用户名: 密码: 验证码:
高功率脉冲光纤激光器及其泵浦的光参量振荡器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高功率脉冲光纤激光器具有高光束质量、高转换效率、高脉冲能量、较低热效应等特点受到人们的广泛关注,最近几年来成为了国际科技界的研究热点。使用高功率脉冲光纤激光器作为泵源,泵浦基于PPMgLN晶体的光参量振荡器(OPO),可以产生高功率中红外激光输出,在光电对抗、红外干扰以及激光雷达等方面具有重要应用。本论文主要目的是研究高功率的脉冲光纤激光器,获得几十ns级的高功率脉冲激光输出,并以此作为泵源,泵浦PPMgLN晶体,获得高功率的中红外激光输出。本论文主要包括三个方面的内容,声光调Q光纤激光器研究、MOPA型脉冲光纤放大器研究以及光纤激光器泵浦的基于PPMgLN晶体的光参量振荡器研究。
     声光调Q光纤激光器采用法布里-珀罗谐振腔结构,以大直径双包层掺镱光纤作为增益介质,获得了稳定的高功率脉冲波形输出。系统地考虑了影响脉冲波形稳定性的因素,包括声光调Q开关(AOM)与反射镜之间的距离、光纤长度、泵浦功率以及重复频率等。使用自制光纤和Liekki公司的熊猫型保偏光纤,分别研制了随机偏振和线偏振光纤激光器,获得了脉冲激光输出功率分别为12W和10.5W,激光输出脉冲稳定,脉宽分别为45ns和33ns。
     分别采用固体激光器和全光纤型声光调Q光纤激光器作为种子源,研制了MOPA结构的高功率脉冲光纤激光器。固体激光器的光谱线宽较窄,在光纤放大器运行过程中极易产生SBS等非线性效应。调整种子激光的功率和重复频率,可以有效抑制非线性效应,提高光纤放大器输出功率,最终在泵浦功率达到30.4W时,获得线偏振输出功率20W,偏振抑制比大于14dB。全光纤型声光调Q光纤激光器结构紧凑、功率较高,而且具有较大的光谱宽度,可增加SBS等非线性效应的阈值,减少非线性效应的影响。使用这种种子源的光纤放大器可以产生更高的输出功率,在40W泵浦功率下,最终获得29.6W线偏振激光输出,偏振抑制比大于10dB。
     以MOPA型光纤激光器作为泵源,以PPMgLN晶体为非线性材料,运行光参量振荡器,获得了高功率中红外激光输出。首先,利用电光调Q固体激光器的高脉冲能量,研究了1mm厚度PPMgLN晶体的抗光损伤特性,得到其损伤阈值约为4.6J/cm~2,即460MW/cm~2。其次以固体激光器作为种子源的光纤放大器泵浦OPO,在泵浦功率为15.2W时,1602nm通道获得最高参量输出8W,对应3163nm的闲散光功率为2.5W,相应的斜效率约为69%,光光转换效率为54%。在泵浦功率增长的过程中,并没有发现功率饱和现象。再次,用全光纤结构的光纤放大器泵浦OPO,在泵浦功率为22.9W时,1602nm通道得到最大参量输出11.7W,其中闲散光3163nm功率为3.3W,光光转换效率为51.9%,其运行过程中出现一定的功率饱和现象。分析认为,闲散光吸收引起的热透镜效应是引起功率饱和现象的主要原因。腔镜结构、泵浦光光斑大小以及散热系统的设计,对谐振腔内的热透镜效应有明显的影响。
High power pulsed fiber lasers, which draw a lot of attentions in recent years, have become the international research hotspot because of the advantages such as good beam quality, high efficiency, excellent heat dissipation capability, and compactness. Using the high power pulsed fiber laser as the pump source, the PPMgLN-based optical parametric oscillator can achieve high power output in mid-infrared waveband, which can be used in a wide variety of applications such as LIDAR, infrared jamming and optoelectronic countermeasure. In this thesis, the main work is on the development of the high power multi-10ns pulsed fiber lasers and their application on PPMgLN-based optical parametric oscillator. The thesis is composed of the following research work: acousto-optic(AO) Q-switched fiber laser, MOPA structured pulsed fiber amplifier and PPMgLN-based optical parametric oscillator.
     The AO Q-switched fiber laser was set up with Fabry-Perot cavity structure. Using a large mode area double-cladding fiber as the gain medium, stable Q-switched short pulse high power laser output was achieved. To maintain the laser pulse stable, many factors were considered such as the distance between the AO modulator and the reflect mirror, the length of the active fiber, the pump power and the repetition rate. Using the home-made fiber and the Panda PM fiber from Liekki, we obtained random polarized output power over 12W and linearly polarized output power over 10.5W with pulse duration of 45ns and 33ns respectively.
     We demonstrated two kinds MOPA structured fiber amplifier; one seeded by a solid state laser and another seeded by a Q-switched fiber laser. Because of the narrow linewidth of the solid state laser, serious nonlinear effect was observed in the fiber amplifier. By adjusting the output power and repetition rate of the seed source, the nonlinear effect could be suppressed. When the pump power exceeded 30.4W, a maximum linearly polarized output power of 20W was obtained. The measured polarization extinction ratio(PER) was greater than 14dB. The fiberized AO Q-switched seed laser has high output power and large linewidth, which is suitable for suppressing the nonlinear effect. This kind fiber amplifier has much higher output power. At the pump power of 40W, a maximum linearly polarized output power of 29.6W was obtained. The measured polarization extinction ratio(PER) was greater than 10dB.
     PPMgLN-based optical parametric oscillator pumped by MOPA structured fiber amplifier can achieve high output power. A high-energy PPMgLN optical parametric oscillator (OPO) pumped by a E-O Q-switched Nd:YAG laser working at 1.064μm was successfully illustrated. The damage to the input surface of PPMgLN crystal was carefully observed with a damage threshold of 4.6 J/cm~2. When pumped by the solid state laser seeded fiber amplifier, a maximum parametric output of over 8 W was obtained with 2.5 W at 3.16μm. The conversion efficiency of the OPO was computed to be 54% with a slope efficiency of 69%. No saturation phenomenon was observed in the experiment. When pumped by the fiber laser seeded fiber amplifier, a maximum parametric output of over 11.7 W was obtained with 3.3W at 3.16 urn. The conversion efficiency of the OPO was computed to be 51.9% . The saturation phenomenon was observed in this experiment. It is due to the absorption of PPMgLN within the idler wavelength band. To improve the performance of the OPO system, the cavity structure, beamwidth of the pump source and the design of the cooling system must be optimized.
引文
[1] E. Snitzer, Optical maser action of Nd3+ in barium crown glass, Physical Review Letters, 1961, 7(12): 444-446.
    
    [2] R. J. Koester and E. Snitzer, Amplification in a fiber laser, Applied Optics, 1964, 3(10): 1182-1186.
    [3] K. C. Kao and G. A. Hocknam, Dielectric-fibre surface waveguide for optical frequencies, IEE Proc.J., 1966, 113(7): 1151-1158.
    [4] C. J. Koester, Laser action by enhanced total internal reflection, IEEE J. Quantum Electron., 1966, QE-2(9): 580-584.
    [5] R. J. Mears, L. Reekie, S. B. Poole and D. N. Payne, Low-threshold tunable cw and q-switched fibre laser operating at 1.55μm, Electronics Letters, 1986, 22(3): 159-160.
    [6] M. Zurn, J. Voigt, E. Brinkmeyer,R. Ulrich and S. B. Poole, Line narrowing and spectral hole burning in single mode Nd~(3+)-fiber lasers, Optics Letters, 1987, 12(5): 316-318.
    [7] M. Shimitzu, H. Suda and M. Horiguchi, High efficiency Nd-doped fibre lasers using direct-coated dielectric mirrors, Electronics Letters, 1987, 23(15): 768-769.
    [8] S. Amano, T. Yamashita, H. Tajima, L. Masuda and T. Izumitani, Lasing characteristics of Nd:phosphate glass fibre laser, European Conference on Optical Communication, 1987.
    [9] T. Gozen, Y. Kikukawa, M. Yoshida, H. Tanaka and T. Shintani, Development of high Nd~(3+) content VAD single-mode fiber by the molecular stuffing technique, IEEE/OSA Conference on Optical Fiber Communications, 1988.
    [10] H. Po, F. Hakimi, R. J. Mansfield, R. P. Tumminelli, B. C. Mccollum and E. Snitzer, Neodymium fibre lasers at 0.905,1.06 and 1.4μm, J. Opt.Soc.Am.A, 1986, 3(13): P103.
    
    [11] K. Liu, M. Digonnet, H. J. Shaw, B. J. Ainslie and S. P. Craig, 10mW superfluorescent single-mode fibre source at 1060nm, Electronics Letters, 1987, 23(24): 1320-1321.
    
    [12] W. J. Miniscalco, L. J. Andrews, B. A. Thompson, R. S. Quimby, L. J. B. Vacha and M. G. Drexhage, 1.3μm fluoride fibre laser, Electronics Letters, 1988, 24(1): 28-29.
    
    [13] E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B. C. McCollum, Double-clad, offset core Nd fiber laser. In Proc.Opt.Fiber Sensors Post-deadline power, 1988, PD5-1.
    
    [14] H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber and J. M. Dawes, Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region. IEEE Journal of Selected Topics in Quantum Electronics, 1995, 1(1): 2-13.
    
    [15] D. Inniss, D. J. DiGiovanni, T. A. Strasser, A. Hale, C. Headley, A. J. Stentz. R. Pedrazzani,D. Tipton, S. G. Kosinaki, D. L. Brownlow, K. W. Quoi, K. S. Kranz, R. G. Huff, R. Espindola, J. D. LeGrange and G. Jacobovitz-Veselka, Ultrahigh-power single-mode fiber lasers from 1.065 to 1.472 μm using yb-doped cladding-pumped and cascaded raman lasers, In CLEO 1997, 1997, Pastdeadline Paper CPD30.
    
    [16] M. Muendel, B. Engstrom, D. Kea, B. Laliberte, R. Minns, R. Robinson, B. Rockney,Y. Zhang, R. Collins, P. Gavrilovic and A. Rowley, 5-watt cw single-mode ytterbium fiber laser at 1.1 μm, In CLEO 1997, 1997, Pastdeadline Paper CPD30.
    
    [17] V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh and E. Zucker, 110 w fibre laser, Electronics Letters, 1999, 35(14): 1158-1160.
    
    [18] Y. Jeong, J. K. Sahu, D. N. Payne and J. Nilsson, Ytterbium-doped large-core fibre laser with 1 kw of continuous-wave output power, Electronics Letters, 2004, 40(8): 470-472.
    
    [19] C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson and A. B. Grudinin, Characteristics of q-switched cladding pumped ytterbium-doped fiber lasers with different high-energy fiber designs, IEEE Journal of Quantum Electronics, 2001, 37(2): 199-206.
    
    [20] A. Piper, A. Malinowski, K. Furusawa and D. J. Richardson. High-power, highbrightness, mj q-switched ytterbium-doped fibre laser, Electronics Letters, 2004, 40(15): 928-929.
    
    [21] A. Galvanauskas, G. C. Cho, A. Hariharan, M. E. Fermann and D. Harter, Generation of high-energy femtosecond pulses in multimode-core yb-fiber chirped-pulse amplification systems, Optics Letters, 2001, 26(12): 935-937.
    
    [22] A. Malinowski, A. Piper, J. H. V. Price, K. Furusawa, Yoonchan Jeong, J. Nilsson and D.J.Richardson,Ultrashort-pulse Yb~(3+)-fiber-based laser and amplifier producing>25w average power,Optics Letters,2004.29(17):2073-2075.
    [23]F.Di Teodoro,J.P.Koplow and S.W.Moore,Diffraction-limited,300-kw peak-power pulses from a coiled multimode fiber amplifier,Optics Letters,2002,27(7):518-520.
    [24]J.Limpert,S.Hofer,A.Liem,H.Zellmer,A.Tunnermann,S.Knoke and H.Voelckel,100-w average-power,high-energy nanosecond fiber amplifier,Applied Physics B(Lasers and Optics),2002,B75(4-5):477-479.
    [25]C.H.Avila,R.L.Burnham,Youming Chen,W.Torruellas,H.R.Verdun and R.A.Utano,Polarization-maintaining master oscillator fiber amplifier(mofa) for high-repetition-rate applications,Proceedings of the SPIE-The International Society for Optical Engineering Fiber Lasers:Technology,Systems,and Applications,26-28 Jan.2004,5335(1):24-32.
    [26]A.Liu,M.Norsen and R.Mead,60 W green output by frequency doubling of a polarized Yb-doped fiber laser,Optics Letters,2005,30(1):67-69.
    [27]V.Khitrov,B.Samson,D.Machewirth and K.Tankala,50 W single-mode linearly polarized high peak power pulsed fiber laser with tunable ns-μs durations and kHz-MHz repetition rates,Proc.SPIE,2006,6873:68730C.
    [28]C.Ye,M.Gong,P.Yan,Q.Liu and G.Chen,Linearly polarized single-transverse-mode high-energy multi-ten nanosecond fiber amplifier with 50W average power,Optics Express,2006,14(17):7604-7609.
    [29]C.Ye,P.Yan,L.Huang,Q.Liu and M.Gong,Stimulated Brillouin scattering phenomena in a nanosecond linearly polarized Yb-doped double-clad fiber amplifier,Laser Physics Letters,2007,4(5):376-381.
    [30]H.Zhao,Q.Lou,J.Zhou,F.Zhang,J.Dong,Y.Wei and Z.Wang,Stable pulse-compressed acousto-optic Q-switched fiber laser,Optics Letters,2007,32(19):2774-2776.
    [31]J.A.Armstrong,N.Bloembergen,J.Ducuing and P.S.Pershan,Interaction between light waves in a nonlinear dielectric,Phys.Rev.,1962,127(6):1918-1939.
    [32]P.A.Franken and J.F.Ward,Optical harmonics and nonlinear phenomena.Rev.Mod.Phys.,1963,35(1):23-39.
    [33]姚建铨,徐德刚,全固态激光及非线性光学频率变化技术,北京,科学出版 社, 2007: 712-713.
    [34] M. S. Piltch, C. D. Cantrell and R. C. Sze, Infrared second-harmonic generation in nonbirefrin-gent cadmium telluride, J. Appl. Phys., 1976, 47(8): 3514-3517.
    [35] M. Okata, K. Takizawa and S. Ieiri, Second harmonic generation by periodic laminar structure of nonlinear optical crystal. Opt. Commun., 1976, 18(3): 331-334.
     [36] S. Miyazawa, Ferroelectric-domain-inversion in Ti-diffuse LiNbO_3 optical waveguide, J. Appl. Phys., 1979, 50(7): 4599-4603.
    [37] Y. Ishigane, T. Suhara and H. Nishihara, LiNbO_3 waveguide second harmonic generation device phase-matched with fan-out domain-inverted grating. Opt. Lett., 1991, 16(6): 375-377.
    [38] H. Ito, C. Takyu and H. Ihaba, Fabrication of periodically domain grating in LiNbO_3 by electron beam writing for appliation of nonlinear optical processes. Electronic Lett., 1991, 27: 1221-1224.
    [39] B. Xu and N. Min, Experimental observation of bistability and instability in a two-dime-Nsional nonlinear optical superlattice. Phys. Rev. Lett., 1993, 71(24): 3959-3962.
    [40] Y. Zhu , J. Hong, S. Zhu and N. Min, Fabrication of periodically domain-inverted LiTaO_3, Ferroelectrics, 1997, 197: 59-62.
    [41] B. F. Levine, C. G. Bethea and R. A. Logan, Phase-matched second harmonic generation in a liquid-filled waveguide, Appl Phys Lett, 1975, 26(1): 375-377.
    
    [42] M. Yamada, N. Nada, M. Saitoh and K. Watanabe, First-order quasi-phase matched LiNbO_3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation, Appl. Phys. Lett., 1993, 62(5): 435-436.
    [43] J. Hellestrom, V. Pasiskevicius and H. Karlsson, High power optical parametric oscillation in large-aperture periodically poled KTiOPO_4, Optics Letters, 2000, 25(3): 173-175.
     [44] A. Kuroda, S. Kurimura and Y.Uesu, Domain inversion in ferroelectric MgO:LiNbO_3 by applying electric fields, Appl. Phys. Lett., 1996, 69(11): 1565-1567.
    [45] M. Nakamura, M. Kotoh, H. Taniguchi and K. Tadatomo, Bulk periodically poled MgO-doped LiNbO_3 by external electric field application, Jpn. J. Appl. Phys. Part 2,1999,38(5A):L512-L514.
    [46]H.Ishizuki,T.Taira,S.Kurimur,J.H.Ro and M.Cha.Periodic poling in 3-mm-thick MgO:LiNbO_3 crystals,Jpn.J.Appl.Phys.Part 2,2003,42(2A):L108-110.
    [47]H.Ishizuki,I.Shoji and T.Taira,Periodical poling characteristics of congruent MgO:LiNbO_3 crystals at elevated temperature,Appl.Phys.Lett.,2003,82(23):4062-4064.
    [48]H.Ishizuki and T.Taira,Periodical poling in 5mm-thick MgO-doped congruent LiNbO_3 crystals for high-power wavelength conversion,Conference on Advanced Solid-state Photonics(ASSP),2005:MB26.
    [49]桑梅,于建,倪文俊,薛挺,李世枕,周期极化KTP的制备与倍频实验研究,光学学报,2003,23(增刊):511-512.
    [50]孔勇发,李兵,陈云琳,黄自恒,陈绍林,张玲,刘士国,许京军,阎文博,刘宏德,王岩,谢翔,张万林,张光寅,掺镁铌酸锂晶体抗光折变微观机理研究,红外与毫米波学报.2003,22(1):40-44.
    [51]姚江宏,陈亚辉,许京军,张光寅,朱圣星,近化学计量比铌酸锂晶体周期极化畴反转特性研究,物理学报,2002,51(1):192-196.
    [52]Y.Chen,J.Xu,X.Zhang,Y.Kong,X.Chen and G.Zhang,Ferroelectric domain inversion in near-stoichiometric lithium niobate for high efficiency blue light generation,Appl.Phys.A,2002,74(2):187-190.
    [53]R.H.Kingston,Parametric amplification and oscillator at optical frequencies,Proc.IRE.,1962,50:472-474.
    [54]N.M.Kroll,Parametric amplification in spatially extended media and application to the design of tunable oscillators at optical frequencies,Phys.Rev.,1962,127(4):1207-1211.
    [55]J.A.Giordmaine and C.R.Miller,Tunable coherent parametric oscillation in LiNbO_3 at optical frequencies,Phys.Rev.Lett.,1965,14(24):973-976.
    [56]S.A.Akhmanov,A.I.Kovrigin,V.A.Koslolv,A.S.Piskarskas,V.V.Fadeev and R.V.Khokhlov,Tunable parametric light generation wirh KDP crystal,JETP.Lett.,1966,3:241-245.
    [57]C.Wang and G.Racette,Measurement of parametric gain accompanying optical difference frequency generation,Appl.Phys.Lett.,1965,6(8):169-171.
    [58] R. G. Smith, J. E. Geusic, H. J. Levinstein, S. Singh and L. G. Vanuitert, Continuous optical parametric oscillator in Ba_2NaNb_5O(15), Appl. Phys. Lett., 1968, 12(9):308-310.
    [59] R. L. Byer, M. K. Oshman, J. F. Young and S. E. Harris, Visible cw parametric oscillator, Appl. Phys. Lett., 1968, 13(3):109-111.
     [60] W. R. Bosenberg, D. Alexander and J. I. Alexande, Continuous-wave single resonant optical parametric oscillator based on periodically poled LiNbO_3, Opt. Lett., 1996, 21(10): 713-715.
    [61] W. R. Bosenberg, A. Drobshoff and J. I. Alexander, 93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator, Opt. Lett., 1996, 21(17): 1336-1338.
    [62] P. E. Powers, T. J. Kulp and S. E. Bisson, Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out graing design, Opt. Lett., 1998, 23(3): 159-161.
    [63] L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko and D. C. Hanna, Optical parametric oscillation out to 6.3 um in periodically poled lithium niobate under strong idler absorption, Appl. Phys. Lett., 1998, 73(12): 1610-1612.
    [64] P. Loza-Alvarez, C. T. A. Brown, D. T. Reid and W. Sibbett, High-repetition-rate ultrashort pulse optical parametric oscillator continuously tunable from 2.8 to 6.8 μm, Opt. Lett.,1999, 24(21): 1523-1525.
    [65] S. Haidar, Y. Sasaki, E. Niwa, K. Masumoto and H. Ito, Electro-optic tuning of a periodically polied LiNbO3 optical parametric oscillator and mixing its output waves to generate mid-IR tunable from 9.4 to 10.5 μm, Opt. Commun., 2004, 229(1-6): 325-330.
    [66] H. Taniguchi, S. Yamamoto and Y. Hirano, High-average power optical parametric oscillator based on PPMgLN., 三菱電線工業時報 2001,98: 88-91.(In Japanese).
    [67] P. E. Britton, D. Taverner, K. Puec, D. J. Richardson, P. G. R. Smith, G. W. Ross and D. C. Hanna, Optical parametric oscillation in periodially poled lithium niobate driven by a diode-pumped Q-switched erbium fiber laser, Opt. Lett., 1998, 23(8): 582-584.
    [68] D. W. Chen, T. D. Rose, Low noise 10-W cw OPO generation near 3 μm with MgO doped PPLN, Conference on Lasers an Electro-Optics, 2005 paper: CThQ2.
    [69] C. Avila, R. Burnham, Y. Chen, W. Torruellas, H. Verdun and R. Utano, Polarization maintaining master oscillator fiber amplifier (MOFA) for high repetition rate applications, Proc. SPIE, 2005, 5335: 24-32.
    [70] B. Zhang, J. Yao, H. Zhang, G. Zang, D. Xu, T. Wang, X. Li and P. Wang, Temperature tunable infrared optical parametric oscillator with periodically poled LiNbO3, Chin. Phys. Lett., 2003, 20(7):1077-1080.
    [71] X. Lin, Y. Kong, Y. Zhang, J. Zhang, A. Yao, Y. Bi, Z. Sun, D. Cui, R. Li, L. Wu and Z. Xu, Mid-infrared generation based on a periodically poled LiNbO3 opticalparametric oscillator, Chin. Phys., 2004, 13(7):1042-1045.
    [72] J. Zhu, X. Zhong, H. Teng, J. Sun and Z. Wei, Synchronously pumped femtosecond optical parametric oscillator based on MgO-doped periodically poled LiNbO3, Chin. Phys. Lett., 2007, 24(9): 2603-2605.
    [73] S. B. Poole, D. N. Payne and M. E. Fermann, Fabrication of low loss optical fibres containing rare earth ions, Electron. Lett., 1985 21(17), 737-738.
    [74] R.J. Mears, L. Reekie, I.M. Jauncey and D.N. Payne, Low-noise Erbium-doped fibre amplifier at 1.54pm, Electron. Lett., 1987, 23(19),1026-1028.
    
    [75] D.C. Hanna, R.M. Percival, I.R. Perry, R.G. Smart, P.J. Suni and A.C. Tropper, An ytterbium-doped monomode fibre laser: broadly tunable operation from 1.010 μm to 1.162 μm and three-level operation at 974 nm, Journal of Modern Optics Ninth National Quantum Electronics Conference, 18-22 Sept. 1989, 37(4):517-525, 1990.
    [76] M. J. F. Digonnet, editor. Continuous-Wave Silica Fiber Lasers. Rare-Earth-Doped Fiber Lasers and Amplifiers. Marcel Dekker, USA, second edition, 2001.
    [77] P.J. Suni, D.C. Hanna, R.M. Percival, I.R. Perry, R.G. Smart, J.E. Townsend and A.C. Tropper, Lasing characteristics of ytterbium, thulium and other rare-earth doped silica based fibers, Proceedings of the SPIE - The International Society for Optical Engineering Fiber Laser Sources and Amplifiers, 6-8 Sept. 1989, 1171:244-260,1990.
    [78] R. Paschotta, J. Nilsson, A. C. Tropper and D. C. Hanna, Ytterbium-doped fiber amplifiers, IEEE Journal of Quantum Electronics, 1997, 33(7): 1049-1056.
    
    [79] M. Muendel, Optimal inner cladding shapes for double-clad fiber lasers, Conference on Lasers and Electro-optics, Technical Digest, Optical Society of America, Washington, DC, 1996, 209.
    [80] H. Zellmer, A. Tunnermann, H. Welling and V. Reichel, Double-clad fiber laser with 30W output power, Optical Amplifier and their Applications, in Technical Digest, Optical Society of America, Washington, DC, 1997 251-252.
    [81] N.G.R. Broderick, H.L. Offerhaus, D.J. Richardson, R.A. Sammut, J. Caplen and L. Dong, Large mode area fibers for high power applications, Optical Fiber Technology: Materials, Devices and Systems ACOFT '98: Australian Conference on Optical Fibre Technology, 5-8 July 1998, 5(2): 185-196, 1999.
    [82] N.G.R. Broderick, H.L. Offerhaus, D.J. Richardson and R.A. Sammut, Power scaling in passively mode-locked large-mode area fiber lasers, IEEE Photonics Technology Letters, 1998, 10(12): 1718-1720.
    [83] J.P. Koplow, D.A.V. Kliner, and L. Goldberg, Single-mode operation of a coiled multimode fiber amplifier, Optics Letters, 2000, 25(7):442-444.
    [84] D.J. Ripin and L. Goldberg, High efficiency side-coupling of light into optical fibres using imbedded v-grooves, Electron. Lett., 1995,31(25), 2204-2205.
    
    [85] D. DiGiovanni and A. Stenz, Tapered fiber bundles for coupling light into and out of cladding-pumped fiber devices, U.S. Patent, 1999, 5,864,644.
    
    [86] F. Gonthier, L. Martineau, N. Azami, M. Faucher, F. Seguin, D. Stryckman, A.Villeneuve, High-power All-Fiber "components: The missing link for high power fiber lasers, in Fiber Lasers: Technology, Systems, and Applications. Edited by L.N. Durvasula, Proceedings of the SPIE, 2004, Volume 5335, 266-276.
    [87] A. B. Grudinin, D. N. Payne, P. Turner; W. Paul, J. Nilsson, M. N. Zervas, M. Ibsen and M. Durkin, Multi-fibre arrangements for high power fibre lasers and amplifiers, US patent, 2004,6,826,335.
    [88] M. J. F. Digonnet and C. J. Gaeta, Theoretical analysis of optical fiber laser amplifiers and oscillators, Appl. Opt., 1985,24(3), 333-342.
    [89] E. Desurvire, Erbium doped fiber amplifiers. Wiley, 1994
    [90] E. Desurvire, C. R. Giles and J. R. Simpson, Gain Saturation Effects in High-Speed,Multichannel Erbium-Doped Fiber Amplifiers at λ=1.53 μ m, IEEE J. Lightwave Technol., 1989, 7(12), 2095-2104.
    [91] D. C. Brown and H. J. Hoffman, Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers, IEEE J. Quantum Electron. 2001, 37(2), 207-217.
    [92]J.J.Koponen,M.J.Soderlund,H.J.Hoffman and S.K.T.Tammela,Measuring photodarkening from single-mode ytterbium doped silica fibers,Opt.Express,2006,14(24),11539-11544.
    [93]J.J.Koponen,M.J.Soderlund,S.K.T.Tammela,D.Kliner and J.Koplow,Photodarkening rate in ytterbium doped silica fibers,Photonics West 2006,San Jose,USA.2006,Late breaking news.
    [94]J.J.Koponen,M.J.Soderlund,S.K.T Tammela and H.Po,Measuring photodarkening from Yb-doped fibers,CLEO/Europe-EQEC Conference,2005,paper CP2-2-THU.
    [95]T.Kitabayashi,M.Ikeda,M.Nakai,T.Sakai,K.Himeno and K.Ohashi,Population Inversion Factor Dependence of Photodarkening of Yb-doped Fibers and its Suppression by Highly Aluminum Doping,OFC2006,Anaheim,USA,2006,paper OThC5.
    [96]B.Morasse,S.Chatigny,C.Hovington,E.Gagnon,and J.De Sandro,Lowphotodarkening single cladding ytterbium fiber amplifier,Photonics West 2007,San Jose,USA,2007,paper 6453-17.
    [97]G.P.Agrawal,Nonlinear fiber optics,Second edition.1995,Academic Press.
    [98]R.H.Stolen and C.Lee,Development of the stimulated raman spectrum in single-mode silica fibers,Journal of the Optical Society of America B(Optical Physics),1984,1(4):652-7.
    [99]P.A.Franken,A.E.Hill,C.W.Peters and G.Weinreich,Generation of second harmonic,Phys Rev Lett,1961,7(4):118-120.
    [100]钱士雄,王恭明,非线性光学-原理与进展(第二版),上海,复旦大学出版社,2002:53-70.
    [101]Z.J.Chen,A.B.Grudinin,J.Porta and J.D.Minelly,Enhanced Q switching in double-clad fiber lasers,Opt.Lett.,1997,23(6):454-456.
    [102]P.R.Morkel,K.P.Jedrzejewski,E.R.Taylor and D.N.Payne,Short-pulse,high-power Q-switched fibre laser,IEEE Photon.Technol.Lett.1992,4(6),545-547.
    [103]Y.Jeong,J.K.Sahu,M.Laroche,W.A.Clarkson,K.Furusawa,D.J.Richardson and J.Nilsson,120-W Q-switched cladding-pumped Yb-doped fibre laser,Conf.Lasers and Electro-Optics(CLEO)=Europe-European Quantum Electronics Conf.(EQEC),Munich,Germany,2003.
    [104]Y.X.Fan,F.Y.Lu,S.L.Hu,K.C.Lu,H.J.Wang,X.Y.Dong,J.L.He and H.T.Wang,Tunable high-peak-power,high-energy hybrid Qswitched double-clad fiber laser,Opt.Lett.,2004,29(7):724-726.
    [105]O.Schmidt,J.Rothhardt,F.R(o|¨)ser,S.Linke,T.Schreiber,K.Rademaker,J.Limpert,S.Ermeneux,P.Yvernault,F.Salin and A.T(u|¨)nnermann,Millijoule pulse energy Q-switched short-length fiber laser,Opt.Lett.,2007,32(11):1551-1553.
    [106]M.Y.Cheng,Y.CH.Chang,A.Galvanauskas,P.Mamidipudi,R.Changkakoti and P.Gatchell,High-energy and high-peak-power nanosecond pulse generation with beam quality control in 200-μm core highly multimode Yb-doped fiber amplifiers,Opt.Lett.,2005,30(4):358-360.
    [107]R.L.Farrow,D.A.V.Kliner,P.E.Schrader,A.A.Hoops,S.W.Moore,G.R.Hadley and R.L.Schmitt,High-peak-power(>1.2 MW) pulsed fiber amplifier,Proc.SPIE,2006,6102,61020L.
    [108]C.D.Brooks and F.Di.Teodoro,Multimegawatt peak-power,single-transverse-mode operation of a 100 μm core diameter,Yb-doped rodlike photonic crystal fiber amplifier,Appl.Phys.Lett.,2006,89(11):111119.
    [109]J.B.Spring,T.H.Russell,T.M.Shay,R.W.Berdine,A.D.Sanchez,B.G.Ward and W.B.Roh,Comparison of stimulated Brillouin scattering thresolds and spectra in nonpolarization-maintaining and polarization-maintaining passive fibers,Proc.SPIE,2005,5709,147.
    [110]A.Babushkin,D.Gapontsev,N.Platonov and V.Gapontsev,Pulsed fiber laser with 30 W output power at 532 nm,Proc.SPIE,2006,6102,61021E.
    [111]梁晓燕,侯玮,吕军华,许祖彦,全固态激光器抽运的PPLN光参变振荡,光学学报,2001,21(9):1148-1149.
    [112]付伟佳,于建,康玉琢,倪文俊,陈亚南,桑梅,李世忱,胡永岚,师瑞泽,准相位匹配PPKTP晶体连续倍频13mW绿光输出,光学学报,2007,27(6):1063-1066.
    [113]L.E.Myers and W.R.Bosenberg,Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,IEEE J.Quantum Electron,1997,33(10):1663-1671.
    [114]M.Nakamura,S.Higuchi,S.Takekawa,K.Terabe,Y.Frukawa and K.Kitamura,Optical damage resistance and refractive indices in near-stoichiometric MgO-doped LiNbO3,Jpn.J.Appl.Phys.2002,41(1A/B):L49-L51.
    [115]K.T.Vu,A.Malinowski,and F.G.D.J.Richardson,L.M.B.Hickey,and M. N.Zervas,Adaptive pulse shape control in a diode-seeded nanosecond fiber MOPA system,Opt.Express,2006 14(23):10996-11001.
    [116]王安廷,许立新,明海,谢建平,张晓世,黄文财,安伟,吴云霞,掺镱光纤放大器的实验研究,中国激光,2002,A29(9):777-779.
    [117]孔勇发,许京军,张光寅,刘思敏,陆绮,多功能光电材料—铌酸锂晶体,北京,科学出版社,2005,1-3.
    [118]Zhong Jiguo,Jin Jian and Wu Zhongkang,Measurements of optically poled refractive-index damage of lithium niobate doped with different concentration of MgO,Proceeding of 11~(th) International Quantum Electronic Conference,IEEE,1980,80:631.
    [119]Bryan D A,Gerson R and Tomaschke H E,Increased optical damage resistance in lithium niobate,Appl.Phys.Lett.,1984,44(9):847-849.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700