用户名: 密码: 验证码:
基于5-羧基苯并三氮唑的过渡金属配合物的合成、结构及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有丰富的配位模式,并能结合含氮、羧酸基团配体优点的含氮杂环羧酸类配体,已被广泛的用来构筑了大量新颖的结构。这些配位聚合物在气体存储和选择性分离、催化、药物储存与释放、手性以及光、电、磁等方面表现出来的潜在应用价值。本论文的主要工作是基于5-羧基苯并三氮唑(H2btca)配体在溶剂热条件下制备结构新颖的多功能配合物。本文主要分为五章。
     第一章对配位聚合物的最新研究动态进行了简要介绍;基于一些特殊结构与功能性配合物等进行了归纳总结;简要的介绍了苯并三氮唑类配体的研究现状,并阐述本论文的研究目的和意义。
     第二章系统地研究了通过对溶剂的调控,成功地合成出3个Cu(II)配合物。它们分别为[Cu(btca)(H_2O)_2] (1) , [Cu(btca)(H_2O)3.5]·H_2O (2) ,[Cu_(2.5)(btca)(H_(0.5)btca)(μ2-Cl)_(0.5)(μ3-OH)(H_2O)]·H_2O (3)。由于水分子对结构的影响,得到了两个假性超分子异构体,配合物1是二维平面结构,配合物2是首例平面金属大环氢键纳米管状结构;而配合物3在改变溶剂的条件下,引入了氯离子,形成了具有蜂窝状孔洞的三维结构。详细的磁性测试表明配合物1~2为反铁磁体;配合物3在低温下呈现出弱的铁磁性行为。
     第三章主要探讨了在溶剂热的反应条件下合成的3个Zn(II)配合物,[Zn(btca)(H_2O)] (4),[Zn(btca)(H_2O)]·_(2.5)H_2O (5),[Zn_3(btca)_2(μ3-OH)_2]·DMF·4H_2O (6)。其中配合物4和5属于假性的同分异构体,而配合物6是具有sra拓扑网络的柔性多孔结构,可受热导致结构发生变化,存在特殊的温度、溶剂敏感现象。同时具备孔性和荧光性质的柔性配合物是十分罕见的。
     第四章合成了三个Cd(II)配合物,[Cd(Hbtca)_2] (7),[Cd(btca)(H_2O)_2] (8),[Cd(btca)] (9)。配体在配合物中由于反应条件的影响使其以不同价态的阴离子形式存在。其中,配合物7是具有钻石拓扑网络的三重穿插结构;配合物8是一维链状结构;而配合物9是一个十分致密的三维结构。该系列的镉金属配合物能发射较强的荧光。
     最后对论文进行概括总结,并展望了下一阶段的工作安排。
Ditopic ligands containing carboxylic and nitrogen donor groups have been widely used to architect novel coordination polymers. These complexes possess potential applications in gas storage, adsorption based gas/vapor separation, shape/size-selective catalysis, drug storage and delivery, optical, electrical and magnetism properties. We mainly introduce the construction of the novel and multifunctional complexes based on benzotriazole-5-carboxylate acid (H2btca) under hydro-(solvo-) thermal reaction. This thesis is divided into five chapters.
     In chapter 1, the research background is concisely introduced with emphasis on the current survey in the area of coordination polymers. Some special structures and multifunctional coordination polymers are mainly summarized. The history and actuality of some notable compounds based on ligands contained different characteristics of the groups are briefly reviewed. In addition, the intention and significance of coordination polymers based on benzotriazole-5-carboxylate acid are also elucidated.
     In chapter 2, we report the syntheses of three novel coordination complexes by reactions of transition metal ions with H2btca under hydro(solvo)thermal reaction conditions, [Cu(btca)(H_2O_2] (1), [Cu(btca)(H_2O)3.5]·H_2O (2), [Cu_(2.5)(btca)(H_(0.5)btca)(μ2-Cl)_(0.5)(μ3-OH)(H_2O)]·H_2O (3). Compound 1 is two dimensional (2D) network. And compound 2 represents the first example of a neutral flattened metallomacrocycle-based hydrogen-bonded nanotubular structure. Nevertheless, compound 3 is a 3D metal-organic framework encompassing a considerable solvent-accessible volume with 1D honeycomb channels. Detailed magnetic measurement exhibits anti-ferromagnetic behavior of 1~2 and weak ferromagnetic behavior at low temperature of 3 .
     In chapter 3, [Zn(btca)(H_2O)] (4), [Zn(btca)(H_2O)]·_(2.5)H_2O (5), [Zn3(btca_2(μ3-OH_2]·DMF·4H_2O (6) have been self-assembled with transition metal ions Zn(II) and H2btca ligand. It is noteworthy that 4 and 5 are pseudo-supramolecular isomers, which are produced from the influence of water. Besides, Compound 6 exhibits great flexibility (the so-called“breathing”) which has obvious variation in unit cell volume by heating. All of the materials exhibit intense fluorescent emission wherein 6 presents interesting guest-dependent photoluminescent property. What’s more, this multifunctional material combined with flexible porosity and intense photoluminescence is very rare.
     Chapter 4 focuses on reactions of H2btca ligand and cadmium ions Cd(II), which indicates that metal ions and solvents take essential role on these structures of the three complexes as followed: [Cd(Hbtca)_2] (7), [Cd(btca)(H_2O)_2] (8), [Cd(btca)] (9). The results indicate that the ligand is deprotonated to form different anionic derivatives in the obtained complexes. Compound 7 features three-fold interpenetrated net with diamond-like topology. 8 and 9 exhibit diverse superstructures, one dimensional (1D) chain, 3D close-grained network, respectively. In addition, these complexes exhibit fluorescence emissions.
     Finally, the main achievements and conclusions in this thesis are summarized. The further research plan in this project has also been proposed.
引文
[1]游效曾;孟庆金;韩万书,配位化学进展,高等教育出版社,2000, 289-329.
    [2]宋心琦;周福添;刘剑波,光化学—原理·技术·应用,高等教育出版社,2001, 143-168.
    [3]单秋杰,配合物及其应用,哈尔滨工业大学出版社,2003, 80-120.
    [4] Zhang, J.-P.; Huang, X.-C.; Chen, X.-M. Supramolecular isomerism in coordination polymers, Chem. Soc. Rev. 2009, 38, 2385-2396.
    [5] Ma, L.-Q.; Abney, C.; Lin, W.-B. Enantioselective catalysis with homochiral metal–organic frameworks, Chem. Soc. Rev. 2009, 38, 1248-1256.
    [6] Li, J.-R.; Kuppler, R. J.; Zhou, H.-C. Selective gas adsorption and separation in metal–organic frameworks, Chem. Soc. Rev. 2009, 38, 1477-1504.
    [7] Kuppler, R. J.; Timmons, D. J.; Fang, Q.-R.; Li, J.-R.; Makal, T. A.; Young, M. D.; Yuan, D.-Q.; Zhao, D.; Zhuang, W.-J.; Zhou, H.-C. Potential applications of metal-organic frameworks, Coord. Chem. Rev. 2009, 253, 3042-3066.
    [8] Zhang, J.-J.; Wojtas, L.; Larsen, R. W.; Eddaoudi, M.; Zaworotko, M. J. Temperature and concentration control over interpenetration in a metal-organic material, J. Am. Chem. Soc. 2009, 131, 17040-17041.
    [9] Bureekaew, S.; Sato, H.; Matsuda, R.; Kubota, Y.; Hirose, R.; Kim, J.; Kato, K.; Takata, M.; Kitagawa, S. Control of interpenetration for tuning structural flexibility influences sorption properties, Angew. Chem. Int. Ed. 2010, 49, 7660-7664.
    [10] K. Farha, O.; Mulfort, K. L.; Thorsness, A. M.; Hupp, J. T. Separating solids: purification of metal-organic framework materials, J. Am. Chem. Soc. 2008, 130, 8598-8599.
    [11] Yamauchi, Y.; Yoshizawa, M.; Fujita, M. Engineering stacks of aromatic rings by the interpenetration of self-assembled coordination cages, J. Am. Chem. Soc. 2008, 130, 5832–5833.
    [12] An, J.; Rosi, N. L. Tuning MOF CO2 adsorption properties via cation exchange, J. Am. Chem. Soc. 2010, 132, 5578-5579.
    [13] Han, S.-B.; Wei, Y.-H.; Valente, C.; Lagzi, I.; Gassensmith, J. J.; Coskun, A.; Stoddart, J. F.; Grzybowski, B. A. Chromatography in a single metal-organic framework (MOF) crystal, J.Am. Chem. Soc. 2010, 132, 16358-16361.
    [14] Nakabayashi, K.; Ozaki, Y.; Kawano, M.; Fujita, M. A self-assembled spin cage, Angew. Chem. Int. Ed. 2008, 47, 2046-2048.
    [15] Horike, S.; Shimomura1, S.; Kitagawa, S. Soft porous crystals, Nature Mater. 2009, 1, 695-704.
    [16] Zhang, J.; Chen, S.-M.; Nieto, R.-A.; Wu, T.; Feng, P.-Y.; Bu, X.-H. A tale of three carboxylates: cooperative asymmetric crystallization of a three-dimensional microporous framework from achiral precursors, Angew. Chem. Int. Ed. 2010, 49, 1267-1270.
    [17] Bogani, L.; Wernsdorfer, W. Molecular spintronics using single-molecule magnets, Nature Mater. 2008, 7, 179-186.
    [18] Mannini, M.; Pineider, F.; Sainctavit, P.; Chiara, D.; Edwige, O.; Corrado, S.; Anna, M. T.; Marie-Anne, A.; Andrea, C.; Dante, G.; Roberta, S. Magnetic memory of a single-molecule quantum magnet wired to a gold surface, Nature Mater. 2009, 8, 194-197.
    [19] Dong, Y.-B.; Zhang, Q.; Liu, L.-L.; Ma, J.-P.; Tang, B.; Huang, R.-Q. [Cu(C24H22N4O3)]·CH2Cl2: a discrete breathing metallamacrocycle showing selective and reversible guest adsorption with retention of single crystallinity, J. Am. Chem. Soc. 2007, 129, 1514-1515.
    [20] Su, C.-Y.; Cai, Y.-P.; Chen, C.-L.; Smith, M. D.; Kaim, W.; Loye, H. C. Ligand-directed molecular architectures: self-assembly of two-dimensional rectangular metallacycles and three-dimensional trigonal or tetragonal prisms, J. Am. Chem. Soc. 2003, 125, 8595-8613.
    [21] Chen, C.-L.; Tan, H.-Y.; Yao, J.-H.; Wan, Y.-Q.; Su, C.-Y. Disilver(I) rectangular-shaped metallacycles: X-ray crystal structure and dynamic behavior in solution, Inorg. Chem. 2005, 44, 8510-8520.
    [22] Liu, Z.-M.; Liu, Y.; Zheng, S.-R.; Yu, Z.-Q.; Mei, P.; Su, C.-Y. Assembly of trigonal and tetragonal prismatic cages from octahedral metal ions and a flexible molecular clip, Inorg. Chem. 2007, 46, 5814-5816.
    [23] Huang, X.-C.; Zhang, J.-P.; Chen, X.-M. A new route to Supramolecular Isomers via Molecular Templating: Nanosized Molecular Polygons of Copper(I) 2-Methylimidazolates, J. Am. Chem. Soc. 2004, 126, 13218-13219.
    [24] Ene, C. D.; Madalan, A. M.; Maxim, C.; Jurca, B.; Avarvari, N.; Andruh, M. Constructingrobust channel structures by packing metallacalixarenes: reversible single-crystal-to-single-crystal dehydration, J. Am. Chem. Soc. 2009, 131, 4586–4587.
    [25] Das, S.; Kim, H.; Kim, K. Metathesis in single crystal: complete and reversible exchange of metal ions constituting the frameworks of metal-organic frameworks, J. Am. Chem. Soc. 2009, 131, 3814–3815.
    [26] Sadeghzadeh, H.; Morsali, A. New reversible crystal-to-crystal conversion of a mixed-ligand lead(II) coordination polymer by de- and rehydration, Inorg. Chem. 2009, 48, 10871-10873.
    [27] Duan, Z.-M.; Zhang, Y.; Zhang, B.; Zhu, D.-B. Crystal-to-crystal transformation from antiferromagnetic chains into a ferromagnetic diamondoid framework, J. Am. Chem. Soc. 2009, 131, 6934–6935.
    [28] Ghosh, S. K.; Kaneko, W.; Kiriya, D.; Ohba, M.; Kitagawa, S. A bistable porous coordination polymer with a bond-switching mechanism showing reversible structural and functional transformations, Angew. Chem. Int. Ed. 2008, 47, 8843-8847.
    [29] Seo, J.; Matsuda, R.; Sakamoto, H.; Bonneau, C.; Kitagawa, S. A pillared-layer coordination polymer with a rotatable pillar acting as a molecular gate for guest molecules, J. Am. Chem. Soc. 2009, 131, 12792–12800.
    [30] Horike, S.; Shimomura, S.; Kitagawa, S. Soft porous crystals, Nature Chem. 2009, 1, 695–703.
    [31] Kitagawa, S.; Uemura, K. Dynamic porous properties of coordination polymers inspired by hydrogen bonds, Chem. Soc. Rev. 2005, 34, 109–119.
    [32] Takamizawa, S.; Nakata, E. I.; Yokoyama, H.; Mochizuki, K.; Mori, W. Angew. Chem. Int. Ed. 2003, 42, 4331-4334.
    [33] Férey, G.; Serre, C. Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences, Chem. Soc. Rev. 2009, 38, 1380–1399.
    [34] Biradha, K.; Fujita, M. A springlike 3D-coordination network that shrinks or swells in a crystal-to-crystal manner upon guest removal or readsorption, Angew. Chem. Int. Ed. 2002, 41, 3392—3395.
    [35] Férey, G. Hybrid porous solids: past, present, future, Chem. Soc. Rev. 2008, 37, 191–214.
    [36] Mellot-Draznieks, C.; Serre, C.; Surblé, S.; Audebrand, N.; Férey, G. Very large swelling in hybrid frameworks: a combined computational and powder diffraction study, J. Am. Chem. Soc. 2005, 127, 16273–16278.
    [37] Volkringer, C.; Loiseau, T.; Guillou, N.; Férey, G. ; Elka?m, E.; Vimont, A. XRD and IR structural investigations of a particular breathing effect in the MOF-type galliumterephthalate MIL-53(Ga), Dalton Trans. 2009, 12, 2241–2249.
    [38] Llewellyn, P. L.; Horcajada, P.; Maurin, G.; Devic, T.; Rosenbach, N.; Bourrelly, S.; Serre, C.; Vincent, D.; Loera-Serna, S.; Filinchuk, Y.; Férey, G. Complex adsorption of short linear alkanes in the flexible metal-organic-framework MIL-53(Fe), J. Am. Chem. Soc. 2009, 131, 13002-13008.
    [39] Millange, F.; Guillou, N.; Medina, M. E.; Férey, G.; Carlin-Sinclair, A.; Golden, K. M.; Walton, R. I. Selective sorption of organic molecules by the flexible porous hybrid metal-organic framework MIL-53(Fe) controlled by various host-guest interactions, Chem. Mater. 2010, 22, 4237–4245.
    [40] Serre, C.; Millange, F.; Thouvenot, C.; Noguès, M.; Marsolier, G.; Lou?r, D.; Férey, G. Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or CrIII(OH)·{O2C-C6H4-CO2}·{HO2C-C6H4-CO2H}x·H2Oy, J. Am. Chem. Soc. 2002, 124, 13519-13526.
    [41] Trung, T. K.; Trens, P.; Tanchoux, N.; Bourrelly, S.; Llewellyn, P. L.; Loera-Serna, S.; Serre, C.; Loiseau, T.; Fajula, F.; Férey, G. Hydrocarbon adsorption in the flexible metal organic frameworks MIL-53(Al, Cr), J. Am. Chem. Soc. 2008, 130, 16926-16932.
    [42] Bourrelly, S.; Moulin, B.; Rivera, A.; Maurin, G.; Devautour-Vinot, S.; Serre, C.; Devic, T.; Horcajada, P.; Vimont, A.; Clet, G.; Daturi, M.; Lavalley, J.; Loera-Serna, S.; Denoyel, R.; Llewellyn, P. L.; Férey, G. Explanation of the adsorption of polar vapors in the highly flexible metal organic framework MIL-53(Cr), J. Am. Chem. Soc. 2010, 132, 9488–9498.
    [43] Horcajada, P.; Serre, C.; Maurin, G.; Ramsahye, N. A.; Balas, F.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. Flexible porous metal-organic frameworks for a controlled drug delivery, J. Am. Chem. Soc. 2008, 130, 6774–6780.
    [44] Salles, F.; Maurin, G.; Serre, C. ; Llewellyn, P. L.; Kn?fel, C.; Choi, H. J.; Filinchuk, Y.; Oliviero, L.; Vimont, A.; Long, J. R.; Férey, G. Multistep N2 breathing in the metal-organic framework Co(1,4-benzenedipyrazolate), J. Am. Chem. Soc. 2010, 132, 13782-13788.
    [45] Chen, Z.-Q.; Bain, Z.-Q.; Huang, C.-H. Functional IrIII complexes and their applications. Adv. Mater. 2010, 22, 1534–1539.
    [46] Zhao, Q.; Yu, M.-X.; Shi, L.-X.; Liu, S.-J.; Li, C.-Y.; Shi, M.; Zhou, Z.-G.; Huang, C.-H.; Li, F.-Y. Cationic iridium(III) complexes with tunable emission color as phosphorescentdyes for live cell imaging, Organometallics, 2010, 29, 1085–1091.
    [47] Li, M.; Li, Z.; Li, D. Unprecedented cationic copper(I)–iodide aggregates trapped in“click”formation of anionic-tetrazolate-based coordination polymers, Chem. Commun. 2008, 29, 3390-3392.
    [48] Che, C.-M.; Lai, S.-W. Structural and spectroscopic evidence for weak metal–metal interactions and metal–substrate exciplex formations in d10 metal complexes, Coord. Chem. Rev. 2005, 249, 1296–1309.
    [49] Kui, S. C. F.; Chui, S. S. Y.; Che, C.-M.; Zhu, N.-Y. Structures, photoluminescence, and reversible vapoluminescence properties of neutral platinum(II) complexes containing extendedπ-conjugated cyclometalated ligands, J. Am. Chem. Soc. 2006, 128, 8297-8309.
    [50] Zhao, N.; Wu, Y.-H.; Wen, H.-M.; Zhang, X.; Chen, Z.-N. Conversion from ILCT to LLCT/MLCT excited state by heavy metal ion binding in iridium(III) complexes with functionalized 2,2-Bipyridyl ligands, Organometallics, 2009, 28, 5603-5611.
    [51] Zhao, N.; Wu, Y.-H.; Shi, L.-X.; Lin, Q.-P.; Chen, Z.-N. A sensitive phosphorescent thiol chemosensor based on an iridium(III) complex withα,β-unsaturated ketone functionalized 2,2’-bipyridyl ligand, Dalton Trans. 2010, 39, 8288-8295.
    [52] Fan, Y.; Zhu, Y.-M.; Dai, F.-R.; Zhang, L.-Y.; Chen, Z.-N. Photophysical and anion sensing properties of platinum(II) terpyridyl complexes with phenolic ethynyl ligands, Dalton Trans. 2007, 35, 3885-3892.
    [53] Ni, J.; Zhang, L.-Y.; Wen, H.-M.; Chen, Z.-N. Luminescence vapochromic properties of a platinum(II) complex with 5,5’–bis (trimethylsilylethynyl)-2,2-bipyridine, Chem. Commun. 2009, 25, 3801-3803.
    [54] Wang, J.; Zheng, S.-L.; Hu, S.; Zhang, Y.-H.; Tong, M.-L. New in situ cleavage of both S-S and S-C (sp2) bonds and rearrangement reactions toward the construction of copper(I) cluster-based coordination networks, Inorg. Chem. 2007, 46, 795-800.
    [55] Li, H.-H.; Wang, Y.-J.; Dong, H.-J.; Chen, Z.-R.; Wu, Y.-L.; Wang, M.; Huang, S.-W. An organic–inorganic hybrid heterobridging luminescent copper(I) polymer exhibiting thermochromic behavior, CrystEngComm. 2011, 13, 1778–1781.
    [56] S, Perruchas.; X F, Le Goff.; S, Maron,? I, Maurin.; F, Guillen.; A, Garcia.; T, Gacoin.; J, Boilot, Mechanochromic and thermochromic luminescence of a copper iodide cluster, J. Am.Chem. Soc. 2010, 132, 10967-10969.
    [57] Lin, J.-B.; Zhang, J.-P.; Chen, X.-M. Nonclassical active site for enhanced gas sorption in porous coordination polymer, J. Am. Chem. Soc. 2010, 132, 6654-6656.
    [58] Hasegawa, S.; Horike, S.; Matsuda, R.; Furukawa, S.; Mochizuki, K.; Kinoshita, Y.; Kitagawa, S. Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand: selective sorption and catalysis, J. Am. Chem. Soc. 2007, 129, 2607-2614.
    [59] Murase, T.; Otsuka, K.; Fujita, M. Pairwise selective formation of aromatic stacks in a coordination cage, J. Am. Chem. Soc. 2010, 132, 7864-7865.
    [60] Osuga, T.; Murase, T.; Ono, K.; Yamauchi, Y.; Fujita, M. [m×n] Metal ion arrays templated by coordination cages, J. Am. Chem. Soc. 2010, 132, 15553-15555.
    [61] Murase, T.; Fujita, M. Pericyclic reactions in an aqueous molecular flask, Chem. Rec. 2010, 10, 342-347.
    [62] Zhang, J.-X.; He, J.; Yin, Y.-G.; Hu, M.-H.; Li, D.; Huang, X.-C. Novel thermochromism relating to supramolecular cuprophilic interaction: design, synthesis, and luminescence of copper(I) pyrazolate trimer and polymer, Inorg. Chem. 2008, 47, 3471-3473.
    [63] Luo, J.-H.; Xu, H.-W.; Liu, Y.; Zhao, Y.-S.; Daemen, L. L.; Brown, C.; Timofeeva, T. V.; Ma, S.-Q.; Zhou, H.-C. Hydrogen adsorption in a highly stable porous rare-earth metal-organic framework: sorption properties and neutron diffraction studies, J. Am. Chem. Soc. 2008, 130, 9626–9627.
    [64] Ma, S.-Q.; Simmons, J. M.; Sun, D.-F.; Yuan, D.-Q.; Zhou, H.-C. Porous metal-organic frameworks based on an anthracene derivative: syntheses, structure analysis, and hydrogen sorption studies, Inorg. Chem. 2009, 48,5263-5268.
    [65] Ma, S.-Q.; Sun, D.-F.; Yuan, D.-Q.; Wang, X.-S.; Zhou, H.-C. Preparation and gas adsorption studies of three mesh-adjustable molecular sieves with a common structure, J. Am. Chem. Soc. 2009, 131, 6445–6451.
    [66] Zhao, D.; Yuan, D.-Q.; Sun, D.-F.; Zhou, H.-C. Stabilization of metal-organic frameworks with high surface areas by the incorporation of mesocavities with microwindows, J. Am. Chem. Soc. 2009, 131, 9186–9188.
    [67] Zhuang, W.-J.; Ma, S.-Q.; Wang, X.-S.; Yuan, D.-Q.; Li, J.-R.; Zhao, D.; Zhou, H.-C.Introduction of cavities up to 4 nm into a hierarchically-assembled metal–organic framework using an angular, tetratopic ligand, Chem. Commun. 2010, 46, 5223-5225.
    [68] Bai, Y.-L.; Huang, R.-B.; Zheng, L.-S.; Tao, J. The Designed assembly of augmented diamond networks from predetermined pentanuclear tetrahedral units, Angew. Chem. Int. Ed. 2008, 47, 5344-5347.
    [69] Wang, X.-L.; Qin, C.; Wu, S.-X.; Shao, K.-Z.; Lan, Y.-Q.; Wang, S.; Zhu, D.-X.; Su, Z.-M.; Wang, E.-B. Bottom-up synthesis of porous coordination frameworks: apical substitution of a pentanuclear tetrahedral precursor, Angew. Chem. Int. Ed. 2009, 48, 5291-5295.
    [70] Sadeghzadeh, H.; Morsali, A. New reversible crystal-to-crystal conversion of a mixed-ligand lead(II) coordination polymer by de- and rehydration, Inorg. Chem. 2009, 48, 10871-10873.
    [71] Chen, B.-L.; Wang, L.-B.; Xiao, Y.-Q.; R. Fronczek, F.; Xue, M.; Cui, Y.-J.; Qian, G.-D. A luminescent metal-organic framework with lewis basic pyridyl sites for the sensing of metal ions, Angew. Chem. 2009, 121, 508-511.
    [72] Tran, D. T.; Fan, X.-J.; Brennan, D. P.; Zavalij, P. Y.; Oliver, S. R. J. Open metal-organic framework containing cuprate chains, Inorg. Chem. 2005, 44, 6192-6196.
    [73] Alkordi, M.-H.; Brant, J. A.; Wojtas, L.; Kravtsov, V. C.; Cairns, A. J.; Eddaoudi, M. Zeolite-like Metal-Organic Frameworks (ZMOFs) based on the directed assembly of finite Metal-Organic Cubes (MOCs), J. Am. Chem. Soc. 2009, 131, 17753-17755.
    [74] Lu, W.-G.; Su, C.-Y.; Lu, T.-B.; Jiang, L.; Chen, J.-M. Two Stable 3D Metal-organic frameworks constructed by nanoscale cages via sharing the single-layer walls, J. Am. Chem. Soc. 2006, 128, 34-35.
    [75] Gu, J.-Z.; Lu, W.-G.; Jiang, L.; Zhou, H.-C.; Lu, T.-B. 3D porous metal-organic framework exhibiting selective adsorption of water over organic solvents, Inorg. Chem. 2007, 46, 5835-5837.
    [76] Lu, W.-G.; Jiang, L.; Feng, X.-L.; Lu, T.-B. Three-dimensional lanthanide anionic metal-organic frameworks with tunable luminescent properties induced by cation exchange, Inorg. Chem. 2009, 48,6997-6999.
    [77] Lu, W.-G.; Jiang, L.; Lu, T.-B. Lanthanide contraction and temperature-dependent structures of lanthanide coordination polymers with imidazole-4,5-dicarboxylate and oxalate, Cryst.Growth Des. 2010, 10, 4310-4318.
    [78] Nouar, F.; Eckert, J.; Eubank, J. F.; Forster, P.; Eddaoudi, M. Zeolite-like Metal-OrganicFrameworks (ZMOFs) as hydrogen storage platform: lithium and magnesium ion-exchangeand H2-(rho-ZMOF) interaction studies, J. Am. Chem. Soc. 2009, 131, 2864-2870.
    [79] Sava, D. F.; Kravtsov, V. C.; Eckert, J.; Eubank, J. F.; Nouar, F.; Eddaoudi, M. Exceptionalstability and high hydrogen uptake in hydrogen-bonded metal-organic cubes possessingACO and AST zeolite-like topologies, J. Am. Chem. Soc. 2009, 131, 10394-10396.
    [80] Gurunatha, K. L.; Uemura, K.; Maji, T. K. Temperature- and stoichiometry-controlleddimensionality in a magnesium 4, 5-imidazoledicarboxylate system with strong hydrophilicpore surfaces, Inorg. Chem. 2008, 47, 6578-6580.
    [81] Yue, Y.-F.; Wang, B.-W.; Gao, E.-Q.; Fang, C.-J.; He, C.; Yan, C.-H. A novelthree-dimensional heterometallic compound: templated assembly of the unprecedentedplanar‘‘Na[Cu4]’’metalloporphyrin-like subunits, Chem. Commun. 2007, 43, 2034-2036.
    [82] Zhang, W.-X.; Xue, W.; Zheng, Y.-Z.; Chen, X.-M. Two spin-competing manganese(II)coordination polymers exhibiting unusual multi-step magnetization jumps, Chem. Commun.2009, 45, 3804-3806.
    [83] Yuan, G.; Shao, K.-Z.; Wang, X.-L.; Lan, Y.-Q.; Du, D.-Y.; Su, Z.-M. A series of novelchiral lanthanide coordination polymers with channels constructed from 16Ln-basedcage-like building units, CrystEngComm. 2010, 12, 1147–1152.
    [84] Zhang, W.-X.; Xue, W. ; Lin, J.-B.; Zheng, Y.-Z.; Chen, X.-M. 3D geometrically frustratedmagnets assembled by transition metal ion and 1,2,3-triazole-4,5-dicarboxylate as triangularnodes, CrystEngComm. 2008, 10, 1770–1776.
    [85] Yuan, G.; Shao, K.-Z.; Du, D.-Y.; Wang, X.-L.; Su, Z.-M. Synthesis and characterization oftwo novel coordination polymers based on the rigid 1H-1,2,3-triazole-4,5-dicarboxylic acidligand, Sci China Chem. 2010, 53, 2177–2182.
    [86] Zhang, W.-X.; Xue, W.; Chen, X.-M. Flexible mixed-spin kagomécoordination polymerswith reversible magnetismtriggered by dehydration and rehydration, Inorg. Chem. 2011, 50,309-316.
    [87] Guo, Z.-G.; Li, X.-J.; Gao, S.-Y.; Li, Y.-F.; Cao, R. A new 3D supramolecular network,[Cd(Hbic)2(H2O)]·(4,4’-bpy)·H2O (H2bic=1-H-benzimidazole-5-carboxylic acid;4,4’-bpy=4,4’-bipyridine): synthesis, crystal structure and luminescence property, Journal of Molecular Structure. 2007, 846, 123-127.
    [88] Peng, G.; Qiu, Y.-C.; Liu, Z.-H.; Liu, B.; Deng, H. Spontaneous assembly of d-f coordination frameworks: syntheses, structures, and photoluminescence, Cryst. Growth Des. 2010, 10, 114-121.
    [89] Wang, Z.-X.; Wu, Q.-F.; Liu, H.-J.; Shao, M.; Xiao, H.-P.; Li, M.-X. 2D and 3D lanthanide coordination polymers constructed from benzimidazole-5, 6-dicarboxylic acid and sulfate bridged secondary building units, CrystEngComm, 2010, 12, 1139–1146.
    [90] Yao, Y.-L.; Che, Y.-X.; Zheng, J.-M. The coordination chemistry of benzimidazole-5,6-dicarboxylic acid with Mn(II), Ni(II) and Ln(III) complexes (Ln=Tb, Ho, Er, Lu), Cryst. Growth Des. 2008, 8, 2299-2306.
    [91] Li, Z.-Y.; Dai, J.-W.; Wang, N.; Qiu, H.-H.; Yue, S.-T.; Liu, Y.-L. A series of three-dimensional 4d-4f heterometallic coordination polymers with six-connected doubly interpenetrated pcu net topology: structural, photoluminescent and magnetic properties, Cryst. Growth Des. 2010, 10, 2746-2751.
    [92] Liu, Y.-R.; Li, L.; Yang, T.; Yu, X.-W.; Su, C.-Y. Dehydration and rehydration behavior of a trinodal topological 3-D framework of Cd(II) benzimidazole-5,6-dicarboxylate, CrystEngComm, 2009, 11, 2712–2718.
    [93] Zhang, X.-M.; Hao, Z.-M.; Zhang, W.-X.; Chen, X.-M. Dehydration-induced conversion from a single-chain magnet into a metamagnet in a homometallic nanoporous metal–organic framework, Angew. Chem. Int. Ed. 2007, 46, 3456-3459.
    [94] Uhl, W.; Vo, M.; Layh, M.; Rogel, F. Gallium–gallium bonds as efficient templates for the generation of a large cage containing twelve gallium atoms, Dalton Trans. 2010, 39, 3160-3162.
    [95] Lu, R.-Y.; Luan, G.-Y.; Han, Z.-B. A two-dimensional ZnII coordination polymer constructed by benzotriazole-5-carboxylate and 1,4,8,9-tetraazatriphenylene, Acta Crystallogr. Sect. C: Found. Crystallogr. 2010, 66, m283-m285.
    [1] Shaw, R.; Tuna, F.; Wernsdorfer, W.; Barra, A. L.; Collison, D.; McInnes, E. J. L. Large spin, magnetically anisotropic, octametallic vanadium(III) clusters with strong ferromagnetic coupling, Chem. Commun. 2007, 43, 5161-5163.
    [2] Shaw, R.; Milios, C. J.; Teat, S.; Evangelisti, M.; Affronte, M.; Collison, D.; Brechin, E. K.; McInnes, E. J. L. 1, 2, 3-Triazolate-Bridged Tetradecametallic Transition Metal Clusters M14(L)6O6(OMe)18X6] (M=FeIII, CrIII andVIII/IV) and related compounds: ground-State Spins Ranging from S=0 to S=25 and spin-enhanced magnetocaloric effect, Inorg. Chem. 2007, 46, 4968-4978.
    [3] Qin, Y.-Y.; Zhang, J.; Li, Z.-J.; Zhang, L.; Cao, X.-Y.; Yao, Y.-G. Organically templated metal–organic framework with 2-fold interpenetrated {33.59.63}-lcy net, Chem. Commun. 2008, 44, 2532-2534.
    [4] Hou, L.; Zhang, W.-X.; Zhang, J.-P.; Xue, W.; Zhang, Y.-B.; Chen, X.-M. An octacobalt cluster based, (3, 12)-connected, magnetic, porouscoordination polymer, Chem. Commun. 2010, 46, 6311-6313.
    [5] Wei, L.-Q.; Li, B.-W.; Hu, S.; Zeng, M.-H. Controlled assemblies of hepta- and trideca-CoII clusters by a rational derivation of salicylalde schiff bases: microwave-assisted synthesis, crystal structures, ESI-MS solution analysis and magnetic properties, CrystEngComm. 2011, 13, 510–516.
    [6] Zhu, B.-X.; Zhang, Q.-L.; Zhang, Y.-Q.; Zhu, T.; Clegg, J. K.; Lindoy, L. F.; Wei, G. Four zinc(II) helical coordination polymers and 78-membered six-node zinc metallacycle assembled from diastereopure N,N′-bis(acetylacetone)cyclohexanediimine, Inorg. Chem. 2008, 47, 10053-10061.
    [7] Lu, W.-G.; Jiang, L.; Lu, T.-B. Lanthanide contraction and temperature dependent structures of lanthanide coordination polymers with imidazole-4,5- dicarboxylate and oxalate, Cryst. Growth Des. 2010, 10, 4310-4318.
    [8] Mouchaham, G.; Roques, N.; Kaiba, A.; Guionneau, P.; Sutter, J. P. Tubular crystals growthfor a nanoporous hydrogen-bonded metal–organic framework, CrystEngComm. 2010, 12, 3496–3498.
    [9] Au, R. H. W.; Jennings, M. C.; Puddephatt, R. J. Supramolecular organoplatinum(IV) chemistry: a nanotube structure supported by hydrogen bonds, Dalton Trans. 2009, 38, 3519-3525.
    [10] Ouellette, W.; Yu, M.-H.; O’Connor, C. J.; Hagrman, D.; Zubieta, J. Hydrothermal chemistry of the copper–triazolate system: a microporous metal–organic framework constructed from magnetic {Cu3(μ3-OH)(triazolate)3}2+ building blocks, and related materials, Angew. Chem. 2006, 118, 3577–3580.
    [11] Kurmoo, M. Magnetic metal-organic frameworks, Chem. Soc. Rev. 2009, 38, 1353–1379.
    [12] Chen, Q.; Lin, J.-B.; Xue, W.; Zeng, M.-H.; Chen, X.-M. A porous coordination polymer assembled from 8-connected {CoII3(OH)} clusters and isonicotinate: multiple active metal sites, apical ligand substitution, H2 adsorption and magnetism, Inorg. Chem. 2011, 50, 2321–2328.
    [13] Hao, Z.-M.; Zhang, X.-M. Solvent induced molecular magnetic changes observed in single-crystal-to-single-crystal transformation, Dalton Trans. 2011, 40, 2092-2098.
    [14] Zhang, X.-M.; Hao, Z.-M.; Zhang, W.-X.; Chen, X.-M. Dehydration-induced conversion from a single-chain magnet into a metamagnet in a homometallic nanoporous metal–organic framework, Angew. Chem. Int. Ed. 2007, 46, 3456-3459.
    [15] Uhl, W.; Vo, M.; Layh, M.; Rogel, F. Gallium–gallium bonds as efficient templates for the generation of a large cage containing twelve gallium atoms, Dalton Trans. 2010, 39, 3160-3162.
    [16] Lu, R.-Y.; Luan, G.-Y.; Han, Z.-B. A two-dimensional ZnII coordination polymer constructed by benzotriazole-5-carboxylate and 1,4,8,9-tetraazatriphenylene, Acta Crystallogr. Sect. C: Found. Crystallogr. 2010, 66, m283-m285.
    [17] Yanai, N.; Kaneko, W.; Yoneda, K.; Ohba, M.; Kitagawa, S. Reversible water-induced magnetic and structural conversion of a flexible microporous Ni(II)Fe(III) ferromagnet, J. Am. Chem. Soc. 2007, 129, 3496–3497.
    [18] Kaneko, W.; Ohba, M.; Kitagawa, S. A. A flexible coordination polymer crystal providing reversible structural and magnetic conversions, J. Am. Chem. Soc. 2007, 129, 13706–13712.
    [19] Cheng, X.-N.; Zhang, W.-X.; Chen, X.-M. Single crystal-to-single crystal transformation from ferromagnetic discrete molecules to a spin-canting antiferromagnetic layer, J. Am. Chem. Soc. 2007, 129, 15738–15739.
    [20] Motokawa, N.; Matsunaga, S.; Takaishi, S.; Miyasaka, H.; Yamashita, M.; Dunbar K. R. Reversible magnetism between an antiferromagnet and a ferromagnet related to solvation/desolvation in a robust layered [Ru2]2TCNQ charge-transfer system, J. Am. Chem. Soc. 2010, 132, 11943–11951.
    [1] Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Luminescent metal-organic frameworks, Chem. Soc. Rev. 2009, 38, 1330-1352.
    [2] Henke, S.; Schmid, R.; Grunwaldt, J. D.; A. Fischer, R. Flexibility and sorption selectivity in rigid metal–organic frameworks: the impact of ether-functionalised linkers, Chem. Eur. J. 2010, 16, 14296-14306.
    [3] Spencer, E. C.; Howard, J. A. K.; McIntyre, G. J.; Rowsell, J. L. C.; Yaghi, O. M. Determination of the hydrogen absorption sites in Zn4O(1,4-benzenedicarboxylate) by single crystal neutron diffraction, Chem. Commun. 2006, 42, 278-280.
    [4] Chae, H. K.; Kim, J.; Friedrichs, O. D.; O’Keeffe, M.; Yaghi, O. M. Design of frameworks with mixed triangular and octahedral building blocks exemplified by the structure of [Zn4O(TCA)2] having the pyrite topology, Angew. Chem. Int. Ed. 2003, 42, 3907-3909.
    [5] Kaye, S. S.; Dailly, A.; Yaghi, O. M.; Long, J. R. Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5), J. Am. Chem. Soc. 2007, 129, 14176-14177.
    [6] Zhang, X.-M.; Hao, Z.-M.; Zhang, W.-X.; Chen, X.-M. Dehydration-induced conversion from a single-chain magnet into a metamagnet in a homometallic nanoporous metal–organic framework, Angew. Chem. Int. Ed. 2007, 46, 3456-3459.
    [7] Uhl, W.; Vo, M.; Layh, M.; Rogel, F. Gallium–gallium bonds as efficient templates for the generation of a large cage containing twelve gallium atoms, Dalton Trans. 2010, 39, 3160-3162.
    [8] Lu, R.-Y.; Luan, G.-Y.; Han, Z.-B. A two-dimensional ZnII coordination polymer constructed by benzotriazole-5-carboxylate and 1,4,8,9-tetraazatriphenylene, Acta Crystallogr. Sect. C: Found. Crystallogr. 2010, 66, m283-m285.
    [9] Férey, G. Hybrid porous solids: past, present, future, Chem. Soc. Rev. 2008, 37, 191-214.
    [10] Trung, T. K.; Trens, P.; Tanchoux, N.; Bourrelly, S.; L. Llewellyn, P.; Loera-Serna, S.; Serre, C.; Loiseau, T.; Fajula, F.; Férey, G. Hydrocarbon adsorption in the flexible metal organic frameworks MIL-53(Al, Cr), J. Am. Chem. Soc. 2008, 130, 16926-16932.
    [11] Salles, F.; Maurin, G.; Serre, C. ; L. Llewellyn, P.; Kn?fel, C.; Choi, H. J.; Filinchuk, Y.; Oliviero, L.; Vimont, A.; R. Long, J.; G. Férey. J. Am. Chem. Soc. 2010, 132, 13782-13788.
    [12] Xu, G.-H.; Zhang, X.-G.; Guo, P.; Pan, C.-L.; Zhang, H.-J.; Wang, C. MnII-based MIL-53 analogues: synthesis using neutral bridgingμ2-ligands and application in liquid-phase adsorption and separation of C6-C8 aromatics, J. Am. Chem. Soc. 2010, 132, 3656-3657.
    [13] Bourrelly, S.; Moulin, B.; Rivera, A.; Maurin, G.; Devautour-Vinot, S. ; Serre, C. ; Devic, T. ; Horcajada, P. ; Vimont, A. ; Clet, G. ; Daturi, M. ; Lavalley, J.; Loera-Serna, S.; Denoyel, R.; L. Llewellyn, P.; Férey, G. Explanation of the adsorption of polar vapors in the highly flexible metal organic framework MIL-53(Cr), J. Am. Chem. Soc. 2010, 132, 9488-9498.
    [14] Zhang, J.-P.; Lin, Y.-Y.; Zhang, W.-X.; Chen, X.-M. Temperature- or guest-induced drastic single-crystal-to-single-crystal transformations of a nanoporous coordination polymer, J. Am. Chem. Soc. 2005, 127, 14162-14163.
    [15] Khanpour, M.; Morsali, A. Solid state crystal-to-crystal transformation from a monomeric structure to 1D coordination polymers on anion exchange, CrystEngComm. 2009, 11, 2585–2587.
    [16] Mir, M. H.; Koh, L. L.; Tan, G. K.; Vittal J. J. Single-crystal to single-cCrystal photochemical structural transformations of interpenetrated 3D coordination polymers by [2+2] cycloaddition reactions, Angew. Chem. Int. Ed. 2009, 48, 400-403.
    [17] Gurunatha, K. L.; Mohapatra, S.; Suchetan, P. A.; Maji, T. K. The guest water molecules were selectively removed and reintroduced in the framework in single-crystal-to-single-crystal manner without affecting the overall framework topology and porosity, Cryst Growth Des. 2009, 9, 3844–3847.
    [18] Ene, C. D.; Madalan, A. M.; Maxim, C.; Jurca, B.; Avarvari, N.; Andruh, M. Constructing robust channel structures by packing metallacalixarenes: reversible single-crystal-to-single-crystal dehydration, J. Am. Chem. Soc. 2009, 131, 4586–4587.
    [19] Sadeghzadeh, H.; Morsali, A. New reversible crystal-to-crystal conversion of a mixed-ligand lead(II) coordination polymer by de- and rehydration, Inorg. Chem. 2009, 48, 10871-10873.
    [20] Duan, Z.-M.; Zhang, Y.; Zhang, B.; Zhu, D.-B. Crystal-to-crystal transformation fromantiferromagnetic chains into a ferromagnetic diamond framework, J. Am. Chem. Soc. 2009, 131, 6934–6935.
    [21] Ghosh, S. K.; Kaneko, W.; Kiriya, D.; Ohba, M.; Kitagawa, S. A bistable porous coordination polymer with a bond-switching mechanism showing reversible structural and functional transformations, Angew. Chem. Int. Ed. 2008, 47, 8843-8847.
    [22] Pramanik, S.; Zheng, C.; Zhang, X.; J. Emge, T.; Li, J. New microporous metal-organic framework demonstrating unique selectivity for detection of high explosives and aromatic compounds, J. Am. Chem. Soc. 2011, 133, 4153-4155.
    [23] Stylianou, C. K.; Heck, R.; Chong, S. Y.; Bacsa, J.; Jones, J. T. A.; Z. Khimyak, Y.; Bradshaw, D.; Rosseinsky, M. J. A guest-responsive fluorescent 3D microporous metal-organic framework derived from a long-lifetime pyrene core, J. Am. Chem. Soc. 2010, 132, 4119-4130.
    [24] Rosi, N. L.; Kim, J.; Eddaoudi, M.; Chen, B.; O’Keeffe, M.; Yaghi, O. M. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units, J. Am. Chem. Soc. 2005, 127, 1504-1518.
    [1] Zhang, X.-M.; Hao, Z.-M.; Zhang, W.-X.; Chen, X.-M. Dehydration-induced conversion from a single-chain magnet into a metamagnet in a homometallic nanoporous metal–organic framework, Angew. Chem. Int. Ed. 2007, 46, 3456-3459.
    [2] Uhl, W.; Vo, M.; Layh, M.; Rogel, F. Gallium–gallium bonds as efficient templates for the generation of a large cage containing twelve gallium atoms, Dalton Trans. 2010, 39, 3160-3162.
    [3] Lu, R.-Y.; Luan, G.-Y.; Han, Z.-B. A two-dimensional ZnII coordination polymer constructed by benzotriazole-5-carboxylate and 1, 4, 8, 9-tetraazatriphenylene, Acta Crystallogr. Sect. C: Found. Crystallogr. 2010, 66, m283-m285.
    [4] Zhang, J.-J. Wojtas, L.; Larsen, R. W.; Eddaoudi, M.; Zaworotko, M. J. Temperature and concentration control over interpenetration in a polymorphic metal-organic material, J. Am. Chem. Soc. 2009, 131, 17040-17041.
    [5] Ma, S.-Q.; Sun, D.-F.; Ambrogio, M.; Fillinger, J. A.; Parkin, S.; Zhou, H.-C. Framework-catenation isomerism in metal-organic frameworks and its iImpact on hydrogen uptake, J. Am. Chem. Soc. 2007, 129, 1858-1859.
    [6] Hirose, R.; Kim, J.; Kato, K.; Takata, M.; Kitagawa, S. Control of interpenetration for tuning structural flexibility influences sorption properties, Angew. Chem. Int. Ed. 2010, 49, 7660-7664.
    [7] Farha, O. K.; Malliakas, C. D.; Kanatzidis, M. G.; Hupp, J. T. Control over catenation in metal?organic frameworks via rational design of the organic building block, J. Am. Chem. Soc. 2010, 132, 950-952.
    [8] Lin, M.-J.; Jouaiti, A.; Kyritsakas, N.; Hosseini, M. W. Molecular tectonics: control of interpenetration in cuboid 3-D coordination networks, CrystEngComm. 2011, 13, 776–778.
    [9] Shekhah, O.; Wang, H.; Paradinas, M.; Ocal, C.; Schüpbach, B.; Terfort, A.; Zacher, D.; Fischer, R. A.; W?ll, C. Controlling interpenetration in metal–organic frameworks by liquid-phase epitaxy, Nature Chem. 2009, 8, 481–484.
    [10] Jin, X.-H.; Sun, J.-K.; Cai, L.-X.; Zhang, J. 2D flexible metal–organic frameworks with[Cd2(μ2-X)2] (X=Cl or Br) units exhibiting selective fluorescence sensing for small molecules, Chem. Commun. 2011, 2667-2669.
    [11] Wang, M.-S.; Guo, G.C.; Zou, W.-Q.; Zhou, W.-W.; Zhang, Z.-J.; Xu, G.; Huang, J.-S. Photochromism of a 3D CdII complex with two captured ligand isomers generated in situ from the same precursor, Angew. Chem. Int. Ed. 2008, 47, 3565-3567.
    [12] Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Luminescent metal-organic frameworks, Chem. Soc. Rev. 2009, 38, 1330-1352.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700