用户名: 密码: 验证码:
主动锁相光纤激光相干合成技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将多台光纤激光器进行相干合成获得单光束输出,是目前获得高功率、高亮度光纤激光器的一种主要技术途径,在激光加工、激光医疗以及军事领域都有重要的应用前景。因此,研究合成路数和阵元功率均可扩展的光纤激光相干合成系统具有重要的现实意义。本论文对MOPA结构光纤激光相干合成技术进行了较为深入的理论与实验研究,研究内容主要包括:
     首次提出了能量集中度的概念,定义为远场主瓣所含能量与总能量之比,可反映出远场主旁瓣的能量分布,相比目前常用的相干合成系统评价参数,如桶中功率或光束传输因子等,能量集中度在理论分析和实验测试中都更具有可操作性。斯特列尔比定义为实际远场中心峰值光强与理想中心峰值光强的比值,反映了合成光学系统的调节精度和相位控制精度。本文采用能量集中度和斯特列尔比作为相干合成系统的主要评价参数。
     基于夫朗和费衍射理论,建立了光纤激光六角形列阵相干合成远场光强分布的理论模型;以六角形列阵为例,利用Matlab仿真软件分析了相干合成系统中填充因子、相位、振幅、偏振、阵元数和阵列排列方式等对远场光强分布的影响。仿真结果表明,填充因子越大,远场能量集中度越高;阵元间相位误差、振幅非均匀性以及偏振误差均会导致能量集中度和斯特列尔比降低。
     建立了MOPA结构七阵元光纤相干合成模拟实验系统,七路信号光采用10米保偏光纤替代10W保偏光纤放大器传输种子源激光束,设计了六棱台光束合/分束器,获得0.66高填充因子,通过增加棱台反射面或将不同直径棱台环套可进一步实现合成路数的扩展;采用爬山法相位控制技术,分别研究了七阵元六角形列阵、四阵元矩形列阵、三阵元三角形列阵和二阵元线性列阵的远场合成光束分布,获得远场能量集中度为0.40(与理论值0.55接近)、斯特列尔比0.91的七路相干合成光束。
     开展了光纤激光相干合成系统相位控制方法的系统研究,进行了爬山法、外差法、随机并行梯度下降算法、自适应PR算法四种相位控制技术的实验与比较研究;采用块状铌酸锂晶体、波导型铌酸锂相位调制器及自适应光学变形镜作为相位调制元件,在两路10米保偏光纤相干合成系统中测得四种相位控制电路的相位控制稳定精度如下:爬山法4%,外差法10%,随机并行梯度下降算法4%,自适应PR算法18%。
     分析了10W保偏光纤放大器的热效应,推导出开机瞬态和稳态时光纤内的温度分布公式,并用Matlab软件进行了数值仿真。对本文中的10W光纤放大器参数,开机后12.3s后温度趋于稳态分布,达到稳态的过程中,光纤纤芯温度上升了约8.06℃。测试了10W保偏光纤放大器和10米保偏光纤传输种子源激光的相位变化速率,两者的相位噪声均主要集中在数kHz附近。实验结果表明本文采用10米保偏光纤模拟10W保偏光纤放大器在相干合成系统的研究中具有可行性和新颖性。
     最后介绍了光纤激光相干合成系统的应用前景,分析了光纤激光相控阵雷达的基本原理,建立了通过改变初始相位差实现光束扫描的理论模型,并由Matlab软件仿真实现了一维线阵、二维方阵和二维六角阵的光束扫描。
Coherent combination of multiple fiber lasers is a main technique to realize high-power and high-brightness fiber laser system. It plays an important role in laser process, laser medical and military application areas. Thus it is significable to investigate the fiber laser coherent combining system with scaling elements and power. In this dissertation, coherent combining technique of master oscillator power amplifier (MOPA) architecture is investigated theoretically and experimentally in-depth.
     Energy contained in the central lobe is presented, defined as the ratio of energy contained in the central lobe to the whole energy in the far field. The parameter describes the energy distribution of the central lobe and side lobes in the far field. Compared with the conventional parameters of power in the bucket (PIB) and beam propagation factor (BPF), the parameter of energy contained in the central lobe is much more practical in theoretical analysis and experiments. Strehl ratio is defined as the ratio of actual on-axis intensity to that of an ideal beam, which illuminates the precision of optical path alignment and the phase controlling electronics. In this dissertation, we employ energy contained in the central lobe and Stehl ratio as the main evaluation parameters of coherent combining system.
     A theoretical model of far field intensity distribution is established based on Fraunhofer diffraction theory. The effects of element parameters on far field intensity distribution are analyzed with Matlab software by a hexagonal array as an example, including fill factor, phase, amplitude, polarization, element number and array arrangement. The simulating results indicate that energy contained in the central lobe increases with the enlargement of fill factor. Strehl ratio and energy contained in the central lobe are decreased by the phase error, amplitude and polarization error between elements.
     A seven-element hexagonal fiber coherent combining system with MOPA architecture is established. The seven signal arms are seven 10 meters polarization maintaining (PM) fibers transmitting master oscillator laser instead of 10W polarization maintaining fiber amplifier. The hexagonal prism is designed as beam combining and splitting component to obtain fill factor of 0.66. The coherent combining system is scalable of element number by increasing the number of prism surfaces or assembling different diameter prisms. The hill climbing method is used as the phase controlling technique. The far field distribution of the seven-element hexagonal array, the four-element rectangular array, the three-element triangle array and the two-element linear array are experimentally researched. Energy contained in the central lobe of the seven- element coherent combining beam is 0.40 (close to the theoretical value of 0.55) and Strehl ratio of the seven-element coherent combining beam is 0.91.
     The phase controlling techniques of fiber laser coherent combining system are investigated. The four phase controlling techniques are experimentally researched and compared, including hill climbing method, heterodyne method, stochastic parallel gradient descent (SPGD) method and adaptive optics technique. We designed lithium niobate crystal, waveguide lithium niobate, and adaptive deformable mirror as phase modulators. The phase controlling precisions of the four techniques are experimentally researched on the two-element fiber coherent combining system. The phase controlling steady precisions are tested as followings: hill climbing method is 4%, heterodyne method is 10%, SPGD method is tested as 4%, and adaptive optics method is 18%.
     The thermal effect of a 10-W fiber amplifier is analyzed. The temperature distribution of the moment when the pump is on and the steady-state are deduced and simulated. The temperature of the fiber amplifier in the paper trends to steady-state after the pump is on for 12.3 seconds, and during the proceed the temperature increase by 8.06℃. The phase noises of 10-W polarization maintaining fiber amplifier and 10 meters polarization maintaining fiber are tested. Both majority of the phase noises are at frequency about several kHz. The experimental results illuminate the feasibility and novelty of the 10-meter polarization maintaining fiber simulation the 10-W polarization maintaining fiber amplifier in the research work of fiber laser coherent combination.
     The applied prospect of fiber laser coherent combining in phased array is introduced. The principle of fiber laser phased array is analyzed. The theoretical model of beam scanning by changing the phase difference is established. The beam scanning of one-dimension and two-dimension square array, and two-dimension hexagonal array are simulated by Matlab.
引文
1 E. Snitzer. Optical Maser Action of Nd+3 in Barium Crown Glass. Physical Review Letters. 1961,7(12):444~446
    2 K. C. Kao, G. A. Hockham. Dielectric-fiber Surface Waveguides for Optical Frequencies. Proceeding IEEE. 1966:1151~1158
    3 E. Snitzer, H. Po, F. Hakimi. Double-clad of Set Core Nd Fiber Laser . Proc. Conf. Optical Fiber Sensors Post deadline paper PD5,1988:41
    4 H. Po, J. D. Cao and B. N. Laliberte. High Power Neodymium-doped Single Transverse Mode Fiber Laser. Electronics Letters. 1993, 29(17):1500~1501
    5 H. Zellmer, U. Willamowski and A. Tunnermann. High-power CW Neodymium-doped Fiber Laser Operating at 9.2W with High Beam Quality. Optics Letters. 1995, 20(6):578~580
    6 H. M. Pask, J. L. Archambault and D. C. Hanna. Operation of Cladding-pumped Yb3+-doped Silica Fiber Lasers in 1mm Region. Electronics Letters. 1994, 30(11): 863~865
    7 M. Muedel, B. Engstrom and D. Kea. 35-Watt CW Single Mode Ytterbium Fiber Laser at 1.1m . Proc. CLEO. 1997, Post-deadline paper CPD30-1
    8 G. S. Kosinski, D. Inniss. High-power Fiber Lasers. CLEO Europe - Technical Digest, CTuE3, 1998, p.78
    9 V. Dominic, S. MacCormack and R. Waarts. 110W Fiber Laser. Electon. Lett., 1999,35(14): 1158~1160
    10 A. Liem, J. Limpert, P. Riedel. Ytterbrium-doped Fiber Laser And Amplifier. CLEO, 2001, CTuQ1.
    11 J. Nilsson, J. K. Sahu, Y. Jeong. High Power Fiber Laser: New Developments. SPIE, 2003, 4974:50~59
    12 Y. Jeong, J. K. Sahu, S. Baek. Cladding-pumped Ytterbrium-doped Large-core Fiber Laser With 610W Of Output Power. Opt. Commun. 2004, 234: 315~319
    13 Y. Jeong, J. K. Sahu, D. N. Payne. Ytterbium-doped Large-core Fiber Laser With 1.36kW Continuous-wave Output Power. Opt. Exp. 2004, 12(5):6088~6092
    14 D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend and A. C. Tropper. Continuous-wave Oscillation of A Monomode Ytterbium-doped Fiber Laser. Electronics Letters. 1988,24 (17):1111~1113
    15 J. R. Armitage, R. Wyatt and B. J. Ainslie. Highly Efficient 980nm Operation of An Yb3+ -doped Silica Fiber Laser. Electronics Letters. 1989, 25 (5):298~299
    16 D. C. Hanna, R. W. Percival and I. R. Perry. An Ytterbiun-doped Monomode FiberLaser: Broadly Tunable Operation from 1.010μm to 1.162μm and Three-level Operation at 974nm. Journal of Modern Optics. 1990, 37 (4):517~525
    17 C. J. Mackechnie, W. L. Barnes, D. C. Hanna and J. E. Townsend. High Power Ytterbium(Yb3+)-doped Fiber Laser Operating in the 1.12μm. Electronics Letters. 1993, 29 (1): 52~53
    18 R. Paschotta, D. C. Hanna and P. De Natale. Power Amplifier for Ytterbium Doped Fiber. Optics Communications. 1997, 136(3): 243~246
    19 R. Paschotta, J. Nilsson and P. R. Barber. Lifetime Quenching in Yb-doped Fibers. Optics Communications. 1997, 136(4): 375~378
    20 A. Liu, K. Ueda. The Absorption Characteristics of Circular, Offset, and Rectangular Double-clad Fibers. Optics Communications. 1996, (132): 511~518
    21 A. Liu , K. Ueda. Propagation Losses of Pump Light in Rectangular Double-clad Fibers. Optical Engineering. 1996, 35(11): 3130~3134
    22 Patrick Even, Vincent Roncin. Theoretical Study of Ytterbium-doped Double-clad Fiber for laser Application. Proc.SPIE. 2001,4216:21~31
    23 A. Bertoni, G. C. Reali. A Model for the Optimization of Double-clad Fiber Laser Operation. Applied Physics B. 1998, (66): 547~554
    24 N. S. Kim, T. Hamada and M. Prabhu. Numerical Analysis and Experimental Results of Output Performance for Nd-doped Double-clad Fiber Lasers. Optics Communications. 2000, 180: 329~337
    25李伟,武子淳,陈曦.大功率光纤激光器输出功率突破1Kw.强激光与粒子束. 2006,6(18):890
    26周军,楼祺洪,朱健强.采用国产大模场面积双包层光纤的714 W连续光纤激光器.光学学报. 2006,7(26):1119~1120
    27李立波,楼祺洪,周军,董景星,魏运荣,李进延.大模场面积光纤激光器79.4 W单横模输出.强激光与离子束. 2007,19(7):1089~1092
    28李晨,闫平,陈刚,巩马理.采用国产掺镱双包层光纤的光纤激光器连续输出功率突破700W.中国激光. 2006,6(33):738
    29 L.kong, Q.Lou and J. Zhou. 133-W pulsed Fiber Amplifier with Large-mode-area Fiber. Optics Engineer. 2006,45(1):010502-01~010502-02
    30 J. R. Leger, G. J. Swanson and W. B. Veldkamp. Coherent Laser Addition Using Binary Phase Gratings. Applied Optics. 1987, 26(20):4391~4399
    31 Y. Kono, Masahiro and K. Uto. A Coherent All-solid-state Laser Array Using the Talbot Effect in A Three-mirrors Cavity. IEEE Journal Quantum Electronics. 2000, 36(5): 607~614
    32 G. A. Evans. Surface Emitting Semiconductor Lasers and Arrays. AcademicPress.1993:379~479
    33 D. G.. Heflinger, L. O. Heflinger. Dynamic Optical Phase State Detector. US Patent, 6147755. Nov 2000
    34 D. G.. Heflinger, L. O. Heflinger. Dynamic Optical Micrometer. US Patent, 6243168 B1, Jun 2001
    35 S.J. Brosnan, D. G. Heflinger and L. O.Heflinger. Heterodyne Wavefront Sensor. US Patent, 6229616 B1, May 2001
    36 S.J. Brosnan, D. G. Heflinger and L. O.Heflinger. High Average Power Fiber Laser System with High-speed, Parallel Wavefront Sensor. US Patent, 6366356 B1,Apr 2002
    37 J. Anderegg, S. Brosnan and M. Weber. 8-watt Coherently Phased 4-element Fiber Array. SPIE. 2003, 4974:1~6
    38 E. Cheung, M. Weber and D. Mordaunt. Mode-locked Pulsed Fiber Array Scalable to High Power. SPIE. 2004, 5335:98~105
    39 J. Anderegg, S. Brosnan and E. Cheung. Coherently Coupled High Power Fiber Arrays. SPIE. 2006, 6102: 61020U-1~61020U-5
    40 S. J. Augst, T. Y. Fan and A. Sanchez. Coherent Beam Combining of Ytterbium Fiber Laser Amplifiers. CLEO. 2003,CMK5
    41 S. J. Augst, T. Y. Fan and A. Sanchez. Coherent Beam Combining and Phase Noise Measurements of Ytterbium Fiber Amplifiers. Optics Letters. 2004, 29(5):474~476
    42候静,肖瑞,姜宗福.三路掺镱光纤放大器的相干合成实验研究.强激光与粒子束. 2006,18(10):1585~1588
    43 R. Xiao, J. Hou, M. Liu and Z. F. Jiang. Coherent Combining Technology of Master Oscillator Power Amplifier Fiber Arrays. Optics Express. 2008,16(3):2015~2022
    44 T. M. Shay, V. Benham. A Novel Technique for Phase Locking Optical Fiber Arrays. Proc. SPIE. 2004, 5550: 313~319
    45 T. M. Shay, V. Benham and J. T.Baker. First Experimental Demonstration of Self-synchronous Phase Locking of An Optical Array. Optics Express. 2006, 14(25): 12015~12021
    46 T. M. Shay. Theory of Electronically Phased Coherent Beam Combination without A Reference Beam. Optics Express. 2006, 14(25): 12188~12195
    47 T. M. Shay, V. Benham and J. T.Baker. Self-synchronous and Self-referenced Coherent Beam Combination for Large Optical Arrays. IEEE J. Selected Topics in Quantum Electronics. 2007, 13(3):480~486
    48 M. Minden. Coherent Coupling of a Fiber Amplifier Array. Thirteenth Annual Solid State and Diode Laser Technology Review(SSDLTR). 2000, June 5-8
    49 H. Bruesselbach,M. L. Minden and S.Q. Wang. A Coherent Fiber Array Based Laser Link for Atmospheric Aberration Mitigation and Power Scaling. SPIE. 2004, 5338: 90~101
    50 H.Bruesselbach, S.Q.Wang and M.Minden. Power Scalable Phase Compensating Fiber-array Transceiver for Laser Communications through the Atmosphere. Journal of Optics Society America B. 2005, 22(2): 347~353
    51 T. R. O’Meara. The Multidither Principle in Adaptive Optics. Journal of Optics Society America. 1977,67(3):306~315
    52 H. Bruesselbach, M. Minden and J. L. Rogers. 200 W Self-organized Coherent Fiber Arrays. CLEO. 2005,CMDD4
    53 H. Bruesselbach, D. C. Jones and M. S. Mangir. Self-organized Coherence in Fiber Laser Arrays. Optics Letters. 2005, 30(11):1339~1341
    54 M. L. Minden. Passive Coherent Combining of Fiber Oscillators. SPIE. 2007,6453: 64530P-1~64530P-8
    55 A. Shirakawa, T. Saitou and T.Sekiguchi. Coherent Addition of Fiber Lasers by Use of A Fiber Coupler. Optics Express. 2002, 10(21):1167~1172
    56 A. Shirakawa, K. Matsuo and K. Ueda. Fiber Laser Coherent Array for Power Scaling of Single-Mode Fiber Laser. SPIE. 2004, 5662:482~487
    57 A. Shirakawa, K. Matsuo and K. Ueda. Fiber Laser Coherent Array for Power Scaling, Bandwidth Narrowing, and Coherent Beam Direction Control. SPIE. 2005, 5709:165~174
    58 D. Sabourdy, V. Kermène and A.Desfarges-Berthelemot. Efficient Coherent Combining of Widely Tunable Fiber Lasers. Optics Express. 2003, 11(2):87~97
    59 D. Sabourdy, A. Desfarges-Berthelemot and A. Barthélémy. Power Scaling of Q-switched Fiber Lasers in A Multi-arm Resonator. SPIE. 2004, 5622: 306~310
    60 S. P. Chen, Y. G. Li and K. Ch. Lu. Branch Arm Filtered Coherent Combining of Tunable Fiber Lasers. Optics Express. 2005, 13(20):7878~7883
    61 M. L. Minden, H. Bruesselbacha and J. L. Rogersa. Self-Organized Coherence In Fiber Laser Arrays. SPIE. 2004, 5335: 89~97
    62 Y. Zhou, L. Liu and C. Etson. Phase Locking of A Two-dimensional Laser Array by Controlling the Far-field Pattern. Applied Physics Letters. 2004, 84(16): 3025~3027
    63 L. Liu, Y. Zhou and F. Kong, Phase Locking in A Fiber Laser Array with Varying Path Length. Applied Physics Letters. 2004, 85(12): 4837~4839
    64 F. Kong, L. Liu and C. Sanders. Phase Locking of Nanosecond Pulses in A Passively Q-switched Two-element Fiber Laser Array. Applied Physics Letters. 2007, 90(15): 151110-1~151110-3
    65 Q. Peng, Y. Zhou and Y. Chen, Phase Locking of Fiber Lasers by Self-imaging Resonator, Electronics Letters. 2005, 41(4): 1048~1048
    66 B. He, Q. Lou and J. Zhou. High Power Coherent Beam Combination From Two Fiber Lasers. Optics Express. 2006, 14(7):2721~2726
    67何兵,楼祺洪,周军,董景星,魏运荣,王之江.两根大芯双包层光纤激光器获得60W相干输出.光学学报, 2006,22(8):1279~1280
    68 B. He, Q. H. Lou, J. Zhou, D. Xue, J. X. Dong, Y. Wei, Y. Zheng, Y. Qi and Z. Wang. Phaes-locking of Two Large-core Fibre Lasers with 60W of Coherent Output Power. Journal of Optics A, 2006, 8:759~762
    69 C. J. Corcoran, R. H. Rediker. Operation of Five Individual Diode Lasers as A Coherent Ensemble by Fiber Coupling in An External Cavity. Applied Physics Letters. 1991, 59(7): 759~761
    70 C. J. Corcoran. Compact Phase Locked Laser Array and Related Rechniques. US patent, US 2004/0170204 A1, Sep 2004
    71 C. J. Corcoran, K. A. Pasch. Self-Fourier Function and Coherent Laser Combination. Journal of Physics A: Math. Gen., 2004, 37:461~469
    72 C. J. Corcoran, K. A. Pasch. Modal Analysis of A Self-Fourier Laser Cavity. Journal of Optics A: Pure App. Opt.,2005, 7: L1~L7
    73 C. J. Corcoran, F. Durville. Experimental Demonstration of A Phase-locked Laser Array Using A Self-Fourier Cavity. Applied Physics Letters. 2005, 86 (20): 201118
    74 C. J. Corcoran, F. Durville and K. A. Pasch. Spatial Filtering of Large Mode Area Fiber Lasers Using A Self-Fourier Cavity for High Power Applications. Journal of Optics A: Pure Applied Optics. 2007,9:128~133
    75 E. J. Bochove, C. J. Corcoran. In-phase Supermode Selection in A Multicore Fiber Laser Array by Means of A Self-Fourier External Cavity. Applied Optics. 2007,46 (22):5009~5018
    76 J. Morel, A. Woodtli and R. Dandliker. Coherent Coupling of An Array of Nd-doped Single-mode Fiber Lasers by Use of An Intracavity Phase Grating. Optics Letters. 1993, 18(18): 1520~1522
    77 M. Minden, H. Bruesselbach, J. Rogers, D. C. Jones and M. Mangir. Coherent Combining of Fiber Lasers. CLEO 2005:718
    78 M. Wrage, P. Glas and D. Fischer. Phase Locking in A Multicore Fiber Laser by Means of A Talbot Resonator. Optics Letters. 2000, 25(19): 1436~1438
    79 M. Wrage, P. Glas and M. Leitner. Phase-locking and Self-imaging Properties of A Talbot Resonator Applied to Circular Structures. Optics Communications. 2001, 191: 149~159
    80 P. K. Cheo, A. Liu and P. K. Cheo. A High-brightness Laser Beam From A Phase-locked Multicore Yb-doped Fiber Laser Array. IEEE Photonics Technical Letters. 2001, 13(5):439~441
    81 E. J. Bochove, P. K. Cheo and P. K. Cheo. Self-organization in A Multicore Fiber Laser Array. Optics Letters. 2003, 28(14):1200~1202
    82 Y. Huo, P. K. Cheo and G. G. King. Fundamental Mode Operation of A 19-core Phase-locked Yb-doped Fiber Amplier. Optics Express. 2004,12(25): 6230~6239
    83 A. S. Kurkov, V. M. Paramnov and E. M. Dianov. Fiber Laser Based on 4-core Yb-doped Fiber and Multimode Bragg Grating. Laser Physics Letters. 2006, 3(9):441~444
    84 L. Michaille, C. R. Bennett and D. M. Taylor. Phase Locking and Supermode Selection in Multicore Photonic Crystal Fiber Lasers with A Large Doped Area. Optics Letters. 2005, 30(13):1668~1670
    85郭玉彬,霍佳雨.光纤激光器及其应用.科学出版社. 2008. 319
    86 T. Y. Fan. Laser Beam Combining for High-power High Radiance Sources. IEEE J.Quantum. Electron. 2005, 11(3):567~77
    87吕百达.激光光学-光束描述、传输变换与光腔技术物理.第三版.高等教育出版社.2003:84~90
    88 P. Zhou, Z. J. Liu, X. J. Xu and Z. L. Chen. Numerical Analysis of The Effect of Aberrations on Coherently Combined Fiber Laser Beams. Appl. Opt. 2008,47(18):3350~3359
    89黄婉云.傅里叶光学教程.北京师范大学出版社. 1985:41-50,101~115
    90苏显渝,李继陶.信息光学.第一版.科学出版社. 1999: 34~55
    91 D. C. Jones, A. M. Scott, S. Clark, C. Stace and R. G. Clarke. Beam Steering of A Fibre Bundle Laser Output Using Phased Array Techniques. SPIE 2004,5335:125~131
    92石顺祥,张海兴,刘劲松.物理光学与应用光学.西安电子科技大学出版社. 2000:130~146
    93 C. D. Nabors. Effect of Phase Errors on Coherent Emitter Arrays. Appl Opt. 1994, 33(12):2284~2289
    94肖瑞.主振荡功率放大方案光纤激光相干合成技术.国防科学技术大学博士论文. 2007:31~33
    95盛骤,谢式千,潘承毅.概率论与数理统计.第二版.高等教育出版社. 1989:99~130
    96柴春英.光纤激光相位变化特性及相位控制技术研究.吉林大学硕士论文.2006:34~51
    97周仁忠.自适应光学理论.第一版.北京理工大学出版社. 1996 : 142~151
    98凌宁.自适应光学波前校正器.光学技术. 1998, 3: 12~16
    99刘京郊,刘金生,刘书航,王涛涛,赵永学,刘武,吴朝辉.高低频相位综合控制的光纤激光相干合成装置.国防发明专利. 200610120343.7
    100罗彪,郑金华,杨平.基于定向爬山的遗传算法.计算机工程与应用. 2008,44(6):92~95
    101严爱杰.一体化摄像机控制系统的设计与实现.南京理工大学硕士论文. 2007: 27~29
    102蒋婷.基于图像处理的自动对焦理论和技术研究.武汉理工大学硕士学位论文. 2008: 44~45
    103姜文汉,黄树辅,吴旭斌.爬山法自适应光学波前校正系统.中国激光. 1988,15(1):17~21
    104郑玉珍.自动对焦中的优化爬山搜索算法.浙江科技学院学报. 2005,
    17(3):171~174
    105汪西原,汪西莉.启发式搜索策略(爬山法)的改进与实现.陕西师范大学学报. 1999,27(1): 58~65
    106候静,肖瑞,刘泽金,姜宗福.两种方法实现对掺镱光纤放大器的相位校正.强激光与粒子束. 2006,18(11): 1779~1782
    107肖瑞,侯静,姜宗福,陆启生.两个光纤激光器的相干合成及其闭环控制.强激光与粒子束. 2007, 19(1): 31~34
    108 M. A. Vorontsov, G. W. Carhart. Adaptive Phase-distortion Correction Based on Parallel Gradient-descent Optimization. Optics Letters. 1997, 22(2): 907~909
    109 T. Weyrauch, M. A. Vorontsov, T. G. Bifano and M. K. Giles. Adaptive Optics System with Micromachined Mirror Array and Stochastic Gradient Descent Controller. SPIE, 2000, 4124: 178~188
    110 J. C. Spall. Multivariate Stochastic Approximation Using A Simultaneous Perturbation Gradient Approximation. IEEE Trans. on Automatic Control. 1992, 37(3): 332~341
    111杨慧珍,李新阳,姜文汉.自适应光学系统随机并行梯度下降控制算法仿真与分析.光学学报. 2007, 27(8): 1355~1360
    112杨慧珍,李新阳,姜文汉.自适应光学系统几种随机并行优化控制算法比较.强激光与粒子束. 2008, 20(1): 11~16
    113 M. K. Davis, M. J. F. Digonnet and R. H. Pantell. Thermal Effect in Doped Fibers.Journal of Lightwave Technology, 1998, 16(6):1013~1023
    114葛新石,王义方,郭宽量.传热的基本原理.安徽教育出版社
    115 F. Kreith. Principles of Heat Transfer, 1973. 3rd ed. Harper and Row, Fig. 7-3, p.392
    116 G. Canet, J. C. Mollier. Evidence of Thermal Effects In A High-power Er3+-Yb3+ Fiber Laser. Optics Letters, 2005, 30(22):3030~3033
    117 D. C. Brown, H. J. Hoffman. Thermal, Stess and Thermo-Optic Effects in High Average Power Double-Clad Silica Fiber Lasers. IEEE Journal of Quantum Electronics, 2001, 37(2): 207~217
    118熊悦,潘炜,罗斌,汪帆,邹喜华.掺镱双包层高功率光纤激光器热效应的理论研究.强激光与粒子束. 2005, 17(4): 495~499
    119 J. P. Cariou, B. Augere and M. Valla. Laser Source Requirements for Coherent Lidars Based on Fiber Technology. Competes Rendus Physique. 2006, 7: 213~223
    120 R. J. Beach, M. D. Feit, S. C. Mitchell, K. P. Cutter, J. W. Dawson, S. A. Payne, R. W. Mead, J. S. Hayden, D. Krashkevich and D. A. Alunni. Ribbon Fiber with Multiple Antiguided Phase-locked Gain Cores. Pro. SPIE, 2003, 4974: 7~16
    121张光义,赵玉洁.相控阵雷达技术.第一版.电子工业出版社. 2006: 1~37
    122 A. Polishuk, S. Arnon. Communication Performance Anlysis of Microsatellites Using An Optical Phased Array Antenna. Optical Engineering, 2003, 42(7): 2015~2024

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700