用户名: 密码: 验证码:
挖掘装载机装载工作装置动力分析、动态应力仿真研究及动臂结构拓扑优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文首先采用多体机械系统动力学与液压系统相结合的基本理论和方法,在多体系统分析软件ADAMS中建立了挖掘装载机装载工作装置多体机械系统和液压系统模型,分析了装载工作装置在液压系统驱动下工作的动力性能。
    其次采用多体系统与有限元分析相结合的方法,建立了完整的装载工作装置的刚—弹耦合体模型,分析了装载工作装置在地面铲掘、举升等工况下的动态应力,得到了弹性部件的应力时间历程和瞬时动态应力分布云图,并通过试验研究证明了该方法的正确性。分析结果为其疲劳寿命分析奠定了重要的基础。
    最后基于大型有限元软件ANSYS的二次开发语言APDL实现了渐进结构优化法和改进的渐进结构优化法——双向渐进结构优化法,并采用双向渐进结构优化法对动臂结构进行拓扑优化,得到了动臂合理的拓扑形状。
    总之,本文对挖掘装载机装载工作装置进行了系统、深入的研究工作,在工作装置的动态应力研究以及动臂结构拓扑优化方面有创新性成果,为产品设计、改进提供了依据。同时,本文提出的一些方法可以应用到其他工程结构的动力分析、动态应力研究以及连续体结构的拓扑优化中。
    本文对装载工作装置特殊八杆机构的研究结果作为厂校协作项目应用在山东临工工程机械厂产品的设计改进中,并投产获取了显著效益。
Backhoe loaders are high-tech product and have two capacities of excavating and loading.They were designed and produced in developed countries in the eighties of the twentiethcentury. They have broad purpose and are fit for municipal constructions, especially for diggingand laying pipelines. Equipments of backhoe loaders are various except for buckets and dredgebuckets, example for grab bucket, agitator, lifting fork, hydraulic hammer and so on. So theyplay important role in constructing roads, capital construction, mine, oil fields, irrigation works,loading materials etc.
    Backhoe loaders developed very late and were being lagging state. The velocity ofdeveloping is very slow. At present research on special eight bars mechanism of loadingequipment is little at home. Research on dynamic performance of the mechanism is not enoughand optimization is so little. Such as lift arm, the shape is still designed on trial and errormethod and lacks theoretical foundations.
    This dissertation researched dynamic characteristic, dynamic stress and topologicaloptimization of lift-arm based on the project—“Research and Development on different typesof linkage mechanism of loader equipment”. The dynamic characteristic was analyzed based oncoupling hydraulic systems and multi-body mechanical systems;dynamic stress of engineeringmechanism was researched by way of combining multi-body systems and finite elementmethod based on ADAMS(Automatic Dynamic Analysis of Mechanical Systems) andANSYS;topological structure of lift-arm was optimized based on BESO(BidirectionalEvolutionary Structure Optimization).
    The main contents and research methods are presented in the following text.
    1. These theories of multi-body systems in ADAMS was expatiated systematically.Methods of building and solving the Lagrange's equation in multi-body systemswere presented in detail;Methods and theory of building the elastic bodies wereanalyzed;finally discussed the combining of multi-body systems and finiteelement methods.2. For the first time multi-body mechanical systems model and hydraulic systemsmodel of backhoe loader were built in ADAMS and coupling simulation wasachieved. Interactive actions in all working situation were analyzed includingscooping, lifting and unloading. This section paid attention to analyzing ontranslation, constraint force of joint and the pressure of head end and rod end ofactuator. The multi-body mechanical models of backhoe loader were built inCATIA then transferred into ADAMS and constricted;the hydraulic systemsmodels were built in ADAMS/Hydraulics and coupling simulation was achievedby actuators.3. Modal analysis of elastic body of loading equipment such as lift arm, drag bar androcker were completed in ANSYS, and then the MNF files were produced byspecial interface with ADAMS. Working equipment models of Rigid-elasticcoupling bodies were completed in ADAMS and laid a foundation for dynamicstress simulation.4. For the first time dynamic stress of working equipment was researched in allworking conditions including scooping, lifting and so on. And the dynamic stressdistribution characteristics of elastic components in time domain are obtained afterdynamic simulation. Thus the results laid a foundation for fatigue analysis and lifeestimate.5. Theories of ESO(Evolutionary Structural Optimization)were expatiated in detailThis method was achieved by secondary development in ANSYS and the APDL(ANSYS Parametric Design Language)was used. Validity and practicability ofESO method were testified by a simple example.6. Topological optimization on lift-arm of working equipment was implemented forthe first time. Firstly, the finite element models were built in ANSYS, and then
    lift-arm of loading equipment is analyzed by BESO(Bidirectional EvolutionaryStructure Optimization)method under multiple loads and the results shows thatthis developed method was efficient and practicability. The method can be used intopological optimization without any limit.The meanings of this dissertation are presented in the following text.1. The meaning of dynamic analysis of equipment: mechanical analysis methods ofloading equipment had been static condition analysis and the dynamic analysis ofmain components was under scooping condition on the ground. The weight ofworking equipment is heavy so oscillating was produced on it under initialaccelerate and final decelerate and subsidiary loads came into being. So the dynamicanalysis had important meaning on loading equipment.2. The meaning of mechanical systems and hydraulic systems coupling simulation:Backhoe loaders are driven by hydraulic systems. Usually the dynamic analysishadn't considered the influence of hydraulic systems. This paper the models ofmulti-body mechanical systems and models of hydraulic systems were built and thencoupling simulation was implemented. Finally the dynamic performances ofequipment on hydraulic driving were obtained and modeling the interaction betweenthe hydraulic system and multi-body dynamics models. This method is suitable forany mechanical systems driven by hydraulic systems.3. The meaning of dynamic stress of loading equipment: This method makes dynamicstress of loading equipment obtain in design phrase and laid a foundation for fatigueanalysis and life estimate. Thus can shorten designing time , save cost and enhancingthe market compete capacity. This method can be used to aviation, transportationmobiles on the land or on the sea and so on.4. The meaning of lift-arm structural topological optimization: The lift-arm topologicalstructure had even stress distribution and smaller maximal stress by the BESOmethod. And had important meaning of shorten structural weight and heighteningworking efficiency. This method can be extended to optimize engineering structureor complicated continuum structure.In a word, this dissertation researched loading equipment of the backhoe loader
    thoroughly and there were innovative achievements in dynamic stress and lift-arm topologicaloptimization. Thus results supplied warrant for designing and improving product. At the sametime, these methods can be used to other domains for dynamic analysis, dynamic stress andtopological optimization.
引文
[1] 刘泳. 挖掘装载机历史及前景展望. 交通世界, 2003(5):42~45
    [2] 王玉良. 挖掘装载机的发展现状、趋势及研制思路. 建筑机械, 2003,(1):38~40
    [3] 孔凡宏. “两头忙”何时才能忙起来——国内挖掘装载机市场前景浅析. 交通世界, 2003(5):46~48
    [4] 张启君,陶仕甫. 挖掘装载机市场状况与前景分析. 建筑机械化,2005(5):11~17
    [5] 周明龙. 国内外挖掘装载机发展综述. 工程机械与维修,1996(2): 8~9
    [6] 罗百顺,符毅. 挖掘装载机 40 年的发展历程. 工程机械与维修,1997(4):11
    [7] 洪嘉振. 计算多体系统动力学. 北京:高等教育出版社,1999. 第 1 版
    [8] W. Schiehlen. Multibody System Handbook. Berlin: Springer-Verlag. 1990
    [9] 贺启庸,倪纯双,王卫东. 多体系统动力学与车辆动力学,铁道车辆,1995,1
    [10] 洪嘉振. 多体系统动力学——理论、计算方法和应用. 上海:上海交通大学出版社,1992
    [11] 洪嘉振,贾书惠. 多体系统动力学与控制. 北京:北京理工大学出版社, 1996
    [12] J.维滕伯格著, 谢传锋译. 多刚体系统动力学. 北京:北京航空学院出版社. 1986
    [13] 陆佑方. 柔性多体系统动力学. 北京:高等教育出版社, 1996. 第 1 版.
    [14] R. Schwertasek, R.E. Roberson. Dynamics of Multibody System. Berllin: Springer-Verlag. 1986
    [15] A.A.Shabana. Dynamics of Multibody System. New York.: Wiley. 1989
    [16] ADAMS Users Reference Manual. MDI, 1997
    [17] 袁士杰,吕哲勤. 多刚体系统动力学.北京:北京理工大学出版社,1992.第一版:34~55
    [18] 刘延柱,洪嘉振,杨海兴. 多刚体系统动力学. 北京:高等教育出版社,1989,第一版:40~64
    [19] N.Orlandea. M.A.Chace. D.A.Calahan. A Sparsity-Oriented Approach to the Dynamic Analysis and Design of Mechanical System~Part1 and Part2. J. of Engineering for Industry. 1977,8
    [20] N.K.Mani. E.J.Haug. K.E.Atkinson. Application Singular Value Decomposition for Analysis of Mechanical System Dynamics. ASME J. Mechanisms, Transmissions, and Automation in Design. 1885. vol.107
    [21] Hooker, W.W., Equations of Motion for Interconnected Rigid and Elastic Bodies. A Derivation Independent of Angular Momentum, Celestial Mechanics, 11(1975):337~359
    [22] Singhs, R.P., Vander Voort, R.J., Likins, P.W., Dynamics of Flexible Bodies in Tree-Topology-A Computer-Oriented Approach, Journal of Guidance & Control, 8(1985):584~590
    [23] 程耿东. 结构优化新方法及其计算机实现. 力学与实践, 1992,14(1):1~6
    [24] 许素强,夏人伟. 结构优化方法研究方法综述. 航空学报, 1995,16(4):385~396
    [25] Rozvany G I N, Bendesoe M P. Kirsch U. Layout optimization of structures. Applied Mechanics Reviews, 1995,48(2):41~119
    [26] Rozvany G I N. Aims, scope, method, history and unified terminology of computer-aided topology optimization in structural mechanics. Structural Optimization, 2001,21(2):90~108
    [27] Eschenauer H A, Olhoff N. Topoloty optimization of continuum structures: a review. Applied Mechanics Reviews, 2001,54(4):331~389
    [28] Michell A G M. The limits of economy of material in frame structure. Philosophical Magazine, 1904,8(6):589~597
    [29] Cox H L. The Design of Structures of Least Weight. Oxford: Pergamon, 1965
    [30] Hegemier G A, Prager W. On Michell trusses. International Journal of Mechanical Sciences, 1969,11(2):209~215
    [31] Hemp W S. Optimum Structure. Oxford: Clarendon Press, 1973.
    [32] Rozvany G I N. Some shortcomings in Michell's truss theory. Structural Optimization, 1996, 12(4):244~250
    [33] Rozvany G I N. Partial relaxation of the orthogonality requirement for classical Michell trusses. Structural Optimization, 1997, 13(4):271~274
    [34] 周克民. 基于 Michell 理论的结构拓扑优化. 天津大学博士学位论文. 2001.
    [35] 周克民,胡云昌. 利用有限元构造 Michell 桁架的一种方法. 力学学报, 2002,34(6):935~940
    [36] Bendsoe M P, Ben-Tal A, Zowe J. Optimization methods for truss geometry and topology design. Structural Optimization, 1994 7(3):141~159
    [37] Bojczuk K, Mroz Z. Optimal design of trusses with account for topology variation. Mechanics of Structures and Machines, 1998,26(1):21~40
    [38] Bojczuk K, Mroz Z. Optimal topology and configuration design of trusses with stress and buckling constraints. Structural Optimization, 1999, 17(1):25~35
    [39] Bendsoe M P, Kikuchi N. Generating Optimal Topologies in Structural Design Using a Homogenization Method. Comp Meth Apple Mech Engrg, 1988,71(1):197~224
    [40] 周克民,李俊峰,李霞. 结构拓扑优化研究方法综述. 力学进展,2005,35(1):69~76.
    [41] 荣见华,郑健龙,徐飞鸿. 结构动力修改及优化设计. 北京:人民交通出版社,2002.第 1 版: 249~260.
    [42] Xie Y M, Steven G P. A simple evolutionary procedure for structures optimization. Computers and Structures, 1993,49(5):885~896
    [43] Xie Y M, Steven G P. Optimal design of multiple load case structures using an evolutionary procedure. Engineering Computations, 1994, 11(5):295~302
    [44] Hinton E, Sienz J. Full stressed topological design of structures using an evolutionary procedure. Engineering Computations, 1995, 49(5):229~244
    [45] Zhou C, Hornby P, Steven G P, et al. A generalized evolutionary method for numerical topology optimization of structures under static loading conditions. Structural Optimization, 1998, 15(3):251~260
    [46] Guan H, Steven G P, Querin O M, et al. Optimization of bridge deck positoning by the evolutionary procedure. Structural Engineering and Mechanics, 1999, 7(6):551~559
    [47] Liang Q Q, Xie Y M, Steven G P. Optimal topology selection of continuum structures with displacement constraints. Computers and Structrues, 2000,77(6):635~644
    [48] 马玉娥,王振海,孙秦. 结构系统的优化理论与设计方法探究. 机械设计与制造, 2004(2):122~124
    [49] Fleury C, Schmit L A. Dual Methods and Approximation Concepts in Structural Synthesis. NASA, 1980, CR:3226
    [50] 唐文艳,顾元宪. 遗传算法在结构优化中的研究进展. 力学进展, 2002,32(1):26~40
    [51] 段宝岩,陈建军. 基于极大熵原理的杆系结构拓扑优化设计研究. 固体力学学报, 1997,18(4):329~335
    [52] 石沛林,唐子立,王世强. 装载机新型工作装置反求设计.建筑机械, 2000(1):36~38
    [53] 周玉忠,张家励,付为芳. 装载机工作装置特殊八杆机构优化设计.吉林工业大学学报, 1998(1):17~21
    [54] 周玉忠,闫冠,李盛成,诸文农. 多功能装载机特殊八杆机构工作装置设计分析.农业机械学报, 2000,31(5):70~73
    [55] 周玉忠,张逸国. 装载机八杆机构工作装置. 工程机械, 2003(9):24~27
    [56] 张越今. 多体系统动力学在轿车动力学仿真及优化研究中的应用. 清华大学博士学位论文. 1997,11
    [57] 詹文章. 汽车独立悬架多体系统动力学仿真及转向高速摆振研究. 吉林大学博士学位论文. 2000,12
    [58] MID, Using the ADAMS/Flex. Mechanical Dynamics, Inc., 1999
    [59] 张越今. 汽车多体动力学及计算机仿真. 长春:吉林科学技术出版社. 1998
    [60] 贾书惠. 刚体动力学. 北京:高等教育出版社. 1987
    [61] 师汉民等. 机械振动系统——分析·测试·建模·对策. 武汉:华中理工大学出版社. 1992
    [62] 范文杰,张子达,文广. 挖掘装载机装载工作装置动力分析. 建筑机械,2005,(5):70~71
    [63] Guofu Ding,Zhongyan Qian,Shuangxia Pan. Active Vibration Control of Excavator Working Equipment with ADAMS. 2000 International ADAMS User Conference.
    [64] Manfred Hiller. Modeling, simulation and control design for large and heavy manipulators. Robotics and Autonomous Systems, 1996,(19):167~177
    [65] 郑建荣. ADAMS—虚拟样机技术入门与提高. 北京:机械工业出版社. 2002
    [66] 曹超群. 基于虚拟样机的装载机工作装置的设计. 大连理工大学硕士论文. 2004. 3
    [67] 王玉卿. 工程机械实用液体传动. 北京:机械工业出版社. 1993 年第 2 版
    [68] 吉林工业大学工程机械教研室. 轮式装载机设计. 北京:中国建筑工业出版社. 1982 年.第 1 版
    [69] 隗金文,王慧. 液压传动. 沈阳:东北大学出版社. 2001 年第 1 版
    [70] 颜荣庆. 液压与液力传动. 北京:人民交通出版社. 1988 年第 1 版
    [71] 徐本连,侯保林,陈庆兰. 机械臂的设计及其动力学仿真. 起重运输机械. 2003(10):26~28
    [72] 彭力明,王耘,赵国华. 基于 ADAMS/Hydraulics 的连续阀口流量数学模型的建立. 液压与气动. 2004(3):11~13
    [73] 高钦和,郭晓松. 基于 ADAMS 的多级液压缸系统仿真建模. 机床与液压. 2003(1):93~95
    [74] C. Eberle, H.-H. Harms, F. Vemmer. Examples of simulating multibody systems and hydraulic systems in the field of mobile machines. 12th European ADAMS User's Conference, 1997, Marburg
    [75] H. Martikka, A. Mikkola. Dynamics Simulation and Design of a Hydraulic Driven Boom using ADAMS. 1995 International ADAMS User Conference
    [76] 于硕,闫涵. 装载机工作装置的机构分析. 工程机械, 2001(8):25~27
    [77] 胡铁华. 井下铲运机装载作业动力学建模及仿真研究. 吉林工业大学博士学位论文, 1999
    [78] 范文杰,徐进勇,张子达. 挖掘装载机装载工作装置动态应力仿真研究. 农业机械学报. 2006(2):25~28
    [79] 任尊松,孙守光,李强等. 构架结构振动与动态应力仿真研究. 机械工程学报,2004,40 (8): 187~191.
    [80] 任尊松,孙守光,刘志明. 构架做弹性体处理时的客车系统动力学仿真. 铁道学报,2004,26(4):31~35
    [81] Heetaek Lim, A Finite Element Approach to the Dynamic Simulation of Multibody Systems. PhD thesis, University of California, 2001
    [82] Winfrey, R. C., “Elastic Link Mechanism Dynamics,” Transaction of ASME, Journal of Engineering for industry, Vol. 93, No. 1, pp. 268~272, Feb.1971
    [83] 王海霞,汤文成等. 客车车身骨架动应力研究的现状与未来. 应用力学学报. 2001,18(3):8~13
    [84] Liu, T. S., “Computational Methods for Life Prediction of Mechanical Components of Dynamic Systems,” Ph.D. Thesis, The Univ. of Iowa, 1987
    [85] Yoo. W. S., and Haug, E. J., “Dynamics of Articulated Structures. Part I: Theory,” Journal of Structural Mechanics, Vol. 14, No. 1, pp. 105~126, 1986
    [86] J . Ryu , Sung—Soo kim and sang—sup kim. An efficient computational method for dynamic stress analysis of flexible multibody systems. Computers & Structures. Vol. 42 , 1992 , No. 6 , p969~977
    [87] H. J. Yim, E. J. Haug and B. Dopker. Computational methods for stress analysis of mechanical components in dynamic systems. Proceedings of 16th design automation conference. Vol 22-2,1990, p 79~87
    [88] Kim, H. S., “Dynamic Stress Analysis of a Flexible Body in Multibody System for Fatigue Life Prediction,” Ph.D. Thesis, Inha University, Incheon, Korea, 1999
    [89] 殷学纲,陈淮等. 结构振动分析的子结构方法. 北京:中国铁道出版社,1991.第1版
    [90] 邓峰岩,和兴锁等. 修正的Craig-Bampton方法在多体系统动力学建模中的应用. 机械设计. 2004 21(3): 41~43
    [91] 刘国庆,杨庆东. ANSYS 工程应用教程. 北京:中国铁道出版社,2003.第 1 版
    [92] Reno Filla, Jan_Ove Palmberg. Using dynamic simulation in the development of construction machinery. The Eighth Scandinavian International Conference on Fluid Power, SICFP'03, May 7-9,2003, Tampere, Finland
    [93] Allan Ericsson, Jesper Slattengren. A model for predicting digging forces when working in gravel or other granulated material. The 15th ADAMS European Users Conference, Rome 2000
    [94] Craig R R, Bampton M C C. Coupling of substructures for dynamics analyses. AIAA J,1968,6(7):1313~1319
    [95] 俞武勇,季林红,阎绍泽等. 弹性构件的模态选择对机构动力分析的影响. 清华大学学报(自然科学版),2002,42(2):175~178
    [96] 王文亮,杜作润. 结构振动与动态子结构方法. 上海:复旦大学出版社,1985.第 1 版
    [97] 殷学纲,陈淮等. 结构振动分析的子结构方法. 北京:中国铁道出版社,1991.第 1 版
    [98] 荣见华,姜节胜,胡德文等. 基于应力及其灵敏度的结构拓扑渐进优化方法. 力学学报. 2003, 35(5):584~590
    [99] 荣见华,姜节胜,颜东煌等. 基于人工材料的结构拓扑渐进优化设计. 工程力学. 2004, 21(5):64~71
    [100] D. Nha Chu, Y.M. Xie, A. Hira, G.P. Steven. On various aspects of evolutionary structural optimization for problems with stiffness constraints. Finite Elements in Analysis and Design 24,1997: 197~212
    [101] O.M. Querin, V. Young, G.P. Steven, Y.M. Xie. Computational efficiency and validation of bi-directional evolutionary structural optimization. Comput. Methods Appl. Mech. Engrg. 189, 2000:559~573
    [102] Wenjie FAN, Zida ZHANG, Wen Guang. Application of Evolutionary Structural Topological Optimization on Arm of Loader. Proceedings of ICMEM2005, International Conference on Mechanical Engineering and Mechanics. October 26~28,2005, Nanjing, China
    [103] 宿新东,管迪华. 利用双向渐进结构优化法对结构固有振型的优化. 机械强度. 2004,26(5):542~546
    [104] 徐飞鸿,荣见华. 多工况下结构拓扑优化设计. 力学与实践. 2004, 26(3):50~53
    [105] 周玉忠, 装载机八杆机构工作装置的研究: 吉林大学博士学位论文. 2000
    [106] Young V, Querin O M, Steven G P, et al. 3D bi-directional evolutionary structural optimization (BESO). Proceedings of the Australian Conference on Structural Optimization, Sydney,1988:275~282
    [107] Sigmund O, Petersson J. Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh dependencies and local minimal. Struct Optim, 1998, 16:68~75
    [108] Bendsoe M P. Optimization of Structural Topology, Shape and Material: Berlin:Springer, 1995
    [109] 刘震宇,王晓明,郭东明. 利用窗函数解决连续体结构拓扑优化中的棋盘格式问题. 中国机械工程, 2000, 11(6):705~708
    [110] Petersson J, Sigmund O. Slope constrained topology optimization. Int J Numer Meth Engng, 1998, 41: 1417 ~ 1434
    [111] Sigmund O. On the design of complaint mechanisms using topology optimization. Mech Struct Mach, 1997, 25: 495~526
    [112] 博弈创作室. APDL参数化有限元分析技术及其应用实例. 北京:中国水利水电出版社. 2004年,第1版
    [113] 范文杰,徐进勇,张子达. 基于双向渐进结构优化法的装载机动臂结构拓扑优化. 农业机械学报, 2006, (11)
    [114] 范文杰,张子达,文广. 挖掘装载机装载工作装置有限元分析. 筑路机械与施工机械化. 2005, 22(2) :45~47
    [115] 王国彪, 杨力夫. 装载机工作装置优化设计. 北京: 机械工业出版社, 1996, 第 1 版.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700