用户名: 密码: 验证码:
双羧酸化合物的合成、结构及配位性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羧酸是构筑配合物的常用配体,羧基配位模式多样化,配位能力强,易与金属离子配位,形成具有多维度网络结构的配合物。这类配合物在吸附分离、催化、磁性材料和光材料等领域显示出潜在的应用前景,此外还可以作为低密度多孔材料,用于储存甲烷和氢气等燃料气体,所以越来越受到化学研究者的青睐。双羧酸类化合物具有多个配位氧原子,易与金属离子形成结构稳定且具有新型功能的配合物。这对配位化学及材料科学等学科的发展都具有重要的意义。
     本文合成了七种双官能团化合物:1,3-亚丙基双(氧-3-苯甲酸)(L1)、1,4-亚丁基双(氧-3-苯甲酸)(L2)、1,3-亚丙基双(氧-4-苯甲酸)(L3)、1,4-亚丁基双(氧-4-苯甲酸)(L4)、双(3-氟-4-氰基苯氧基)丙烷(L5)、双(3-氟-4-氰基苯氧基)乙烷(L6)以及双(3-氟-4-氰基苯氧基)丁烷(L7)。在水热条件下,使用L3的前体1,3-亚丙基双(氧-4-苯甲酸乙酯)与La2(NO3)3·6H2O反应,合成了配合物[La2(L)2(HL)2]{L为1,3-亚丙基双(氧-4-苯甲酸根)};使用L1合成了四种甲酸根与过渡金属的配位聚合物{[M(HCOO)3][(CH3)2NH2]}n [M = Co、Ni、Zn、Mn],并用元素分析、红外光谱、热重分析及X-射线衍射分析等方法对其结构进行了表征。在反应过程中,L1分解生成甲酸。四种配合物结构相似,均为三斜晶系,空间群R-3c。在配合物的晶体结构中,甲酸根为双齿配位,与中心的金属离子形成八面体结构。这四种配合物结构中存在~6 ?×6 ?×6 ?大小的孔洞,因此这些配合物有望用于气体储存材料。
Carboxylic acids are the most usefully ligands to build the complex. Carboxyl groups have variety of coordination modes and strong ability of coordination with the metal ions, so they can form the multi-dimensional network structures. These complexes can be used potentially in many fields, such as adsorption separation, catalysis, magnetic materials and optical materials etc. In addition, they can be used to store the gas fuel like methane and hydrogen as the low density porous material, so close attention has been paid to these complexes by more and more chemical researchers. Dicarboxylic compounds have many oxygen atoms, which can coordinate with metal ions, and can form the structural stability and novel functional complex materials. It is important to the development of coordination chemistry, material science and other sciences.
     Seven bifunctional compounds, such as 1,3-propyl-bis(oxy-3-benzoic acid) (L1), 1,4-butyl-bis(oxy-3-benzoic acid) (L2), 1,3-propyl-bis(oxy-4-benzoic acid) (L3), 1,4-butyl -bis(oxy-3-benzoic acid) (L4), bis(3-fluoro-4-cyano-phenoxy)propane (L5), bis(3-fluoro-4-cyano-phenoxy)ethane (L6), bis(3-fluoro-4-cyano-phenoxy)butane (L7) have been synthesized. The complex [La2(L)2(HL)2] have been synthesized by the reaction of diethyl 1,3-propylidenebis(4-oxybenzoate) and La2(NO3)3·6H2O. Four coordination polymers {[M(HCOO)3] [(CH3)2NH2]}n [M = Co、Ni、Zn、Mn] have been synthesized by the reaction of L1 and transition metal salts in high purity and higher yield under mild hydrothermal conditions. L1 was decomposed into formate in this reaction condition.These compounds have been characterized by EA, IR, TGA and X-ray diffraction analysis. They have similar composition with the difference in the center metal atoms, and all complexes crystallize in the trigonal systems and space groups R-3c. In the crystal structures of all the four compounds, the formats as the bidentate ligand coordinate with the metal atoms to form the octahedral structure. Approximately 6 ?×6 ?×6 ? void exist in {[M(HCOO)3] [(CH3)2NH2]}n, so they can be used as gas-storage materials.
引文
[1]洪茂春,陈荣,梁文平, 21世纪的无机化学,科学出版社, 2005.
    [2] Venkatachlam V, Ramalinggam K, Akilan R, et al., [1,2-Bis(diphenylphosphino) etgane-p, p'](4-morpholinecarbodithioato-s,s') nickel (II) perchlorate dichloromethane solvate, Ployhedron, 1996, 15: 1289.
    [3] You X-Z., Meng Q-J., Han W-S., Ed. Progress in coordination chemistry [M], Higher Education Press.
    [4] Chae1 H K, Siberio-Pérez D Y, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals [J]. Nature, 2004, 427: 523-527.
    [5] Fletcher A J, Cussen E J, Bradshaw D, et al. Adsorption of gases and vapors on nanoporous Ni2 (4, 4’-bipyridine)3 (NO3)4 metal-organic framework materials templated with methanol and ethanol: structural effects in adsorption kinetics [J]. J Am Chem Soc, 2004, 126: 9750-9759.
    [6] Skoulidas A I. Molecular dynamics simulations of gas diffusion in metal-organic frameworks: argon in CuBTC [J]. J Am Chem Soc, 2004, 126: 1356-1357.
    [7] Eddaoudi M, Moler D B, Li H, et al. Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks [J]. Acc Chem Res, 2001, 34: 319-330.
    [8] Ockwig N W, Delgado-Friedrichs O, O’Keeffe M, et al. Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks [J]. Acc Chem Res, 2005, 38: 176-182.
    [9] Keeffe M O, Eddaoudi M, Li HL et al. Frameworks for Extended Solids: Geometrical Design Principles [J]. J Solid State Chem, 2000, 152: 3-20.
    [10] Desiraju GR. Crystal engineering. From molecules to materials [J]. J Mol Struc, 2003, 656: 5-15.
    [11]林之恩,杨国昱.多孔材料化学:从无机微孔化合物到金属有机多孔骨架[J].结构化学, 2004, 12: 1388-1398.
    [12]王雪蓓,王继业,宋会花.有机羧酸配位聚合物[J].化学通报, 2005, 68: 1-7.
    [13]孙为银,配位化学[M].北京:化学工业出版社, 2004,第1版: 17-19.
    [14] Rowsell Jesse L C, Yaghi O M. Metal-organic frameworks: a new class of porous materials [J]. Microporous Mesoporous Mater, 2004, 73: 3-14.
    [15]魏文英,方键,孔海宁等.金属有机骨架材料的合成及应用[J].化学进展, 2005, 11: 1110-1115.
    [16] Chen Zhenxia, Zhou Yaming, Weng Linhong, and Zhao Dongyuan, Mixed-Solvothermal Syntheses and Structures of Six New Zinc Phosphonocarboxylates with Zeolite-type andPillar-Layered Frameworks [J]. Cryst Grow & Des, 2008, 8(11): 3123-3126.
    [17] Kim YooJin and Jung Duk-Young, Conformation change of the cyclohexanedicarboxylate ligand toward 2D and 3D La(III)-organic coordination networks, [J]. Chem Commun, 2002, 908-909.
    [18] Huang L, Wang H, Chen J, et al. Synthesis morphology control and properties of porous metal-organic coordination polymers [J]. Microporous and Mesoporous Materials, 2003, 58: 105-114.
    [19]周元敬,杨明莉,武凯,鲜学福,金属-有机骨架(MOFs)多孔材料的孔结构调节途径[J].材料科学与工程学报, 2007, 25 (2): 307-313.
    [20] Yaghi O M, Li H, Davis C, et al. Synthetic Strategies, Structure Patterns, and Emerging Properties in the Chemistry of Modular Porous Solids [J]. Acc Chem Res, 1998, 37: 474-484.
    [21] YanS P, PanX Y, Lucille F T, Jian H Z, Charles J O Connor, Doyle B, Oren P A, Lawrence Q J, [J]. Inorg Chim Acta, 1996, 243, 1.
    [22] Sheila M J A, Sun Z M, Pardi L, Krzystek J, Folting K, Brunei L C, Rheingold A L, George C, Hendrickson D N. Reduced Anionic Mn12 Molecules with Half-Integer Ground States as Single-Molecule Magnets [J]. Inorg Chem, 1999, 38: 5329.
    [23] Zeng M H, Zhang W X, Sun X Z, Chen X M, Spin canting and metamagnetism in a 3D homometallic molecular material constructed by interpenetration of two kinds of cobalt(II)-coordination-polymer sheets. Angew.Chem. Int. Ed .Engl., 2005, 44: 3079.
    [24] Haque M R, Rasmussen M. Ambident heterocyclic reactivity: Intramolecular alkylations of 2,4–disubstituted benzimidazoles[J]. Tetrahedron, 1997, 53 (20): 6937-6958
    [25]孔丽丽,高山等,一维链状镉(Ⅱ)配位聚合物{[Cd(PAc)2(4,4’-bipy)(H2O)]·4H2O}n的合成、晶体结构及热稳定性研究[J].无机化学学报, 2008, 24 (4): 661-664.
    [26] Zhang X.-L, Ng S W. Poly [ [ diaquatris (4,4'-bipyridine-N,N') tetrakis (phenylacetato-O) dinickel (II) ] dihydrate] [J]. Acta Cryst., 2005, E61: m1498-m1500.
    [27] Wang Z M, Zhang B, Fujiwara H, et al. Mn3(HCOO)6: a 3D porous magnet of diamond framework with nodes of Mn-centered MnMn4 tetrahedron and guest-modulated ordering temperature [J]. Chem Commun, 2004, 416-417.
    [28] Zheng X J, Li L C, Jin L P, et al. Hydrothermal syntheses, structures and magnetic properties of two transition metal coordination polymers with a square grid framework Polyhedron, 2004, 23: 1257-1262
    [29] Rowsell Jesse L C, Yaghi O M. Metal-organic frameworks: a new class of porous materials [J]. Microporous and Mesoporous Materials, 2004, 73: 3-14.
    [30] Eddaoudi M, Kim J, Yaghi O M, et al. Systematic Design of Pore Size and Functionality inIsoreticular MOFs and Their Application in Methane Storage [J]. Science, 2002, 295: 469-472.
    [31] Rosi N L, Eddaoudi M, Keeffe M O, et al. Advances in the chemistry of metal–organic frameworks [J]. Cryst Eng Comm, 2002, 68: 401-404.
    [32] Pan L, Adams K M, Wang X T, et al. Porous Lanthanide-Organic Frameworks: Synthesis, Characterization, and Unprecedented Gas Adsorption Properties [J]. J Am Chem Soc, 2003, 125: 3062-3067.
    [33] Dinca M, Long J R. Strong H2 Binding and Selective Gas Adsorption within the Microporous Coordination Solid Mg3(O2C-C10H6-CO2)3 [J]. J Am Chem Soc, 2005, 127: 9376 -9377.
    [34] Pan L, Parker B, Huang X Y, et al. Zn(tbip) (H2tbip = 5-tert-Butyl Isophthalic Acid): A Highly Stable Guest-Free Microporous Metal Organic Framework with Unique Gas Separation Capability [J]. J Am Chem Soc, 2006, 128: 4180-4181.
    [35] Pan L, Olson D H, Ciemnolonski L R, et al. Separation of Hydrocarbons with a Microporous Metal–Organic Framework [J]. Angew Chem Int Ed, 2006, 45: 616-619.
    [36] Chao C C. Process for separating nitrogen from mixture there of with less polar substances [P]. US: 4 859 217, 1989-08-22.
    [37] Wang R H, Zhou Y F, Sun Y Q, Yuan D Q, Han L, Lou B Y, Wu B L, Hong M C. Syntheses and Crystal Structures of Copper(II) Coordination Polymers Comprising Discrete Helical Chains [J]. Cryst Grow & Des, 2005, 5, 251.
    [38] Wang X L, Qin C, Wang E B. Polythreading of Infinite 1D Chains into Different Structural Motifs: Two Poly(pseudo-rotaxane) Architectures Constructed by Concomitant Coordinative and Hydrogen Bonds [J].Cryst Grow & Des, 2006, 6(2): 439-443.
    [39] Gomez L B, Gutierrez P E, Iglesias M, et al. Novel 2D and 3D Indium Metal-Organic Frameworks: Topology and Catalytic Properties [J]. Chem. Mater, 2005, 17(10): 2568-2573.
    [40] Wynn C M, Albrecht A S, Landee C P et al. Resonance in the Nonlinear Susceptibilities of Co3BTCA2(H2O)4, a Molecular-Based Magnet [J]. J Solid State Chem., 2001, 159(2): 379-384.
    [41] Zhang W, Bruda S, Landee C P. Structures and magnetic properties of transition metal complexes of 1,3,5-benzenetricarboxylic acid [J].Inorg Chim Acta, 2003, 342: 193-201.
    [42] Wang Shuo, Lu Xiaoming, 1,3,5-Benzenetricarboxylate Metal-Organic Multi-dimension Framework Complexes [J] Chemistry, 2007, 7: 49-57.
    [43] Schlichte K, Kratzke T, Kaskel S. Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2 [J]. Microporous and Mesoporous Materials, 2004, 73: 81-88.
    [44] (a) Zhang X, Guo G C, et al. Self-assembly of silver(I) coordination polymers with novel layered open network structures based on a flexible double betaine ligand [J]. J. Chem.Soc., Dalton Trans, 2002: 1344-1349. (b) Szlyk E, Szyman’ska, Surdykowski A et al. X-Ray crystal structure of [Ag4 (μ-dppm)2 (μ-C2F5COO)4]. Synthesis and spectroscopy of silver(I) perfluorinated carboxylate complexes with bis(diphenylphosphino)methane [J]. J. Chem. Soc., Dalton Trans, 2003: 3404-3410. (c) Sun D, Cao R, Weng J et al. A novel luminescent 3D polymer containing silver chains formed by ligand unsupported Ag–Ag interactions and organic spacers [J]. J. Chem. Soc., Dalton Trans, 2002: 291-292.
    [45] Ding B, Yi L, Liu Y et al. Hydrothermal synthesis of a novel three-dimensional complex with strong blue luminescent properties [J]. Inorg Chem Commun, 2005, 8: 38-40.
    [46] Zhao Xiaojun, Zhu Guangshan, Fang Qianrong, Wang Ying, Sun Fuxing, and Shilun Qiu, A Series of Three-Dimensional Lanthanide Coordination Compounds with the Rutile Topology. [J]. Cryst Grow & Des. 2009, 9(2): 737–742.
    [47] Stefano M, Eleonora A., Alessandro T, Valter S. Influence of erbia or europiadoping on crystal structure and microstructure of ceria-zirconia(CZ)solid solutions. [J]. Ceram.Int, 2008, 24(5): 1327-1331.
    [48] Neves A., Herrmann W, Wieghhardt K. Adiabatic intrramolecular electrontransfer in pyrazine-2,6-dicarboxylato-bridged complexes of cobalt(Ⅲ)-ruthenium(Ⅱ) and of cobalt(Ⅲ) -iron(Ⅱ): comparison of inner-sphere VS outer-sphere activated complexes [J]. Inorg. Chem., 1984, 23: 3435-3444.
    [49] Amirthaganesan G, Kandaswamy M.A., Dhandapani M. Synthesis, growth and thermal and Fourier transform infrared spectral characterization of Tetraethylammonium tetrachloro manganate(Ⅱ) monohydrate crystals [J]. Mat Chem Phy, 2008, 110(2-3): 328-334.
    [50] Hasan H., Siang D. and Peng S.M. Synthesis of long-chained oligo-α-aminopyridines by tandem Pd-catalyzed cross-coupling aminations and their helical dinucledr complexes [J]. Tetr Let, 2004, 45: 7765-7769.
    [51] Degtyarenko I., Xevi B., Risto M. N., Carme R. Density-functional molecular dynamics studies of biologically relevant iron and cobalt complexes with macrocyclic ligands [J]. Coord Chem Rev, 2008, 12-14(252): 1497-1500.
    [52] Wu L. P., Megumu M. Synthesis, crystal structures and magnetic behavior of polymeric lanthanide complexes with benzenehexacarboxylic acid (mellitic acid) [J]. Inorg Chim Acta, 1996, 249: 183-189.
    [53]Yang E., Zhang J., Li Z, Gao S., Kang Y, Chen Y.B., Wen Y. H., Yao Y. G Interweaving 3D Network with Double Helical Tubes Filled by ID Coordination Polymer Chains [J]. Inorg Chem,2004, 43: 6525-6530.
    [54] Wang Jing, Zheng Ling-Ling, Li Cui-Jin, Yan-Zhen Zheng, and Ming-Liang Tong,Coexistence of Planar and Chair-Shaped Cyclic Water Hexamers in a Unique Cyclohexane hexacarboxylate-Bridged Metal-Organic Framework, Cryst Grow & Des, 2006, 6(2): 357-359.
    [55] Sadabs. Program for Empirical Absorption Correction of Area Detector Data, University of Madison, Germany, 1996.
    [56] Sheldrick G M, Shelxtl, v5 Reference Manual, Siemens Analytical X-ray Sysytems, Inc, Madison, Wisconsin, USA, 1996.
    [57] Wilson A J, International Table for X-ray Crystallo graphy [M], volume C, 1992;
    [58] Wilson A J C, International Table for X-ray Crystallography, Volume C(1992) Kluwer Academic Publishers, Dordrecht: Tables 6.1.1.4: 500-502 and 4.2.6.8: 219-222
    [59] Sheldrick G. M., SHELXTL, v5 Reference Manual, Siemens Analytical X-ray Systems, Inc, Madison, Wisconsin, USA, 1996.
    [60] Lin W., O. Evans R., Xiong R., Wang Z., Supramolecular Engineering of Chiral and Acentric 2D Networks. Synthesis, Structures, and Second-Order Nonlinear Optical Properties of Bis(nicotinato) zinc and Bis{3-[2-(4-pyridyl)ethenyl]benzoato} cadmium [J]. J. Am. Chem. Soc., 1998, 120: 13272-13273.
    [61] Evans O. R., Wang Z., Xiong R.-G., Foxman B. M., Lin W., Nanoporous, Interpenetrated Metal-organic Diamondoid Networks [J]. Inorg Chem 1999, 38: 2969-2973.
    [62] Evans O. R.,. Xiong R.-G., Wang Z, Wong G. K., Lin W., Crystal Engineering of Acentric Diamondoid Metal-Organic Coordination Networks [J]. Angew Chem, Int Ed, 1999, 38: 536.
    [63] Guo X., Zhu G., Sun F., Li Z, Zhao X, Li X, Wang H., Qiu S., Synthesis, Structure, and Luminescent Properties of Microporous Lanthanide Metal-organic Frameworks with inorganic Rod-shaped Building Units [J]. Inorg Chem, 2006, 45: 2581-2587.
    [64] Lill D. T.,. Cahill C. L, An unusually high thermal stability within a novel lanthanide 1,3,5-cyclohexanetricarboxylate framework: synthesis, structure, and thermal data [J]. Chem. Commun. 2006, 4946-4948.
    [65] Zou R. Q., Zhong R. Q., Du M., Kiyobayashia T., Xu Q., Highly-thermostable metal-organic frameworks (MOFs) of zinc and cadmium 4, 4’-(hexafluoroisopropylidene) diphthalates with a unique fluorite topology [J].Chem Commun 2007, 2467-2469.
    [66] Enemark E. J., Stack T. D. P., Synthesis and Structural Characterization of a Stereospecific Dinuclear Gallium Triple Helix: Use of the trans-Influence in Metal-Assisted Self-Assembly [J]. Angew Chem Int Ed, 1995, 34: 996.
    [67] Wang Zheming, Zhang Xueyu, Stuart R. Batten, et al. [CH3NH2(CH2)2NH2CH3][M2(HCOO)6](M = MnII and CoII): Weak Ferromagnetic Metal Formate Frameworks of Unique Binodal 6-Connected (412·63) (49·66) Topology, Templated by a Diammonium Cation [J]. Inorg Chem, 2007, 46: 8439-8441.
    [68] Partha Mahata, K. V. Ramya, and Srinivasan Natarajan Reversible Water Intercalation Accompanied by Coordination and Color Changes in a Layered Metal-Organic Framework [J]. Inorg. Chem., 2009, 48(11): 4942-4951.
    [69] Kim Jaheon, Chen Banglin, Theresa M. Reineke, Li Hailian, Mohamed Eddaoudi, David B. Moler, Michael O Keeffe, and Omar M. Yaghi, Assembly of Metal-Organic Frameworks from Large Organic and Inorganic Secondary Building Units: New Examples and Simplifying Principles for Complex Structures [J]. J. Am. Chem. Soc. 2001, 123: 8239-8247
    [70]崔虹,河南大学硕士论文, 2005届.
    [71]李昶红,谢和平,李薇,杨颖群,一维链状锌配位聚合物[Zn(4,4′-bipy)·(o-ABA)2·(H2O)2]n的合成、晶体结构及热稳定性, [J].无机化学学报, 2008, 24(12): 2051-2055.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700