用户名: 密码: 验证码:
连续体结构拓扑优化模型讨论及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于在设计结构的尺寸和形状的同时可设计结构的构型,拓扑优化与传统的尺寸优化和形状优化相比具有更高的优化效益,从而成为航天航空等高技术领域结构设计的重要手段。针对不同的设计要求,建立合适的拓扑优化问题的提法和数学模型,成为重要的研究课题。
     本论文在总结评述拓扑优化的理论、方法和应用方面的研究进展的基础上,开展了拓扑优化模型的研究,针对最大刚度设计和最优散热结构设计问题,提出了基于几何平均位移和几何平均温度为目标的拓扑优化设计问题的提法和求解方法;研究了具有拉压不同模量的结构拓扑优化问题,以及结构拓扑与构件间连接方式的协同设计问题。具体研究内容和成果如下。
     1)连续体结构拓扑优化模型的讨论。传统结构静力拓扑优化往往集中于以柔顺性为目标函数的研究,然而实际工程设计中通常采用最大位移作为衡量结构刚度性能的指标。本论文以悬臂梁结构截面设计为例,评估了柔顺性最小设计与最大位移最小设计之间的差别;将几何平均位移作为最大位移的近似,并以此为目标函数建立新的优化模型;研究其与传统基于柔顺性的优化模型的差别与各自适用的设计范围。相似地,将几何平均温度作为最高温度的近似引入到结构散热拓扑优化设计中,并作为目标函数建立散热结构拓扑优化模型来实现最高温度最小化设计;通过比较最高温度、最大温度梯度以及温度方差(衡量温度场均匀程度的指标)等特征指标来研究基于几何平均温度的优化模型与基于热量传递势容耗散、温度方差这两个优化模型在散热结构拓扑优化设计中的差异及各自适用的设计范围。
     2)拉压不同模量结构拓扑优化设计。具有拉压不同模量特性的材料如混凝土、纤维增强复合材料等已被大量应用于土木建筑以及航天航空结构中,传统基于线弹性本构的连续体拓扑优化技术不能满足此类问题的设计要求。本论文研究了拉压不同模量结构拓扑优化设计的理论和方法。针对拉压不同模量问题本构不连续的特性,采用改进的Heaviside函数光滑连续化此非线性材料本构关系,并提出基于牛顿—拉斐逊方法的有限元迭代求解格式。以此为基础,建立了拉压不同模量拓扑优化模型以及具有多相材料的结构构型设计策略,深入地讨论了各类型设计参数对结构最优构型的影响。
     3)结构构型与结构间连接方式协同优化设计。通常的结构拓扑优化是在给定外部作用下的构型设计。然而对于复杂结构,各部件由连接构件相连并通过它传递外部作用。因此,连接方式影响部件承受载荷的分布,即连接构件的布局对部件的最优构型有重要影响。本论文研究结构部件构型与部件之间连接方式的协同优化问题,在连接区域引入一种特殊的材料模型,以此材料的分布来描述连接方式,并将承力结构与连接构件区域的材料密度同时作为设计变量,提出了一种基于拓扑优化思想的连接方式与结构拓扑协同设计的优化模型和相应的求解方法。
     本文工作得到国家重点基础研究(973项目)计划(2006CB601205)、国家自然科学基金(90605002,10721062,90816025)和高等学校博士学科点专项科研基金(20090041110023)的资助,在此表示感谢。
Topology optimization can provide much more benefits than traditional size and shape optimization, since it can achieve the structural configuration, size and shape design at the same time. This makes it become the most important structural design method in aerospace and other high-tech fields. How to establish reasonable optimization formulations and mathematical models for different design requirements has already become an important subject in the structural optimization research field.
     Based on the critical review on theory, method and application of structural topology optimization, this dissertation focused on topology optimization models. The optimization formulation and corresponding solution methods in which the geometric average displacement\temperature are considered as objective functions respectively are put forward to solve the problems in the maximum stiffness design and optimum heat dissipation design. Structural topology design with different tensile and compressive properties is proposed in this dissertation, and concurrent optimum design method of layouts of component and connection between components in the structure is also well presented for grid structure design. The main achievement and works of the dissertation are as following:
     (1) The discussion on topology optimization models. Designs of structures with maximum stiffness based on the compliance have attracted much attention and many achievements have been made. However, in practical engineering the maximum displacement is the most commonly used index in measuring structural stiffness. The difference between minimal compliance design and minimal maximum displacement is pointed out through a cantilever beam section design example in this dissertation. As a good approximation of the maximum displacement, the geometric average displacement in the design region is considered as the objective function in the new static topology optimization model in order to achieve minimal maximum displacement design. The proposed model is compared with the conventional compliance design model. The differences between these two models and their scope of application are well discussed through theory and numerical analysis. Similarly, the geometric average temperature, which is used as a good approximation of the maximum temperature, is considered as the objective function in the new heat conduction topology optimization model in order to achieve minimal maximum temperature design. The comparison on the proposed model, the conventional dissipation of heat transport potential capacity design model and the nodal temperature variance based optimization model is also carried out. By comparing the maximum temperature, the maximum temperature gradient, and the nodal temperature in the design results, the differences among these three models as well as their scope of application are discussed through theory and numerical analysis.
     (2) Topology optimization of continuum structures with different tensile and compressive properties. The materials of dual extension/compression modulus such as concrete and fiber reinforced composite are often encountered in the engineering problems. These materials are widely used in the construction industry, machinofacture, aircraft manufacturing, and other industries. However, conventional topology optimization with linear material can not fulfill these design requirements any longer. Consequently, the theory and method of topology optimization of continuum structures with different tensile and compressive properties have been studied thoroughly in this dissertation. In order to solve elasticity problems with dual extension/compression modulus, a technique that employ modified Heaviside function is presented to describe the nonlinear relationship of stress and material modulus smoothing the constitutive discontinuity. By utilizing Newton-Raphson algorithm, the iterative finite element numerical analysis method is proposed. Meanwhile a topology optimization model of continuum structures with different tensile and compressive properties is constructed to achieve structural layout design. Furthermore, based on this method a multimaterial model is proposed to formulate the topology optimization problem for structural topology design with multiphase materials. Two types of materials are distributed within the design domain to accommodate design need. Then, this dissertation discusses the influence of some relative design parameters in optimum design in depth.
     (3) Concurrent optimum design of layouts of component and connection between components in the structure. The last part of this dissertation focuses on concurrent design of layouts of components and connection between components of structure. The conventional structural topology optimization is the layouts design of structure with fixed external loads. It is obvious for the complex construction that components joined together by connection transfer the external force, thus linkage model of components of structure affect load distribution greatly. In other words, connection distribution has great effect on optimal topology of components. The connection conditions are included in the topology optimization by introducing a new set of material model that represents connective domain through material distribution. Considering the relative material density of loading-carrying domain and connective domain as design variable, a topology optimization based approach and the corresponding solving technique has been developed to simultaneously designing structure and connection distribution.
     This work is supported by National Basic Research Program (973 Program) of China (No.2006CB601205), National Natural Science Foundation of China (No.90605002, 10721062,90816025), and the Research Fund for the Doctoral Program of Higher Education of China (No.20090041110023). The financial supports are gratefully acknowledged.
引文
[1]穆春燕,苏超,王海青.拓扑优化方法的研究进展及在水工结构设计中的应用[J].水力发电,2006,32(5),65-70.
    [2]褚金奎,郝秀春,王立鼎.拓扑优化方法的研究现状及在微机构设计中的应用[J].微纳电子技术,2003,7-8,87-91.
    [3]隋允康,叶红玲,杜家政.结构拓扑优化的发展及其模型转化为独立层次的迫切性[J].工程力学,2005,22,107-118.
    [4]Michell A, Melbourne M. The limits of economy of material in frame-structures[J]. Philosophical Magazine,1904,8(47),589-597.
    [5]Cox H L. The design of structures of least weight[M]. Oxford:Pergamon,1965.
    [6]Hegeminer G A, Prager W. On Michell trusses[J]. International Journal of Mechanical Sciences,1969, 11(2),209-215.
    [7]Hemp W S. Michell frawork for uniform load between fixed supports[J]. Engineering Optimization, 1974,1(1),61-69.
    [8]Hemp W S. Michell framework for a force in any definite direction at the mid—point between two support[J]. Engineering Optimization,1974,2(3),183-187.
    [9]Hemp W S. Optimum structure[M]. Oxford:Clarendon,1973.
    [10]Rozvany G I N. Some shortcomings in Michell's truss theory [J]. Structural Optimization,1996, 12(4),244-250.
    [11]Rozvany G I N, Gollub W. Michell layouts for various combinations of line support [J]. International Journal of Mechanical Sciences,1990,32(12),1021-1043.
    [12]Rozvany G I N, Gollub W, Zhou M. Exact Michell layouts for various combinations of line supports-Part Ⅱ[J]. Structural Optimization,1997,14(2/3),138-149.
    [13]Dorn W S, Gomory R E, Greenberg H J. Automatic design of optimal structures [J]. J Mechanics, 1964,3(1),25-52.
    [14]段宝岩,叶尚辉.考虑性态约束时多工况析架结构拓扑优化设计[J].力学学报,1992,24(1),59-70.
    [15]Dobbs N W, Felton I P. Optimization of truss geometry [J]. ASCE,1969,95(10),2105-2118.
    [16]Ringertz U. On topology optimization of trusses [J]. Engineering Optimization,1985, (9), 209-218.
    [17]Sved G, Ginos Z. Structural optimization under multiple loadings [J]. International Journal of Mechanical Sciences,1968,10(10),803-805.
    [18]Sheu C Y, Schmit L A. Minimum weight design of elastic redundant trusses under multiple static loading conditions [J]. AIAA,1972,10(2),155-162.
    [19]Kirsch U. On singular topologies in optimum structural design [J]. Structural and Multidisciplinary Optimization,1990,2(3),133-142.
    [20]Cheng G D, Jiang Z. Study on topology optimization with stress constraints [J]. Engineering Optimization,1992,20,129-148.
    [21]Cheng G D, Jiang Z. Numerical performance of two formulations of truss topology optimization [J]. Acta Mechanica Sinica,1994,10(4),326-335.
    [22]Cheng G. Some aspects of truss topology optimization [J]. Structural and Multidisciplinary Optimization,1995,10(3),173-179.
    [23]Guo X, Cheng G D. A new approach for the solution of singular optimum in structural topology optimization [J]. Acta Mechanica Sinica,1997,13(2),171-178.
    [24]Cheng G D, Guo X. ε-relaxed approach in structural topology optimization [J]. Structural and Multidisciplinary Optimization,1997,13(4),258-266.
    [25]程耿东.关于桁架结构拓扑优化中的奇异最优解[J].大连理工大学学报,2000,40(4),379-383.
    [26]程耿东,郭旭.考虑局部稳定约束的桁架拓扑优化设计[J].大连理工大学学报,1995,35(6),770-775.
    [27]Achtziger W, Bends(?)e M P. Optimal topology design of discrete structures resisting degradation effects [J]. Structural and Multidisciplinary Optimization,1999,17(1),74-78.
    [28]Grierson D E, Pak W H. Optimal sizing, geometrical and topological design using a genetic algorithm [J]. Structural and Multidisciplinary Optimization,1993,6(3),151-159.
    [29]许素强,夏人伟.桁架拓扑优化设计与遗传算法[J].计算力学及应用,1994.
    [30]蔡文学,程耿东.桁架结构拓扑优化设计的模拟退火算法[J].华南理工大学学报,1998,29(9),79-84.
    [31]孙焕纯.离散变量结构优化设计的序列两级算法[J].计算结构力学及其应用,1986,3(2),134-146.
    [32]Arora. Introduction to optimum design[M]. Califormia:Elsevier Academic 2004.
    [33]Duan B Y, Templeman A B, Chen J J. Entropy-based method for topological optimization of truss structures [J]. Computers & Structures,2000,75(5),539-550.
    [34]Cheng K-T, Olhoff N. An investigation concerning optimal design of solid elastic plates [J]. International Journal of Solids and Structures,1981,17(3),305-323.
    [35]Bends(?)e, Kikuchi. Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering,1988,71(2),197-224.
    [36]Guedes J, Kikuchi N. Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods [J]. Computer Methods in Applied Mechanics and Engineering,1990,83(2),143-198.
    [37]Suzuki K, Kikuchi N. A homogenization method for shape and topology optimization [J]. Computer Methods in Applied Mechanics and Engineering,1991,93(3),291-318.
    [38]Diaz A R, Bends(?)e M P. Shape optimization of structures for multiple loading conditions using a homogenization method[J]. Structural and Multidisciplinary Optimization,1992,4(1),17-22.
    [39]Tenek L H, Hagiwara I. Static and vibrational shape and topology optimization using homogenization and mathematical programming [J]. Computer Methods in Applied Mechanics and Engineering,1993,109(1-2),143-154.
    [40]Hassani B, Hinton E. Homogenization and Structural Topology Optimization[M]. London: Springer-Verlag Limited,1999.
    [41]Belblidia F, Lee J E B, Rechak S, et al. Topology optimization of plate structures using a single-or three-layered artificial material model[J]. Advances in Engineering Software,2001,32(2), 159-168.
    [42]Giuseppe C A. Hierarchical Solution of Large-Scale Three-Dimensional Topology Optimization Problems [J].Michigan:Michigan State University,1996.
    [43]Lin C Y, Chou J N. A two-stage approach for structural topology optimization [J]. Advances in Engineering Software,1999,30(4),261-271.
    [44]Michel J C, Moulinec H, Suquet P. Effective properties of composite materials with periodic microstructure:a computational approach [J]. Computer Methods in Applied Mechanics and Engineering,1999,172(1-4),109-143.
    [45]Sigmund O. Materials with prescribed constitutive parameters:An inverse homogenization problem [J]. International Journal of Solids and Structures,1994,31(17),2313-2329.
    [46]庄守兵,吴长春.基于均匀化方法的多孔材料细观力学特性数值研究[J].材料科学与工程,2001,19(4),9-13.
    [47]刘书田,程耿东.复合材料应力分析的均匀化方法[J].力学学报,1997,29(3),306-313.
    [48]袁振,吴长春.复合材料周期性线弹性微结构的拓扑优化设计[J].固体力学学报,2003,24(1),40-45.
    [49]Rossow M P, Taylor J E. A finite element method for the optimal design of variable thickness sheets [J]. AIAA,1973,11,1566-1569.
    [50]Bends(?)e M P. Optimal shape design as a material distribution problem [J]. Structural and Multidisciplinary Optimization,1989,1 (4),193-202.
    [51]Mlejnek H P. Some aspects of the genesis of structures [J]. Structural and Multidisciplinary Optimization,1992,5(1),64-69.
    [52]Rozvany G I N, Zhou M, Birker T. Generalized shape optimization without homogenization [J]. Structural and Multidisciplinary Optimization,1992,4 (3),250-252.
    [53]Bends(?)e M P, Sigmund O. Material interpolation schemes in topology optimization [J]. Archive of Applied Mechanics,1999,69(9),635-654.
    [54]Theocaris P S, Stavroulakis G E. Optimal material design in composites:An iterative approach based on homogenized cells [J]. Computer Methods in Applied Mechanics and Engineering,1999, 169(1-2),31-42.
    [55]Rietz A. Sufficiency of a finite exponent in SIMP (power law) methods [J]. Structural and Multidisciplinary Optimization,2001,21(2),159-163.
    [56]Zhou M, Rozvany G I N. DCOC:An optimality criteria method for large systems Part Ⅱ: Algorithm [J]. Structural and Multidisciplinary Optimization,1993,6(4),250-262.
    [57]Zhou M, Rozvany G I N. DCOC:An optimality criteria method for large systems Part I:theory [J]. Structural and Multidisciplinary Optimization,1992,5(1),12-25.
    [58]Sigmund O. A 99 line topology optimization code written in Matlab[J]. Structural and Multidisciplinary Optimization,2001,21(2),120-127.
    [59]Sigmund O, On the Design of Compliant Mechanisms Using Topology Optimization [J]. Taylor & Francis,1997,25.493-524.
    [60]Buhl T, Pedersen C B W, Sigmund O. Stiffness design of geometrically nonlinear structures using topology optimization [J]. Structural and Multidisciplinary Optimization,2000,19(2), 93-104.
    [61]Sigmund O. Design of multiphysics actuators using topology optimization-Part I:One-material structures [J]. Computer Methods in Applied Mechanics and Engineering,2001,190(49-50), 6577-6604.
    [62]Sigmund O. Design of multiphysics actuators using topology optimization-Part II:Two-material structures [J]. Computer Methods in Applied Mechanics and Engineering,2001,190(49-50), 6605-6627.
    [63]Jensen J, Sigmund O. Systematic design of photonic crystal structures using topology optimization: low-loss waveguide bends [J]. Appl Phys Lett,2004,84,2022-2024.
    [64]Jensen J, Sigmund O. Topology optimization of photonic crystal structures:a high-bandwidth low-loss T-junction waveguide [J]. J Opt Soc Am B Opt Phys,2005,22,1191-1198.
    [65]Sigmund O, Jensen J. Systematic design of phononic band-gap materials and structures by topology optimization [J]. Philosophical Transactions of the Royal Society London,2003,361,1001-1019.
    [66]Kharmanda G, Olhoff N, Mohamed A, et al. Reliability-based topology optimization [J]. Structural and Multidisciplinary Optimization,2004,26 (5),295-307.
    [67]Du J, Olhoff N. Minimization of sound radiation from vibrating bi-material structures using topology optimization [J]. Structural and Multidisciplinary Optimization,2007,33(4),305-321.
    [68]Du J, Olhoff N. Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps [J]. Structural and Multidisciplinary Optimization,2007,34(2),91-110.
    [69]Du J, Olhoff N. Topological optimization of continuum structures with design-dependent surface loading-Part I:new computational approach for 2D problems [J]. Structural and Multidisciplinary Optimization,2004,27(3),151-165.
    [70]Du J, Olhoff N. Topological optimization of continuum structures with design-dependent surface loading-Part II:algorithm and examples for 3D problems [J]. Structural and Multidisciplinary Optimization,2004,27(3),166-177.
    [71]Hammer V B, Olhoff N. Topology optimization of continuum structures subjected to pressure loading [J]. Structural and Multidisciplinary Optimization,2000,19(2),85-92.
    [72]Maute K, Ramm E. Adaptive topology optimization of shell structures [J]. AIAA,1997,37, 1767-1777.
    [73]Maute K, Schwarz S, Ramm E. Adaptive topology optimization of elastoplastic structures [J]. Structural and Multidisciplinary Optimization,1998,15(2),81-91.
    [74]Maute K, Ramm E. Adaptive topology optimization [J]. Structural and Multidisciplinary Optimization,1995,10(2),100-112.
    [75]Xie Y M, Steven G P. A simple evolutionary procedure for structural optimization [J]. Computers & Structures,1993,49(5),885-896.
    [76]Steven G P, Li Q, Xie Y M. Evolutionary topology and shape design for general physical field problems [J]. Computational Mechanics,2000,26(2),129-139.
    [77]Steven G P, Li Q, Xie Y M. Multicriteria optimization that minimizes maximum stress and maximizes stiffness [J]. Computers & Structures,2002,80(27-30),2433-2448.
    [78]Xie Y M, Steven G P. Evolutionary structural optimization for dynamic problems [J]. Computers & Structures,1996,58(6),1067-1073.
    [79]Li Q, Steven G P, Querin O M, et al. Shape and topology design for heat conduction by Evolutionary Structural Optimization [J]. International Journal of Heat and Mass Transfer,1999, 42(17),3361-3371.
    [80]Nha C D, Xie Y M, Steven G P. An evolutionary structural optimization method for sizing problems with discrete design variables [J]. Computers & Structures,1998,68(4),419-431.
    [81]Nha Chu D, Xie Y M, Hira A, et al. On various aspects of evolutionary structural optimization for problems with stiffness constraints [J]. Finite Elements in Analysis and Design,1997,24(4), 197-212.
    [82]Manickarajah D, Xie Y M, Steven G P. An evolutionary method for optimization of plate buckling resistance [J]. Finite Elements in Analysis and Design,1998,29(3-4),205-230.
    [83]Li Q, Steven G P, Xie Y M. Displacement minimization of thermoelastic structures by evolutionary thickness design [J]. Computer Methods in Applied Mechanics and Engineering,1999,179(3-4), 361-378.
    [84]Li Q, Steven G P, Xie Y M. Evolutionary structural optimization for stress minimization problems by discrete thickness design [J]. Computers & Structures,2000,78(6),769-780.
    [85]Li W, Li Q, Steven G P, et al. An evolutionary shape optimization for elastic contact problems subject to multiple load cases [J]. Computer Methods in Applied Mechanics and Engineering,2005, 194(30-33),3394-3415.
    [86]Li Q, Steven G P, Querin O M, et al. Stress based optimization of torsional shafts using an evolutionary procedure [J]. International Journal of Solids and Structures,2001,38(32-33), 5661-5677.
    [87]Li Q, Steven G P, Xie Y M, et al. Evolutionary topology optimization for temperature reduction of heat conducting fields [J]. International Journal of Heat and Mass Transfer,2004,47(23), 5071-5083.
    [88]Querin O M, Steven G P, Xie Y M. Evolutionary structural optimisation using an additive algorithm [J]. Finite Elements in Analysis and Design,2000,34 291-308.
    [89]Querin O M, Young V, Steven G P, et al. Computational efficiency and validation of bi-directional evolutionary structural optimisation [J]. Computer Methods in Applied Mechanics and Engineering, 2000,189(2),559-573.
    [90]Huang X, Xie Y M, Burry M C, Advantages of Bi-Directional Evolutionary Structural Optimization (BESO) Over Evolutionary Structural Optimization (ESO), Advances in Structural Engineering, vol.10,2007, pp.727-737.
    [91]荣见华,姜节胜,颜东煌,et al.基于人工材料的结构拓扑渐进优化设计[J].工程力学,2004,21(5),64-71.
    [92]荣见华,姜节胜,胡德文,et al.基于应力及其灵敏度的结构拓扑渐进优化方法[J].力学学报,2003,35(5),584-591.
    [93]荣见华,姜节胜,徐飞鸿,et al.一种基于应力的双方向结构拓扑优化算法[J].计算力学学报,2004,21(3),322-329.
    [94]荣见华,谢忆民,姜节胜.渐进结构优化设计的现状与进展[J].长沙交通学院学报,2001,17(3),16-23.
    [95]杜海珍,荣见华,傅建林.基于应变能的双方向结构渐进优化方法[J].机械强度,200527(1),72-77.
    [96]宿新东,管迪华.利用双向渐进结构优化法对结构固有振型的优化[J].机械强度,2004,26(5),542-546.
    [97]Das R, Jones R, Xie Y M. Design of structures for optimal static strength using ESO[J]. Engineering Failure Analysis,2005,12(1),61-80.
    [98]Yang X Y, Xie Y M, Steven G P. Evolutionary methods for topology optimisation of continuous structures with design dependent loads [J]. Computers & Structures,2005,83(12-13),956-963.
    [99]罗志凡,卢耀祖,荣见华,et al.基于一种新的应力准则的渐进结构优化方法[J].同济大学学报(自然科学版),2005,33(3),372-375.
    [100]Ansola R, Canales J, Tarrago J. An efficient sensitivity computation strategy for the evolutionary structural optimization (ESO) of continuum structures subjected to self-weight loads [J]. Finite Elements in Analysis and Design,2006,42(14-15),1220-1230.
    [101]刘毅,金峰.用反向渐进结构优化方法研究洞室支护优化[J].计算力学学报,2006 23(6),659-662.
    [102]刘毅,金峰.双向固定网格渐进结构优化方法[J].应用力学学报,2007,24(4).
    [103]王必军.渐进结构优化方法在结构动力优化中的应用[J].山西建筑,2006,32(4),88-89.
    [104]Zhou M, Rozvany G I N. On the validity of ESO type methods in topology optimization [J]. Structural and Multidisciplinary Optimization,2001,21(1),80-83.
    [105]Zhu J, Zhang W, Qiu K. Bi-Directional Evolutionary Topology Optimization Using Element Replaceable Method [J]. Computational Mechanics,2007,40(1),97-109.
    [106]Huang X, Xie Y. A new look at ESO and BESO optimization methods [J]. Structural and Multidisciplinary Optimization,2008,35(1),89-92.
    [107]Huang X, Xie Y M. Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method [J]. Finite Elements in Analysis and Design,2007, 43(14),1039-1049.
    [108]Sethian J A, Wiegmann A. Structural Boundary Design via Level Set and Immersed Interface Methods [J]. Journal of Computational Physics,2000,163(2),489-528.
    [109]Osher S J, Santosa F. Level Set Methods for Optimization Problems Involving Geometry and Constraints:I. Frequencies of a Two-Density Inhomogeneous Drum[J]. Journal of Computational Physics,2001,171(1),272-288.
    [110]Allaire G, Jouve F, Toader A-M. Structural optimization using sensitivity analysis and a level-set method [J]. Journal of Computational Physics,2004,194(1),363-393.
    [111]Allaire G, Gournay F, Jouve F, et al. Structural optimization using topological and shape sensitivity via a level set method [J]. Control and Cybernetics,2005,34(1),59-81.
    [112]Allaire G, Jouve F. A level-set method for vibration and multiple loads structural optimization [J]. Computer Methods in Applied Mechanics and Engineering,2005,194 (30-33),3269-3290.
    [113]Wang M Y, Wang X, Guo D. A level set method for structural topology optimization [J]. Computer Methods in Applied Mechanics and Engineering [J],2003,192(1-2),227-246.
    [114]Wang X, Wang M Y, Guo D. Structural shape and topology optimization in a level-set-based framework of region representation [J]. Structural and Multidisciplinary Optimization,2004,27(1), 1-19.
    [115]Wang M Y, Wang X. "Color" level sets:a multi-phase method for structural topology optimization with multiple materials [J]. Computer Methods in Applied Mechanics and Engineering, 2004,193(6-8),469-496.
    [116]Wang M Y, Chen S K, Wang X. Design of multi-material compliant mechanisms using level-set methods [J]. Journal of Mechanical Design,2005,127(5),941-956.
    [117]Mei Y, Wang X. A level set method for structural topology optimization and its applications [J]. Advances in Engineering Software,2004,35(7),415-441.
    [118]Kwak J, Cho S. Topological shape optimization of geometrically nonlinear structures using level set method [J]. Computers & Structures,2005,83(27),2257-2268.
    [119]Ha S, Cho S. Topological Shape Optimization of Heat Conduction Problems using Level Set Approach [J]. Numerical Heat Transfer Part B:Fundamentals,2005,48(1),67-88.
    [120]Cho S, Ha S-H, Park C-Y. Topological shape optimization of power flow problems at high frequencies using level set approach [J]. International Journal of Solids and Structures,2006,43 (1), 172-192.
    [121]Yunkang S, Deqing Y. A new method for structural topological optimization based on the concept of independent continuous variables and smooth model [J]. Acta Mechanica Sinica,1998,14(2), 179-185.
    [122]隋允康,杨德庆,孙焕纯.统一骨架与连续体的结构拓扑优化的ICM理论与方法[J].计算力学学报,2000,1(17),28-33.
    [123]隋允康,于新,叶宝瑞.基于“有无复合体”的应力约束下桁架和平面膜结构拓扑优化的统—模型[J].固体力学学报,2001,22(1),15-22.
    [124]隋允康,于新.平面膜结构拓扑优化的有无复合体方法[J].力学学报,2001,3(33),357-364.
    [125]隋允康,杨德庆,王备.多工况应力和位移约束下连续体结构拓扑优化[J].力学学报,2000,32(2),171-179.
    [126]杨德庆,隋允康,刘正兴.多工况应力约束下连续体结构拓扑优化映射变换解法[J].上海交通大学学报,2000,34(8),1061-1065.
    [127]隋允康,金雪燕.应力和位移约束下的板壳结构截面优化[J].力学学报,2004,36(6),701-708.
    [128]杨德庆,隋允康,刘正兴等.应力和位移约束下连续体结构拓扑优化[J].应用数学和力学,2000,21(1),17-24.
    [129]于新,隋允康.平面连续体多工况应力约束下结构拓扑优化的有无复合体方法[J].计算力学学报,2001,18(2),278-282.
    [130]Rozvany G I N, Zhou M. The COC algorithm, part I:Cross-section optimization or sizing [J]. Computer Methods in Applied Mechanics and Engineering,1991,89(1-3),281-308.
    [131]Zhou M, Rozvany G I N. The COC algorithm, Part II:Topological, geometrical and generalized shape optimization [J]. Computer Methods in Applied Mechanics and Engineering,1991,89(1-3), 309-336.
    [132]Rozvany G I N, Sobieszczanski-Sobieski J. New optimality criteria methods:Forcing uniqueness of the adjoint strains by corner-rounding at constraint intersections [J]. Structural and Multidisciplinary Optimization,1992,4(3),244-246.
    [133]钱令希.工程结构优化设计[M].北京:水利电力出版社,1983.
    [134]程耿东.工程结构优化设计基础[M].北京:水利电力出版社,1984.
    [135]刘惟信.机械最优化设计[M].北京:清华大学出版社,1994.
    [136]Bruyneel M, Fleury C. Composite structures optimization using sequential convex programming [J]. Advances in Engineering Software,33(7-10),697-711.
    [137]Svanberg K. The method of moving asymptotes-a new method for structural optimization [J]. International Journal for Numerical Methods in Engineering,1987,24,359-373.
    [138]Svanberg K. A class of globally convergent optimization methods based on conservative convex separable approximations [J]. SIAM Journal of Optimization,2002,12,555-573.
    [139]Ohsaki M. Genetic algorithm for topology optimization of trusses [J]. Comput. Struct,1995, 57,219~225.
    [140]Hajela P, Lee E. genetic algorithms in truss topological optimization. [J]. Int. J. Solids,1995, 32,3341-3357.
    [141]Jingui L, Yunliang D. An improved strategy for GAS in structural optimization [J]. Computers&Structures,1996,61(6),1185-1191.
    [142]Galante M. Genetic algorithms as an approach to optimieze real-world Trusses [J]. Numerical Methods In Engineering,1996,39,361-382.
    [143]shrestha S, Ghaboussi J. Evolution of optimum structural suing genetic algorithm [J]. J. of Struct. Eng,1998,124(11),1331-1338.
    [144]Rajeev S, Krishnamoorthy C S. Genetic algorithms-based methodologies for design optimization of trusses [J]. J. of Struct. Eng,1997,123(3),350~358.
    [145]Manolis P, Nikos D L, Yiannis T. Structural optimization using evolution strategies and neural networks [J]. Comput. Methods Appl. Mech. Engrg,1998,156,309-333.
    [146]Sigmund O, Petersson J. Numerical instabilities in topology optimization:A survey on procedures dealing with checkerboards, mesh-dependencies and local minima [J]. Structural and Multidisciplinary Optimization,1998,16(1),68-75.
    [147]Diaz A, Sigmund O. Checkerboard patterns in layout optimization [J]. Structural Optimization, 1995,10(1),40-45.
    [148]Rozvany G. A critical review of established methods of structural topology optimization [J]. Structural and Multidisciplinary Optimization,2009,37(3),217-237.
    [149]Bends(?)e M P, Sigmund. Topology Optimization:Theory, Methods and Applications[M]. Berlin: Springe-Heidelberg,2003.
    [150]Olhoff N, Bendsoe M P, Rasmussen J. On CAD-integrated structural topology and design optimization [J]. Computer Methods in Applied Mechanics and Engineering,1991,89(1-3), 259-279.
    [151]Bendsoe M P, Sokolowski J. Shape Sensitivity Analysis of Optimal Compliance Functionals[J]. Mechanics of Structures and Machines,1995,23(1),35-58.
    [152]Jog C S, Haber R B. Stability of finite element models for distributed-parameter optimization and topology design [J]. Computer Methods in Applied Mechanics and Engineering,1996, 130(3-4),203-226.
    [153]Bejan A. Constructal-theory network of conducting paths for cooling a heat generating volume [J]. International Journal of Heat and Mass Transfer,1997,40(4),799-811.
    [154]Bejan A. Optimal Internal Structure of Volumes Cooled by Single-Phase Forced and Natural Convection [J]. Journal of Electronic Packaging,2003,125(2),200-207.
    [155]Bejan A. Theory of heat transfer-irreversible power plants--Ⅱ. The optimal allocation of heat exchange equipment [J]. International Journal of Heat and Mass Transfer,1995,38(3),433-444.
    [156]Haber R B, Jog C S, Bendsoe M P. A new approach to variable-topology shape design using a constraint on perimeter [J]. Structural and Multidisciplinary Optimization,1996,11(1),1-12.
    [157]伍文君,陈林根,孙丰瑞.导热优化的“树网”构造法的改进[J].中国科学E辑技术科学,2006,36(7),773-781.
    [158]Yang X Y, Xie Y M, Liu J S, et al. Perimeter control in the bidirectional evolutionary optimization method [J]. Structural and Multidisciplinary Optimization,2003,24(6),430-440.
    [159]Pedersen N L. Topology optimization of laminated plates with prestress [J]. Computers and Structures,2002,80(7-8),559-570.
    [160]Rong J H, Xie Y M, Yang X Y, et al. Topology optimization of structures under dynamic response constraints [J]. Journal of Sound and Vibration,2000,234(2),177-189.
    [161]Sigmund O, Petersson J. Numerical instabilities in topology optimization:a survey on procedures dealing with checkerboards, mesh-dependencies and local minima [J]. Structural Optimization, 1998,16(1),68-75.
    [162]Bourdin B. Filters in topology optimization [J]. International Journal for Numerical Methods in Engineering,2001,50(9),2143-2158.
    [163]Borrvall T, Petersson J. Topology optimization using regularized intermediate density control [J]. Computer Methods in Applied Mechanics and Engineering,2001,190(37-38),4911-4928.
    [164]Zhou M, Shyy Y K, Thomas H L. Checkerboard and minimum member size control in topology optimization [J]. Structural and Multidisciplinary Optimization,2001,21(2),152-158.
    [165]Jihong Z, Weihong Z. Maximization of structural natural frequency with optimal support layout [J]. Structural and Multidisciplinary Optimization,2006,31(6),462-469.
    [166]Achtziger W, Kocvara M. On the maximization of the fundamental eigenvalue in topology optimization [J]. Structural and Multidisciplinary Optimization,2007,34(3),181-195.
    [167]Bruns T E. Topology optimization of convection-dominated, steady-state heat transfer problems [J]. International Journal of Heat and Mass Transfer,2007,50(15-16),2859-2873.
    [168]Gao T, Zhang W H, Zhu J H, et al. Topology optimization of heat conduction problem involving design-dependent heat load effect [J]. Finite Elements in Analysis and Design,2008,44(14), 805-813.
    [169]Gersborg-Hansen A, Bendsee M, Sigmund O. Topology optimization of heat conduction problems using the finite volume method [J]. Structural and Multidisciplinary Optimization,2006, 31(4),251-259.
    [170]Ha S, Cho S. Topological shape optimization of heat conduction problems using level set approach [J]. Numerical Heat Transfer, Part B:Fundamentals,2005,48(1),67-88.
    [171]Marczak. Topology optimization and boundary elements--a preliminary implementation for linear heat transfer [J]. Engineering Analysis with Boundary Elements,2007,31(9),793-802.
    [172]Zhang Y, Liu S. Design of conducting paths based on topology optimization[J]. Heat and Mass Transfer,2008,44(10),1217-1227.
    [173]Zhuang C, Xiong Z, Ding H. A level set method for topology optimization of heat conduction problem under multiple load cases [J]. Computer Methods in Applied Mechanics and Engineering, 2007,196(4-6),1074-1084.
    [174]程雪涛.温度场与温度梯度场的均匀化[J].中国科学(E辑:技术科学),2009-11-24,39(10),1730-1735.
    [175]蒋良杰.基于SIMP方法的结构散热拓扑优化设计[J].机电一体化,2006,(6),14-16.
    [176]李家春.基于密度法的结构热传导拓扑优化准则算法[J].华南理工大学学报(自然科学版),2006,34(2),27-32.
    [177]刘书田,贺丹.渐进密度AESO方法及其在结构热传导拓扑优化中的应用[J].计算力学学报,2009,26(2),151-156.
    [178]龙凯.稳态热传导下的连续体结构拓扑优化[J].中国机械工程,2007,18(24),2939-2943.
    [179]张晖,刘书田.拓扑相关热载荷作用下稳态结构热传导拓扑优化[J].中国机械工程,2009,20(11),1339-1343.
    [180]张永存,刘书田.最优传热结构设计问题的数学模型[J].自然科学进展,2008,18(6),680-685.
    [181]左孔天.用拓扑优化方法进行热传导散热体的结构优化设计[J].机械工程学报,2005,41(4),13-21.
    [182]夏再忠,过增元.用生命演化过程模拟导热优化[J].自然科学进展,2001,11,845-852.
    [183]Mayer R R, Kikuchi N, Scott R A. APPLICATION OF TOPOLOGICAL OPTIMIZATION TECHNIQUES TO STRUCTURAL CRASHWORTHINESS [J]. International Journal for Numerical Methods in Engineering,1996,39(8),1383-1403.
    [184]Jung D, Gea H C. Compliant mechanism design with non-linear materials using topology optimization [J]. International Journal of Mechanics and Materials in Design,2004,1(2), 157-171.
    [185]Lee I-W, Jung G-H. An efficient algebraic method for the computation of natural frequency and mode shape sensitivities--Part Ⅰ. Distinct natural frequencies [J]. Computers & Structures,1997, 62(3),429-435.
    [186]过增元,程新广,夏再忠.最小热量传递势容耗散原理及其在导热优化中的作用[J].科学通报,2003,48(1):21-25.
    [187]高潮.不同弹性模量材料板壳结构的静力计算及动力特征分析[D].大连:大连理工大学博士学位论文,1995,4-20.
    [188]张允真等.不同模量的数值计算及的误差分析[J].大连理工大学学报,1994,34(6):641-645.
    [189]C.A.阿姆巴尔楚米扬,邬瑞锋,张允真译.不同模量弹性理论[M].北京:中国铁道出版社,1986:1-170.
    [190]A. D. Tran, C. W. Bert, Bending of thick beams of bimodulus materials [J]. Comp. Struct. 1982,15(6):627-642.
    [191]Ji-Liang Doong, Lien-Wen Chen. Axisymmetric vibration of an initially stressed bimodulus thick circular plate [J]. J. Sound Vibr,1984,94(4):461-468.
    [192]Ji-Liang Doong, Lien-Wen Chen. Vibration of a bimodulus thick plate [J]. J. Vibration Acoustic Stress Reliability Design,1985,107(1):92-97.
    [193]Dar-Ping Juang, Lien-Wen Chen. Axisymmetric buckling of bimodulus thick circular plates [J]. Comp.& Struct.,1987,25(2):175-182.
    [194]Lien-Wen Chen, Dar-ping Juang. Axisymmetric vibration of bimodulus thick circular and annular plates [J]. Comp. Struct.,1987,25(5):759-764.
    [195]Lien-Wen Chen, Dar-Ping Juang. Axisymmetric dynamic stability of a bimodulus thick circular plate [J]. Comp. Struct.,1987,26(6):933-939.
    [196]Lien-Wen Chen, C. C. Chen. Asymmetric buckling of bimodulus thick annular plates [J]. Comp. Struct.,1988,29(6):1063-1074.
    [197]B. T. Jzeng, P. D. Lin and L. W. Chen. Dynamic stability of bimodulus thick plates [J]. Comp.& Struct.,1992,45(4):745-753.
    [198]R. S. Srinivasan, L. S. Ramachandra. Bending of bimodulus annular plates [J]. Comp.& Struct,1987,27(2):305-310.
    [199]Yi-Ping Tseng, Cheng-Tao Lee. Bending analysis of bimodular laminates using a high-order finite strip method [J]. Compos. Struct.,1995,30:341-350.
    [200]Raffaele Zinno, Fabrizio Greco. Damage evolution in bimodular laminated composites under cyclic loading [J]. Compos. Struct.,2001,53:381-402.
    [201]欧阳华江.不同模量弹性理论及其应用[J].强度与环境,1990(3):34-38.
    [202]张允真,王志峰.不同拉压模量弹性力学问题的有限元法[J].计算结构力学及其应用,1989,6(1):236-246.
    [203]张允真,王志峰.不同拉压模量刚架的算法[J].大连理工大学学报,1989,29(1):23-32.
    [204]邬瑞锋,欧阳华江等.不同模量理论计算轴对称空间问题[J].应用力学学报,1989,6(3):94-98.
    [205]钟万勰,张柔雷,孙苏明.参数二次规划在计算力学中的应用[J].计算结构力学及其应用,1988,5(4):106-114.
    [206]孙苏明.参数二次规划法的研究及其工程结构分析应用[D].大连:大连理工大学,1988.
    [207]杨海天,邬瑞锋,杨克俭,张允真.初应力法解拉压双模量问题[J].大连理工大学学报,1992,32(1):35-39.
    [208]杨海天,杨克俭,邬瑞锋.初应力法求解拉压双弹性模量的空间问题[J].大连理工大学学报,1999,39(4):478-482.
    [209]杨海天,杨克俭等.拉压双模量问题的动力分析[J].计算结构力学及其应用,1993,10(4):438-448.
    [210]刘相斌,张允真.拉压不同模量有限元法剪切弹性模量及加速收敛[J].大连理工大学学报,2000,40(5):526-530.
    [211]刘相斌,孟庆春.拉压不同模量有限元法的收敛性分析[J].北京航空航天大学学报,2002,28(2):231-234.
    [212]刘相斌,赵国藩.用不同模量有限元分析坝体应力和变形[J].力学与实践,2001,Vol.23(4):39-42.
    [213]杨海天,朱应力.光滑函数法求解拉压不同弹性模量问题[J].计算力学学报,2006,Vol.23(1):19-23.
    [214]Prager W. ON A PROBLEM OF OPTIMAL DESIGN [J]. Proceedings of the Union of Theoretical and Applied Mechanics, Warsaw,1958.
    [215]张晓月,杨海天.基于敏度分析的拉压不同模量桁架问题求解[C].中国力学学术大会,北京,中国,2007.
    [216]赵达壮,张允真等.不同模量悬式绝缘子的形状优化[J].大连理工大学学报,1994,34(1):10-16.
    [217]Chang C-J, Zheng B, Gea H C. Topology Optimization for Tension/Compression Only Design [C].7th World Congress on Structural and Multidisciplinary Optimization, COEX Seoul, Korea.
    [218]Guan H, Chen Y-J, Loo Y-C, et al. Bridge topology optimisation with stress, displacement and frequency constraints [J]. Computers & Structures,2003,81(3),131-145.
    [219]Thomsen J. Topology optimization of structures composed of one or two materials [J]. Structural and Multidisciplinary Optimization,1992,5(1),108-115.
    [220]Yin L, Ananthasuresh G K. Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme [J]. Structural and Multidisciplinary Optimization,2001,23(1),49-62.
    [221]Chickermane H, Gea HC. Optimal fastener pattern design considering bearing loads [J]. Structural Optimization,1999,17:140-146.
    [222]Buhl DT. Simultaneous topology optimization of structure and supports [J]. Structural and Multidisciplinary Optimization,1999,23:336-346.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700