591
    [2.9]董孝义.光波电子学.南开大学出版社.1987,11
    [2.10]T.Erdogan.Fiber grating spectra.IEEE J.Lightwav.Techn.,1997,15(8):1277-1294
    [2.11]Lee Kyung Shik and Erdogan Turan.Fiber mode coupling in transmissive and reflective tilted fiber gratings.Appl Opt,2000,39(9):1394-1404
    [2.12]Li Yufeng,Mark Froggatt and Turan Erdogan.Volume current method for analysis of tilted fiber gratings.IEEE Journal of lightwave Technology,2001,19(10):1580-1591
    [2.13]刘波.光纤光栅传感网络技术研究与应用:[博士后出栈报告].天津:南开大学,2006
    [2.14]Erdogan T.Cladding-mode resonances in short- and long period fiber grating filters.J Opt Soc Amer A.,1997,14(8):1760-1773
    [2.15]Liang Dong,Beatriz Ortega and Laurence Reekie.Coupling characteristics of cladding modes in tilted optical fiber Bragg gratings.Appl Opt.,1998,37(22):5099-5105
    [2.16]Hewlett S J,Love J E and Meltz G et al.Coupling characteristics of photo-induced Bragg gratings in depressed-and matched cladding fiber.Optical and Quantum Electronics,1996,28:1641-1654
    [3.1]Erdogan T and Sipe J E.Tilted fiber phase gratings.J Opt Soc Amer A.,1996,13(2):296-313
    [3.2]Meltz G,Morey W W,and Glenn W H.In-fiber Bragg grating tap.Optical Fiber Communications Conference,San Francisco,Calif..1990,paper TuG1
    [3.3]Kashyap R,Wyatt R and Campbell R J.Wideband gain flattened erbium fiber amplifier using a photosensitive fiber blazed grating.Electron Lett,1993,29(2):154-156
    [3.4]Rachel Parker and C Martijn de Sterke.Reduced cladding mode losses in tilted gratings that are rotationally symmetric.Journal of lightwave Technology,2000,18(2):2133-2138
    [3.5]Laffont G and Rerdinand P.Tilted short-period fiber-Bragg-grating-induced coupling to cladding modes for accurate refractometry.Meas Sci Technol.,2001,12:765-770
    [3.6]Pavel Ivanoff D C Reyews and Paul S Westbrook..Tunable PDL of twisted-tilted fiber gratings.IEEE Photon Technol Lett.,2003,37(15):828-830
    [3.7]Seungin Beak,Yoonchan Jeong,and Byoungho Lee.Characteristic of short-period blazed fiber Bragg gratings for use as macro-bending sensors.Applied Optics,2002,41(4):631-636
    [3.8]Zhou K,Simpson A G,Zhang L,et al.Side detection of strong radiation-mode out-coupling from blazed FBGs in single-mode and multimode fibers.IEEE Photon Technol Lett.,2003,15(7):936-938
    [3.9]Simpson A G,Zhou Kaiming,Zhang Lin,et al.Optical sensor interrogation with a blazed fiber Bragg grating and a charge-coupled device linear array.Appl Opt.,2004,43(1):33-40
    [3.10]Chen Xianfeng,Zhou Kaiming,Zhang Lin,et al.Optical chemsensor based on etched tilted Bragg grating structures in multimode fiber.IEEE Photon Technol Lett.,2005,17(4):864-866
    [3.11]Zhao Chun-Liu,Yang Xiufeng,Demokan M S,et al.Simultaneous temperature and refractive index measurements using a 3° slanted multimode fiber Bragg grating.IEEE Journal of lightwave Technology,2006,24(2):879-883
    [3.12]刘崇琪.具有倾角的光纤光栅反射特性的研究.光通信研究,2000,4:49-51
    [3.13]Zhao Zhiyong,Zhang Shuang,Yu Yongsen,et al.Fabrication of a tilted fiber Bragg grating with a designed reflection spectrum profile.Opt.Lett.,2004,29(3):244-246
    [3.14]H.Storoy,H.E.Engan,B.Sahlgren,et al.Position weighting of fiber Bragg gratings for bandpass filtering.Opt.Lett.,1997,22(11):784-786
    [3.15]Cole M.J.,Loh W.H.,Laming R.I.,et al.Moving fiber/phase mask-scanning beam technique for enhanced flexibility in producing fiber gratings with a uniform phase mask.Electron.Lett.,1995,31(17):92-94
    [3.16]Hill K.O.,Bilodeau F.,Malo B.,et al.Efficient mode conversion in telecommunication fiber using externally written gratings.Electron.Lett.,1990,26:1270-1272
    [3.17]Narayanan C..Band-rejection fiber filter using period core deformation.Electron.Lett.,1997,33(4):280-281
    [3.18]Davis D.D.,Gaylord J.K.,Glytsts E.N,et al.Long-period fiber grating fabrication with focused CO_2 laser pulses.Electron.Lett.,1998,34:302-303
    [3.19]G.Meltz,W.W.Morey,and N.J.Doran.Formation og Bragg gratings in optical fibers by a transverse holographic method.Opt.Lett.,1989,14:823-825
    [3.20]Erdogan T and Sipe J E.Tilted fiber phase gratings.J Opt Soc Amer A,1996,13(2):296-313
    [3.21]关柏鸥,刘志国,开桂云等.光纤光栅温度传感器.传感技术学报,1999,6:89-93
    [3.22]贾振安,乔学光,傅海威.光纤光栅温度灵敏度系数研究.光电子·激光,2003,14(5):453-456
    [3.23]胡曙阳,赵启大,张宁等.一种高灵敏度光纤Bragg光栅温度传感器.光电子·激光,2004,15(2):147-149
    [3.24]詹亚歌,蔡海文,向世清等.高分辨率光纤光栅温度传感器的研究.中国激光,2005,32(1):83-86
    [3.25]钱振明.光弹性中的矩阵理论和散光法.重庆:科学技术文献出版社重庆分社.1990
    [3.26]Gafsi R,E1-Sherif M A.Analysis of induced-birefringence effects on fiber Bragg gratings.Opt Fiber Technol,2000,6:299-323
    [3.27]涂勤昌.光纤光栅非均匀应变及温度场传感研究:[硕士学位论文].天津:南开大学,2006
    [3.28] A. D. Kersey, M. A.Davis, H.J.Patrick, et al.Fiber grating sensors.J Lightwave Technology, 1997,15:1442-1463
    [3.29] H.Y.Liu, G.D.Peng, P.L.Chu.Thermal stability of gratings in PMMA and CYTOP polymer fibers. Opt. comm.,2002,204, 151-156
    [3.30] J.L.Archam, S.G. Grubb.Fiber gratings in lasers and amplifiers.J. Lightwave Technology, 1997,15(8): 1378-1379
    [3.31] K.S. Lee, T. Erdogan.Fiber mode coupling in transmissive and reflective tilted fiber gratings.Applied optics,2000,39:1394-1404
    [3.32] CHEN Xian-feng, ZHOU Kai-ming, ZHANG Lin, et al.Optical chemsensor based on etched tilted Bragg grating structures in multimode fiber. IEEE Photon Technol Lett .,2005,17(4), 864-866
    [3.33] ZHAO Chun-liu, YANG Xiu-feng, and JIN W.Simultaneous temperature and refractive index measurements using a 3° slanted multimode fiber Bragg grating.J. Lightw Technol,2006,24(2):879-883
    [3.34] H. J. Patrick, C. C. Chang, S. T. Vohra. Long period fiber gratings for structural bend sensing[J].Electron. Lett., 1998, 34 :1773-1775.
    [3.35] A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, et al. Long-period fiber gratings as band-rejection filters.Journal of Lightwave Technology,1996,14:58-65
    [3.36] X. Chen, K. Zhou, L. Zhang ,et al.Optical chemsensor based on etched tilted Bragg grating structures in multimode fiber.IEEE Photonics Technol. Lett. 1998,17:864-866
    [3.37] K. S.Lee, T.Erdogan.Fiber mode coupling in transmissive and reflective tilted fiber gratings.Applied optics,2000,39:1394-1404
    [3.38] C. Chen, L. Xiong, A. Jafari, et al. Differential sensitivity characteristics of tilted fiber Bragg grating sensors. Proc. of SPIE,2005,6004:6004B
    [3.39] C. Caucheteur, K. Chah, F. Lhomme, et al. Simultaneous bend and temperature sensor using tilted FBG.Proc. of SPIE,2005 ,5855: 707-710
    [3.40] Ye C C, James S W, Tatam R P. Simultaneous temperature and bend sensing with long-period fiber gratings. Opt. Lett.,2000, 25(14): 1007-1009
    [3.41] Dong, X., Y, Liu, Z. Liu et al.. Simultaneous displacement and temperature measurement with cantilever-based fiber Bragg grating sensor. Opt. Commun.,2001,192(3):213-217
    [3.42] Young-Geun Han, Ju Han Lee, and Sang Bae Lee.Discrimination of bending and temperature sensitivities with phase-shifted long-period fiber gratings depending on initial coupling strength.Optics Express,2004,12(14):3204-3208
    [3.43] C. C. Ye, S. W. James, and R. P. Tatam.Simultaneous temperature and bend sensing with long-period fiber gratings.Optics Letters,2000,25(14):1007-1009
    [3.44] Young-Geun Han. Simultaneous measurement of bending and temperature based on a single sampled chirped fiber Bragg grating embedded on a flexible cantilever beam.Optics Letters,2006,31 (19):2839-2841
    [3.45]M.J.Giinder,W.N.Mxcl'hcrson,R.Mcnridc.Bend measurement using Bragg gratings in multicore fiber.Electronics Letters,2000,36(2):120-121
    [3.46]G.Laffont and P.Ferdinand.Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry.Meas.Sci.Technol,2001,12:765-770
    [3.47]K.S.Lee,T.Erdogan.Fiber mode coupling in transmissive and reflective tilted fiber gratings.Applied optics,2000,39:1394-1404
    [4.1]BERKOFF T.A,KERSEY A.D.Fiber Bragg grating array sensor system using a bandpass wavelength division multiplexer and interferometric detection.IEEE Photon Technol Lett.,1996,8(11):1552-1524
    [4.2]Y.J.Rao,K.K.Kalli,G.Brady,et al..Spatially multiplexed fiber-optic Bragg grating strain and temperature sensor system based on interferometric wavelength-shift detection.Electron.Lett.,1995,31(12):1009-1010
    [4.3]T.A.Berkoff and A.D.Kersey.Eight element time-division multiplexed fiber grating sensor array with integrated-optic wavelength discriminator.Proc.of SPIE,1994,2316:350-353
    [4.4]徐宁,赵洪,张健等.利用波分复用器实现FBG动态传感解调.哈尔滨理工大学学报,2006,11(2):127-129
    [4.5]KERSEY A D,BERKOFF TA.Multiplexed Fiber Grating Strain-sensor System with Fabry-Perot Wavelength Filter.Opt.Lett.,1993,18(16):1370-1372
    [4.6]DAV ISM A,KERSEY A D.Matched-filter Interrogation Technique for Fiber Grating Arrays.Electron.Lett.,1995,31(10):822-823
    [4.7]JUNG J,NAM H,LEE B,et al.Fiber Bragg Grating Temperature Sensor with Controllable Sensitivity.App 1.Opt.,1999,38(13):2752-2574
    [4.8]LOBO A B,R IBEIRO L,FERREIRA L A,et al.Analysis of the Reflective-Matched Fiber Bragg Grating Sensing Interrogation Scheme.Appl.Opt.,1997,36(4):934-939
    [4.9]张健.闪耀光纤光栅传感特性及光纤光栅解调技术的实验研究:[硕士学位论文].天津:南开大学,2007
    [4.10]Zhou K,Simpson A G,Zhang Let al..Side-detection of strong radiation mode out-coupling from blazed FBGs in single-mode and multimode fibers.IEEE Photon Technol Lett.,2003,15(7):936-938
    [4.11]Carcheteur C and Megret P.Demodulation technique for weakly tilted fiber Bragg grating refractometer.IEEE Photon Technol Lett.,2005,17(12):2703-2705
    [4.12]陈少华.基于GSM数字移动网的光纤光栅传感网络系统:[博士学位论文].天津:南开大学,2004
    [4.13]Lee Byeong Ha,Kim Young-Jae,Chung Y,et al..Analytic Solution for Cascaded Long-period Fiber Gratings.IEICE Trans.Electron,2001,E842C(5):621-628
    [5.1]Waltz E,Lilnas J.Multisensor data fusion.Boston:Artech House.2000,9-17
    [5.2]HalD L,Llinas J.An Introduction to Multi-sensor Data Fusion.Proc.of IEEE,2004,85(1):6-23
    [5.3]Ayari I,Haton J P.A framework for multi-sensor data fusion.Proc.of IEEE on symposium on emerging technologies and factory automation,1995,2:51-59
    [5.4]Linn R J,Hall DL.A survey of data fusion systems.In Proc.of SPIE on data structure and target classification,1991,13-36
    [5.5]Nigay L,Coutaz J.A Generic platform for addressing the multimodal challenge.Proc.of conference on human factors in computing system,1995,1:98-105
    [5.6]Sentinella D J,Raines A G.Real time data fusion.IEE Colloq(Digest).1997,55:5/1-5/3
    [5.7]Schoess J,Castore G.A distributed sensor architecture for advanced aerospace systems.Proc.of SPIE on Sensor Fusion,1988,74-86
    [5.8]Bruzzone L,Fernandez D,Vernazza G.Data fusion experience:from industrial visual inspection to space remotesensing application.Proc,of academic and industrial cooperation in space research,1998,147-151
    [5.9]Kelly G.Data fusion:from metrology to process measurement.NPL internal report INTERSECT.1998
    [5.10]严怀成,黄心汗,王敏.多传感器数据融合技术与其应用.传感技术学报.2005,24(10):1-4
    [5.11]郭惠勇.多传感器信息融合技术的研究与进展.中国科学基金,2005,1:17-21
    [5.12]Pan H,Michael D M,Lendjel M.Inference Algotithms in Bayesian Networks and the Probanet System.Digital Signal Processing,1998,8(4):231-243
    [5.13]N H Yu,Y Yin.Multiple Level Parallel Decision Fusion Model with Distributed Sensors Based on Dempster-Shafer Evidence Theory.Proc.of Second Int'l Conf.Machine Learning and Cybernetics,2003,11
    [5.14]H Hong,H Chong-Zhao,Z Hong-Yan,et al.Multi-Target Tracking Based on Multi-Sensor Information Fusion with Fuzzy Inference.Control and Decision,2004,19(3):272-276
    [5.15]J Kittler.Multi-Sensor Integration and Decision Level Fusion.Proc.of IEEE on Workshop Intelligent Sensor,2001,6/1-6/6
    [5.16]J B Gao,C J Harris.Some Remarks on Kalman Filters for the Multisensor Fusion.Elsevier Information Fusion,2001,3:191-201
    [5.17]S P Chaudhuri,S Das.Neural Networks for Data Fusion.Proc.Of IEEE on System Engineering,1990:327-330
    [5.18]Duncan Smith,Sameer Singh.Approaches to Multisensor Data Fusion in Target Tracking:A Survey.IEEE Transactions on Knowledge and Data Engineering,2006,18(12):1696-1710
    [5.19]李国玉.智能压力传感器的设计:[硕士学位论文].天津:河北工业大学,2004
    [5.20]藤召胜.基于多传感器数据融合的热处理炉温度测量方法.计量学报,2000,21(2):148-152
    [5.21]赵文辉.多光纤传感器数据采集与数据融合方法研究:[硕士学位论文].哈尔滨:哈尔滨工程大学,2003
    [6.1]郭梯云,邬国扬,李建东.移动通信.西安电子科技大学出版社,2002
    [6.2]吴功宜.计算机网络.清华大学出版社,2007
    [6.3]G J Pittie,W J Kaiser.Wireless Integrated Network Sensors.Communications of the ACM,2000
    [6.4]童峥嵘.光纤光栅传感网络及解调技术的研究:[博士学位论文].天津:南开大学,2003
    [6.5]徐光辉.随机服务系统.北京:科学出版社,1988
    [6.6]孙荣桓,李建平.排队论基础.北京:科学出版社,1988
    [6.7]王敬,杨德礼,有限队列GI|M|1|N排队系统.大连理工大学学报,1995,35(4):579-584
    [6.8]曾华,江世宏,刘义永.零件加工生产费用最低化的排队论分析.统计与决策,2005,2:132-133
    [6.9]宗群,魏利剑,程义菊等.基于马尔可夫网络排队论的电梯交通建模及应用.天津大学学报,2005,38(1):9-13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700