用户名: 密码: 验证码:
裂隙岩体变形特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在岩石力学试验和工程地质勘察成果的基础上,应用数理统计方法,研究了裂隙岩体变形参数的确定方法,同时从开挖损伤效应、结构效应和尺寸效应出发,结合概率统计、智能反演分析和回归分析等方法,系统探讨了裂隙岩体变形特性的影响因素,主要研究工作有:
     (1)广泛搜集国内大型水利水电工程现场试验数据,结合地质勘察资料及室内试验数据,参照国标《工程岩体分级标准》得到了岩体变形模量-岩体基本质量指标(Em-BQ)的对应关系;结合数理统计原理,通过相关性分析,建立了基于BQ指标的岩体变形模量估算的经验方法,误差评价表明该方法具有一定的应用和参考价值;进一步结合实测数据,引入岩体状态因子M,建立了通过BQ指标、岩块弹性模量估算岩体变形模量经验方法,应用于三峡工程岩体力学参数的估计,所得结果与现场岩体力学试验数据比较吻合。这些研究为通过BQ指标估算裂隙岩体变形模量提供了条合理的量化途径。
     (2)结合正交试验设计、支持向量机模型、粒子群优化算法等原理,建立了考虑开挖损伤效应的LSSVM-PSO位移反分析模型;以大岗山、溪洛渡水电站地下厂房为例,结合开挖损伤区测试成果,针对现场变形监测成果进行了位移反演分析,得到了损伤区范围与弱化程度;进一步围绕岩体开挖损伤效应,展开了多个工程对比分析,揭示了地质结构对岩体开挖损伤效应的影响;对比分析表明:①岩体完整性越好,则开挖损伤区范围越小,岩体力学参数弱化程度较大;②有断层岩脉切割地下洞室时,岩体损伤区的范围会相应变大;③损伤区范围与弱化程度大致呈反比关系,随着厂房向下开挖,损伤区内岩体变形参数弱化程度不断增加。
     (3)根据规则节理岩体变形模量的理论计算公式,在考虑岩体结构面参数概率分布特征基础上,结合变形等效原则,推导了随机节理岩体变形模量的理论计算公式;结合半球形展示图,可对节理岩体变形模量进行三维空间全方位展示;在工程地质调查和岩石力学试验基础上,应用此方法,研究了三峡工程裂隙岩体变形参数的结构效应,与已有研究成果对比表明,此方法计算精度较好、计算过程简便,还可以全方位展示裂隙岩体变形参数的各向异性特征。
     (4)在大量现场试验数据基础上,通过随机分布函数检验确定了岩体变形模量的概率分布类型,建立不同尺度的随机数值分析模型,研究大岗山水电站岩体变形模量的REV及其随尺度的变化特征;进一步通过多尺度方法,包括室内试验、现场变形试验、声波测试、数值分析、反演分析等方法,确定了不同尺度裂隙岩体的变形参数,通过拟合回归分析,得到大岗山水电站岩体宏观力学参数及其REV尺度;最后,对裂隙岩体变形模量尺寸效应的产生机理进行了探讨,表明结构面的切割是造成裂隙岩体变形参数尺寸效应的内在原因,随着岩体试验尺度的增大,试验结果会受到更大尺度结构面的影响,从而导致了裂隙岩体等效变形模量随着岩体尺度增加而出现有规律的降低现象。
Deep research on the determination methods and influential factors for deformation parameters of the fractured rock mass has been carried out based on the rock mechanics tests, engineering geological investigation, probability statistics, intelligent inversion model and multiple linear regression method, etc. The major achievements are listed as follows:
     (1) The Em-BQ relationship is obtained by combining massive on-site test data, geological investigation records and indoor test logs of a number of large hydropower stations in China with Chinese Standard for engineering classification of rock masses. Then a BQ-based empirical method is put forward to estimate the deformation modulus of rock mass based on correlation analysis. By introducing a rock mass status factor M, a new empirical approach is further proposed to estimate the deformation modulus of rock mass by BQ index and rock elastic modulus. The new approach is used to calculate the rock mass deformation parameters of the Three Gorges Project, and the estimated results match well to the tested data. These methods provide a reliable way to estimate the deformation modulus of rock mass by BQ index.
     (2) The excavation-damage-considered LSSVM-PSO displacement back-analysis model is established by the orthogonal test, support vector machine and particle swarm optimization, etc. The underground cavern displacements of Dagangshan and Xiluodu hydropower stations are back analyzed, according to the on-site measurement on excavation damage zone and displacement, and then the scope and weaken degree of excavation damage zone are obtained. The excavation damage inversions for other projects are conducted, revealing the effect of geological structure on the excavation damage of rock mass. The results show that the more intact the rock mass is, the smaller the excavation damage zone, with larger weaken degree of rock mass mechanical parameters; the excavation damage zone will extend if there are faults and dikes across the underground caverns; the scope of the excavation damage zone is in inverse proportion to its weaken degree; the deformation parameters of rock mass within the excavation damage zone decreases as the caverns are excavated deeply.
     (3) Based on a theoretical formula for calculating the deformation modulus of rock mass containing a set of structural joint planes, a novel formula is derived to calculate the deformation modulus of fractured rock mass considering the effects of random joint planes. The hemispherical figures are applied to demonstrate fully the deformation modulus of random jointed rock mass in the 3D space. Furthermore, the proposed formula for deformation modulus of random jointed rock mass is used to study the structure effect of the deformation parameters of fractured rock mass of the Three Gorges Project. Comparing with the existing results, it shows that the new approach can not only be easily operated with satisfied accuracy, but also fully demonstrate the anisotropy property of rock mass.
     (4) The size effect of rock mass deformation parameters is studied by probability and multi-scale methods. A large number of on-site test data are used to determine the probability distribution type of rock mass deformation parameters by the random distribution function test. A multi-scale random analysis model is employed to estimate the REV of rock mass deformation modulus of the Dagangshan hydropower station and the REV-scale relationship. Then the deformation parameters of different scales are determined by multi-scale methods, including indoor and on-site tests, numerical simulation and back-analysis, etc. The macro-mechanical parameters and REV scale of Dagangshan hydropower station are obtained. Finally, the mechanism of size effect of rock mass deformation modulus is discussed and it shows the structural planes within rock mass are the intrinsic cause for this mechanism. The equivalent deformation modulus will decrease regularly with model size.
引文
[1]钱七虎,李朝甫,傅德明.隧道掘进机在中国地下工程中应用现状及前景展望.地下空间[J],2002,22(1):1-11.
    [2]王驹.高放废物深地质处置:回顾与展望.铀矿地质[J],2009,25(2):71-77.
    [3]张占荣,盛谦,冷先伦等.岩滩水电站地下厂房洞室群围岩稳定性分析.金属矿山[J],2008,6:20-22,30.
    [4]孙广忠.工程地质与地质工程[M].北京:地震出版社,1993.
    [5]宋建波,张倬元,于远忠等.岩体经验强度准则及其在地质工程中的应用[M].北京:地质出版社,2002.
    [6]周思孟主编.复杂岩体若干岩石力学问题[M].北京:中国水利水电出版社,1998.
    [7]刘汉东,姜彤,黄志全等.岩体力学参数优选理论及应用[M].郑州:黄河水利出版社,2006.
    [8]董学晟,盛谦,周火明等.三峡永久船闸高边坡开挖扰动区工程岩体力学性状研究[M].武汉:湖北科学技术出版社,2003.
    [9]清江水布娅水利枢纽工程地质报告[R].长江水利委员会,1998.
    [10]三峡工程船闸高边坡分级和宏观力学参数研究专题报告[R].长江科学院,1996.
    [11]郭志华.层状岩体宏观力学参数的计算机模拟试验[D].武汉:中国科学院武汉岩土力学研究所,2005.
    [12]周火明,盛谦,邬爱清.三峡工程永久船闸边坡岩体宏观力学参数的尺寸效应研究[J].岩石力学与工程学报,2001,20(5):661-664.
    [13]盛谦,杨启贵,陈胜宏.节理岩体宏观力学参数的计算机模拟试验[J].地下空间,1999,19(5):482-487.
    [14]潘家铮.岩石力学与反馈设计明.水电站设计[J],1994,10(3):3-10.
    [15]张帆.三峡花岗岩力学特性与本构关系研究[D].武汉:中国科学院武汉岩土力学研究所,2007.
    [16]董学晟,夏熙伦,邬爱清,盛谦等.三峡船闸高边坡岩体分级、宏观力学参数和施工监测反馈分析研究[R].长江水利委员会长江科学院,1998.
    [17]M. Cai, P.K. Kaiser, Y. Tasaka, M. Minami. Determination of residual strength parameters of jointed rock masses using the GSI system[J]. International Journal of Rock Mechanics and Mining Sciences, 2007,44(2):247-265.
    [18]Paulding BW, Crack growth during brittle fracture in compression[D]. PhD. thesis, MIT, Cambridge, MA,1965.
    [19]Hoek E. Rock fracture under static stress conditions[R]. Pretoria, South Africa:National Mechanical Engineering Research Institute, CSIRO,1965.
    [20]Bieniawski ZT. Mechanism of brittle fracture of rock, Parts Ⅰ, Ⅱ and Ⅲ[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1967,4(4):395-430.
    [21]Muller L.主编.李世平,冯震海等译.岩石力学[M].北京:煤炭工业出版社,1981.
    [22]Muller L.岩石力学基本原理及其在地面-地下工程稳定性分析中的应用[J].水电站设计,1987,1:1-4
    [23]N.R. Barton. A model study of rock-joint deformation[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1972,9(5):579-582.
    [24]黄建陵,方理刚.钻孔千斤顶确定岩体变形参数试验[J].长沙铁道学院学报,2003,21(2):32-35.
    [25]H.R. Pratt, A.D. Black, W.S. Brown, et al. The effect of speciment size on the mechanical properties of unjointed diorite[J]. International Journal of Rock Mechanics and Mining Sciences,1972,9(4): 513-516.
    [26]陶振宇,潘别桐.岩石力学原理与方法[M].武汉:中国地质大学出版社,1991.
    [27]Z. T. Bieniawski. The effect of spencimen size on compressive strength of coal[J]. International Journal of Rock Mechanics and Mining Sciences,1968,5(4):325-335.
    [28]Oda M A. Method for evaluating the representative elementary volume based on joint survey of rockmass[J].Can. Geotech. .J.,1988,25(3):281-287.
    [29]Arild Palmstrom, Rajbal Singh, The deformation modulus of rock masses-comparisons between in situ tests and indirect estimates[J]. Tunnelling and Underground Space Technology,2001,16:115-131.
    [30]石安池,唐鸣发,周其健.金沙江白鹤滩水电站柱状节理玄武岩岩体变形特性研究[J].岩石力学与工程学报,2008,27(10):2079-2086.
    [31]Morgenstern, N. R., Phukan, A. L. T.1966. Non-linear deformation of a sandstone[C]. Proc. First Cong. Int. Rock Mech.1,543-548. Lisbon.
    [32]N.R. Morgenstern, A. L. Tamuly Phukan. Non-linear stress-strain relations for a homogeneous sandstone[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1969,6(2):127-142.
    [33]李会中,翁金望,王团乐.乌东德水电站坝址岩体变形试验与地质分析[J].人民长江,2008,39(19):3-6.
    [34]E. Hoek, M.S. Diederichs. Empirical estimation of rock mass modulus[J]. International Journal of Rock Mechanics & Mining Sciences,2006,43(2):203-215.
    [35]李迪,张保军,张漫等.岩体变形试验与分层弹模计算[M].武汉:湖北科学技术出版社,2005.
    [36]E. Unal. Determinaiton of in situ deformation modulus:new approaches for plate-loading tests[J]. International Journal of Rock Mechanics and Mining Sciences,1997,34(6):897-915.
    [37]K. Sugawara, L. Faramarzi, N. Nakamura. Determination of rock mass deformation modulus by means of traveling load tests—Part Ⅰ-Theory of the traveling load test in an open pit[J]. International Journal of Rock Mechanics and Mining Sciences,2006,43:179-191.
    [38]K. Sugawara, L. Faramarzi, N. Nakamura. Determination of rock mass deformation modulus by means of Traveling Load Tests—Part Ⅱ-Traveling Load Test practice in an open pit[J]. International Journal of Rock Mechanics and Mining Sciences,2006,43:192-202.
    [39]Y.-W. Pan, J.-J. Liao, A.-B. Huang, et al. Improved design and data interpretation of a multi-purpose borehole testing device for soft rock[J]. International Journal of Rock Mechanics & Mining Sciences,2006,43:562-571.
    [40]Huang AB, Fang CK, Liao JJ, et al. Development of a multipurpose borehole testing device for soft rock[J].. J Geotech Test.2002,25(3):83-90.
    [41]T. H. Huang, C. S. Chang, Z. Y. Yang. Elastic Moduli for Fractured Rock Mass[J]. Rock Mechanics and Rock Engineering,1995,28(3):135-144.
    [42]Goodman, R. E., Taylor, R. L., Brekke, T. L. (1968):A model for the mechanics of jointed rock[J]. ASCE J. Soil Mech. Foundation Div. SM 3,637-659.
    [43]Cundall, P. A. (1971):A computer model for simulating progressive, largescale movements in blocky rock systems[C].. Proceedings of Symposium of International Society of Rock Mechanics, Nancy, Ⅱ-8.
    [44]周火明,盛谦,熊诗湖.复杂岩体力学参数取值研究[J].岩石力学与工程学报,2002,21(S):2045-2048.
    [45]R. Hart, P.A. Cundall, J. Lemos. Formulation of a three-dimensional distinct element model—Part Ⅱ. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1988,25(3):117-125
    [46]王泳嘉,刘连峰.三维离散单元法软件系统TRUDEC的研制[J].岩石力学与工程学报,1996,15(3):201-210.
    [47]Gen-hua Shi, Richard E. Goodman. Discontinuous Deformation Analysis[C]. The 25th U.S. Symposium on Rock Mechanics (USRMS), June 25-27,1984, Evanston, IL.
    [48]石根华著,任放等译:块体系统不连续变形数值分析新方法[M].北京:科学出版杜,1988
    [49]马永政,郑宏,李春光.耦合无网格法的非连续变形分析法研究[J].岩石力学与工程学报,2007,26(S2):4196-4201.
    [50]张秀丽,焦玉勇,刘泉声等.用改进的DDA方法模拟公路隧道的稳定性[J].岩土力学,2007, 28(8):1710-1714.
    [51]S. Amir Reza Beyabanaki, Roozbeh Geraili Mikola, Kianoosh Hatami. Three-dimensional discontinuous deformation analysis (3-D DDA) using a new contact resolution algorithm[J]. Computers and Geotechnics, Volume 35, Issue 3, May 2008, Pages 346-356.
    [52]L. Jing, J. A. Hudson. Numerical methods in rock mechanics[J]. International Journal of Rock Mechanics and Mining Sciences,2002,39(4):409-427.
    [53]Zienkiewicz OC, Kelly DW, Bettess P. The coupling of the finite element method and boundary solution procedures [J]. Int J Numer Methods Eng 1977;11:355-75.
    [54]Brady BHG, Wassyng A. A coupled finite element—boundary element method of stress analysis[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1981,18(6): 475-85.
    [55]Beer G. Finite element, boundary element and coupled analysis of unbounded problems in elastostatics[J]. Int J Numer Methods Eng 1983;19:567-80.
    [56]Lorig LJ, Brady BHG. A hybrid discrete element-boundary element method of stress analysis[C]. In: Goodman, Heuze, editors. Proceedings of the 23rd US Symposium on Rock Mechanics, Berkeley, Aug. 25-27,1982. p.628-36.
    [57]L.J. Lorig, B.H.G. Brady, P.A. Cundall. Hybrid distinct element-boundary element analysis of jointed rock[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1986,23(4):303-312.
    [58]X.D. Pan, M.B. Reed. A coupled distinct element—finite element method for large deformation analysis of rock masses[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1991,28(1):93-99.
    [59]L. Jing. A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering[J]. International Journal of Rock Mechanics and Mining Sciences,2003, 40(3):283-353.
    [60]N. Barton, S. Bandis, K. Bakhtar. Strength, deformation and conductivity coupling of rock joints[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1985,22(3): 121-140.
    [61]W. Zhu, P. Wang. Finite element analysis of jointed rock masses and engineering application[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1993,30(3): 537-544.
    [62]Ki-Bok Min, Lanru Jing. Numerical determination of the equivalent elastic compliance tensor for fractured rock masses using the distinct element method[J]. International Journal of Rock Mechanics and Mining Sciences,2003,40(6):795-816.
    [63]Tai-Tien Wang, Tsan-Hwei Huang. A constitutive model for the deformation of a rock mass containing sets of ubiquitous joints[J]. International Journal of Rock Mechanics and Mining Sciences, 2009,46(3):521-530.
    [64]周维垣,杨延毅.节理岩体力学参数取值研究[J].岩土工程学报,1992,14(5):1-11.
    [65]朱维申,王平.节理岩体的等效连续模型与工程应用[J].岩土工程学报,1992,14(2):1-11.
    [66]朱文彬.三维结构面网络模拟在岩体变形特性中的应用[J].长沙铁道学院学报,1998,16(1):18-23.
    [67]宁宇,徐卫亚,郑文棠等.柱状节理岩体随机模拟及其表征单元体尺度研究[J].岩石力学与工程学报,2008,27(6):1202-1208.
    [68]朱道建,杨林德,蔡永昌.柱状节理岩体各向异性特性及尺寸效应研究[J].岩石力学与工程学报,2009,28(7):1405-1414.
    [69]朱道建,杨林德,蔡永昌.柱状节理岩体压缩破坏过程模拟及机制分析[J].岩石力学与工程学报,2009,28(4):716-724.
    [70]K. T. Kavanagh, R. W. Clough. Finite element applications in the characterization of elastic solids[J]. International Journal of Solids Structures,1971,7(1):11-23.
    [71]Kirstern HAD. Determination of Rock Mass Elastic Moduli by Back Analysis of Deformation Measurements[M]. Expoation for Rock Engineering, ed by Z. T. Bieniamshi,1976,1:165-172.
    [72]Sakurai S, Abe S.A. design approach to dimensioning underground openings[M].3rd international conference in 1979, Numerical Methods in Geomechanics, Aachen,649-661.
    [73]Gioda Q, Maier G. Direct search solution of an inverse problem in elastoplasticity:identification of cohesion, friction angleeotech and in-situ stress, by pressure tunnel tests[J]. International Journal for Numerical Methods in Engineering,1980,15(12):1823-1848.
    [74]G Maier, G Gioda. Optimization methods for parametric identification of geotechnical systems[M]. Numerical Methods in Geomechanics, Bostom,1981:273-304.
    [75]Sakurai S, Takeuchi K. Back analysis of measured displacement of tunnel[J]. Rock Mechanics.And Rock Engineering,1983,16:173-180.
    [76]Cividini A., Maier G., et al. Parameter estimation of a static geotechnical model using a Baye's approach[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1983,2(5):215-226
    [77]Gioda G, Sakurai S. Back analysis procedures for the interpretation of field measurements in gemechanics[J]. Int J. Num. Anal. Meth. Geomech,1987,11:397-408.
    [78]杨志法,刘竹华.位移反分析法在地下工程设计中的初步应用[J].地下工程,1981,2:15-24.
    [79]冯紫良,杨林德等.初始地应力的反推原理[J].同济大学学报,1983,3:18-25.
    [80]杨林德.初始地应力及E值反演计算的边界单元法,第一届全国边界元会议论文集[C].北京:中国土木工程学会,1985:37-49.
    [81]郑颖人.弹塑性问题反演计算的边界元法,中国土木工程学会第三届年会论文集[C].北京:中国土木工程学会,1986:92-102.
    [82]郑颖人.位移反分析的弹性矩阵分解法极其在岩土工程中的应用[C].全国第三届岩土力学数值分析与解析方法讨论会文集.上海:中国土木工程学会,1988:446-454.
    [83]冯紫良.地下洞室围岩初始地应力的优化估计[J].地下工程技术,1988,1:76-85.
    [84]朱维申等.考虑时空效应的地下洞室变形观测及反分析[J].岩石力学与工程学报,1989,8(4):346-353
    [85]冯紫良,杨志法.关于弹塑性位移反分析的若干研究[R],中科院地质所工程地质力学开放研究实验室1989年报,北京:地震出版社,1989:87-101.
    [86]杨林德,何裕仁.天荒坪抽水蓄能电站试验洞的位移反分析研究[J].岩土工程学报,1992,14(2):37-43.
    [87]杨林德等著.岩土工程问题的反演理论与工程实践[M].北京:科学出版社,1996.
    [88]杨志发,王思敬,冯紫良等.岩土工程反分析原理及应用[M].北京:地震出版社,2002.
    [89]高玮.岩土工程反分析的计算智能研究[J].岩石力学与工程学报,2002,21(12):1909-1909.
    [90]Xia-Ting Feng, Zhiqiang Zhang, Qian Sheng. Estimating mechanical rock mass parameters relating to the Three Gorges Project permanent shiplock using an intelligent displacement back analysis method[J]. International Journal of Rock Mechanics and Mining Sciences,2000,37(7):1039-1054.
    [91]Vidya Bhushan Maji, T. G. Sitharam. Prediction of Elastic Modulus of Jointed Rock Mass Using Artificial Neural Networks[J]. Geotechnical and Geological Engineering,2008,26(4):443-452.
    [92]冯夏庭,张治强.位移反分析的进化神经网络方法研究[J].岩石力学与工程学报,1999,18(5):529-533.
    [93]郝哲,王来贵,于永江等.硐室围岩力学参数反分析[J].辽宁工程技术大学学报:自然科学版,2005,24(4):527-529.
    [94]王小杰,张世飙,陈勇等.云岭隧道围岩物理力学参数正演反分析[J].华中科技大学学报:城市科学版,2007,24(2):78-80.
    [95]梁桂兰,徐卫亚,韦杰等.位移反分析的APSO-WNN模型研究及应用[J].岩石力学与工程学报,2007,26(6):1251-1257.
    [96]朱泽奇,盛谦,张勇慧等.龙滩水电站左岸进水口边坡三维位移反分析[J].长江科学院院报,2008,25(2):33-37.
    [97]邓勇.边坡岩体力学参数反分析遗传-神经网络算法[J].地下空间与工程学报,2007,3(4):751-757.
    [98]付成华,秦卫星,陈胜宏等.地下洞室岩体力学参数反演软件系统开发与应用[J].岩土力学,2007,28(3):577-581.
    [99]李端有,甘孝清,周武.基于均匀设计及遗传神经网络的大坝力学参数反分析方法[J].岩土工程学报,2007,29(1):125-130.
    [100]Abbas Majdi, Morteza Beiki. Evolving neural network using a genetic algorithm for predicting the deformation modulus of rock masses[J]. International Journal of Rock Mechanics and Mining Sciences, 2010,47(2):246-253.
    [101]高玮,冯夏庭.基于免疫连续蚁群算法的岩土工程反分析研究[J].岩石力学与工程学报,2005,24(23):4266-4271.
    [102]刘维宁,岩土工程反分析方法的信息论研究[J].岩石力学与工程学报,1993,12(3):193-205.
    [103]黄宏伟,孙钧.基于Bayesian广义参数反分析[J].岩石力学与工程学报.1994,13(3):219-228.
    [104]朱永全,张清.桃坪隧道围岩参数的随机反演[J].石家庄铁道学院学报,1995,8(2):37-41.
    [105]陈炳瑞,冯夏庭.基于模式-遗传-神经网络的流变参数反演[J].岩石力学与工程学报,2005,24(4):553-558.
    [106]朱合华,刘学增.基于遗传算法的混全优化反分析及比较研究[J].岩石力学与工程学报,2003,22(2):197-202.
    [107]邓建辉,李焯芬,葛修润.BP网络和遗传算法在岩石边坡位移反分析中的应用[J].岩石力学与工程学报,2001,20(1):1-5.
    [108]高玮,郑颖人.采用快速遗传算法进行岩土工程反分析[J].岩土工程学报,2001,23(1):120-122.
    [109]M. Cai, H. Morioka, P.K. Kaiser, et al. Back-analysis of rock mass strength parameters using AE monitoring data[J]. International Journal of Rock Mechanics & Mining Sciences,2007,44(4):538-549.
    [110]徐海清.贵州省鱼简河水库坝基岩体力学参数研究[D].武汉:中国地质大学,2004.
    [111]Kim K, Gao H. Probabilistic approaches to estimating variation in the mechanical properties of rock masses[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1995,32(2):111-120
    [112]蒋小伟 万力 王旭升等.利用RQD估算岩体不同深度的平均渗透系数和平均变形模量[J].岩土力学,2009(10):3163-3167.
    [113]王毅,聂德新,张景科等.岩体裂隙化程度与岩体变形参数的关系研究[J].岩石力学与工程学报,2003(S2):2572-2574.
    [114]王旭升,蒋小伟,万力.用渗透性随埋深变化趋势反求岩体变形模量的简化模型[J].岩石力学与工程学报,2008,27(A02):3980-3984.
    [115]吴兴春,王思敬,丁恩保.岩体变形模量随深度的变化关系[J].岩石力学与工程学报,1998,17(5):487-492.
    [116]张志刚,乔春生.改进的节理岩体变形模量经验确定方法及其工程应用[J].工程地质学报,2006,14(2):233-238.
    [117]Lianyang Zhang, H. H. Einstein. Using RQD to estimate the deformation modulus of rock masses[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(2):337-341.
    [118]A. Kayabasi, C. Gokceoglu, M. Ercanoglu. Estimating the deformation modulus of rock masses:a comparative study[J]. International Journal of Rock Mechanics and Mining Sciences,2003,40(1): 55-63.
    [119]C. Gokceoglu, H. Sonmez, A. Kayabasi. Predicting the deformation moduli of rock masses[J]. International Journal of Rock Mechanics and Mining Sciences,2003,40(5):701-710.
    [120]李维树,彭朝全,乐俊义.地下洞室群岩体变形参数取值研究[J].岩石力学与工程学报,2004,S2:4916-4920.
    [121]李维树,彭朝全,张仕光.乌江构皮滩水电站坝基岩体变形参数取值方法[J].地下空间,2004,24(2):148-152.
    [122]冯国栋.姚河坝水电站岩体纵波速度与静变形模量相关关系的探讨[J].水电工程研究,1993,1:49-54.
    [123]王法刚,尹健民,李维树.某水电站坝基岩体变形模量与波速相关性研究[J].地下空间与工程学报,2006,2(6):903-906,911.
    [124]Bieniawski. Engineering Classification of Jointed Rock Masses[J]. Trans. S. Afr. Inst. Civ. Eng. 1973,15:335-344.
    [125]Barton, N., Lien, R., and Lunde, J. Engineering Classification of Rock Masses for the Design of Tunnel Support[J], Rock Mechanics, Springer-Verlag,1974,6:189-236.
    [126]Hoek E, Kaiser PK, Bawden WF. Support of underground excavations in hard rock[M]. Rotterdam: Balkema,1995.
    [127]Palmstrom, A. Characterising the Strength of Rock Masses for Use in Design of Underground Structures[C]. Design and Construction of Underground Structures, New Delhi,1995.
    [128]Bieniawski Z. T. Determining Rock Mass Deformability[J]. International Journal of Rock Mechanics and Mining Sciences,1978,15(5):237-247
    [129]Serafim JL, Pereira JP. Considerations on the geomechanical classification of Bieniawski[C]. In: Proceedings of the symposium on engineering geology and underground openings. Portugal:Lisboa; 1983.
    [130]Read SAL, Richards LR, Perrin ND. Applicability of the Hoek-Brown failure criterion to New Zealand greywacke rocks[C]. In:Vouille G, Berest P, editors. Proceedings of the nineth international congress on rock mechanics, Paris, August,1999.
    [131]Diederichs MS, Kaiser PK. Stability of large excavations in laminated hard rockmasses:the Voussoir analogue revisited[J]. International Journal of Rock Mechanics and Mining Sciences,1999,36: 97-117.
    [132]Nicholson GA, Bieniawski ZT. A nonlinear deformation modulus based on rock mass classification[J]. Int J Min Geol Eng,1990,8:181-202.
    [133]Mitri HS, Edrissi R, Henning J. Finite element modeling of cablebolted slopes in hard rock ground mines[C]. Presented at the SME Annual Meeting. New Mexico:Albuquerque,1994.
    [134]Sonmez H, Gokceoglu C, Kayabasi A, et al. Estimation of rock modulus:for intact rocks with an artificial neural network and for rock masses with a new empirical equation[J]. J Rock Mech Min Sci, 2006,43(2):224-235
    [135]Ramamurthy T. A geo-engineering classification for rocks and rock masses[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41:89-101.
    [136]M. Verman, B. Singh, M. N. Viladkar, et al. Effect of tunnel depth on modulus of deformation of rock mass[J]. Rock Mechanics and Rock Engineering,1997,30(3):121-127.
    [137]Barton N. Some new Q value correlations to assist in site characterisation and tunnel design[J]. International Journal of Rock Mechanics and Mining Sciences,2002,39:185-216.
    [138]Singh S (1997) Time-dependent deformation modulus of rocks in tunnels[D]. M. E. Thesis, Civil Engineering Department, University of Roorkee, India, p 180
    [139]Sonmez H, Gokceoglu C, Ulusay R. Indirect determination of the modulus of deformation of rock masses based on the GSI system[J]. International Journal of Rock Mechanics and Mining Sciences,2004, 1:849-57.
    [140]Carvalho J. Estimation of rock mass modulus[R]. Personal communication 2004.
    [141]杨建平.裂隙岩体宏观力学参数评价研究[D].武汉:中国科学院武汉岩土力学研究所.2009.
    [142]卢书强,许模.基于GSI系统的岩体变形模量取值及应用[J].岩石力学与工程学报,2009,28(S1):2736-2742.
    [143]S.C. Bandis, A.C. Lumsden, N.R. Barton. Fundamentals of rock joint deformation. Internatio-nal Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1983,20(6):249-268.
    [144]大岗山水电站地下厂房区域地应力场分布特征与反演分析研究报告[R].武汉岩土力学研究所,2008,7.
    [145]周济芳,杨学堂,李建林等.卸荷岩体宏观力学参数的分析方法再研究[J].三峡大学学报(自然科学版),2005,27(1):37-39.
    [146]杨学堂,哈秋龄,张永兴等.裂隙岩体宏观力学参数数值仿真模拟研究[J].水力发电,2004,30(7):14-16.
    [147]周济芳 李建林 王瑞红.关于卸荷岩体尺寸效应的数值仿真研究[J].四川水利,2008(4):69-71.
    [148]Pinto A, Da Cunha. Scale Effects in Rock Masses[M]. Rotterdam:A. A. Balkema Publishers, 1990.
    [149]张清,杜静.岩石力学基础[M].北京:北方交大中国铁道出版社,1997.P48
    [150]周创兵,於三大.论岩体表征单元体积REV——岩体力学参数取值的一个基本问题[J].工程地质学报,1999,7(4):332-336
    [151]尤明庆,邹友峰.关于岩石非均质性与强度尺寸效应的讨论[J].岩石力学与工程学报,2000,19(3):391-395.
    [152]吕兆兴,冯增朝,赵阳升.岩石的非均质性对其材料强度尺寸效应的影响[J].煤炭学报,2007,32(9):317-320.
    [153]周国林,谭国焕,李启光等.剪切破坏模式下岩石的强度准则[J].岩石力学与工程学报,2001,20(6):753-762.
    [154]金龙, 冯国杰.岩石破裂分维空间及强度尺寸效应研究[J].石家庄铁道学院学报,2006,19(2):6-8,22.
    [155]王利, 高谦.考虑尺寸效应的裂隙岩体强度损伤力学研究[J].矿冶工程,2006,26(6):20-24.
    [156]杨友卿.岩石强度的损伤力学分析[J].岩石力学与工程学报,1999,18(1):23-27.
    [157]何满潮,薛廷河,彭延飞.工程岩体力学参数确定方法的研究[J].岩体力学与工程学报,2001,20(2):225-229.
    [158]李宏,朱浮声,王泳嘉.岩石统计细观损伤与局部弱化失稳的尺寸效应[J].岩石力学与工程学报,1999,18(1):28-32.
    [159]王家来,左宏伟.岩体弹性模量的尺寸效应初步研究[J].岩土力学,1998,1(3):60-64.
    [160]Z. T. Bieniawski. Propagation Of Brittle Fracture In Rock[C]. The 10th U.S. Symposium on Rock Mechanics (USRMS), May 20-22,1968, Austin, TX
    [161]Kiyoo Mogi. The influence of the dimensions of specimens on the fracture strength of rocks—Comparison between the strength of rock specimens and that of the earth's crust[J]. Belletin of the Earthquake Reasarch Istitute,1962,40:175-175.
    [162]徐高巍.岩石力学参数取值研究及数据库系统的完善[D].武汉:中国科学院武汉岩土力学研究所,2006.
    [163]刘宝琛,张家生.岩石抗压强度的尺寸效应[J].岩石力学与工程学报,1998,17(6):611-614.
    [164]杨圣奇,苏承东,徐卫亚.岩石材料尺寸效应的试验和理论研究[J].工程力学,2005,22(4):112-118.
    [165]王学滨,潘一山,宋维源.岩石试件尺寸效应的塑性剪切应变梯度模型[J].岩土工程学报,2001,23(6):711-713.
    [166]李世海,董大鹏,燕琳.含节理岩块单轴受压试验三维离散元数值模拟[J].岩土力学.2003,24(4):648-652.
    [167]杨圣奇,徐卫亚.不同围压下岩石材料强度尺寸效应的数值模拟[J].河海大学学报:自然科学版,2004,32(5):578-582.
    [168]晏长根,伍法权,祁生文等.随机节理岩体变形与强度参数及其尺寸效应的数值模拟研究[J].岩土工程学报,2009,31(6):879-885.
    [169]周火明,盛谦,陈殊伟等.层状复合岩体变形试验尺寸效应的数值模拟[J].岩石力学与工程学报,2004,23(2):289-292.
    [170]GUO Zhi-hua, ZHOU Chuang-bing, ZHOU huo-ming, et al. Macro mechanical parameters'size effect of surrounding rock of Shuibuya project's underground power station[J]. Journal of Coal Science & Engineering(China),2005,11(1):9-12.
    [171]Hill R. Elastic properties of reinforced solids:some theoretical principles[J]. J. Mech. Phys. Solids, 1963,11:357—372.
    [172]向文飞,周创兵.裂隙岩体表征单元体研究进展[J].岩石力学与工程学报,2005,24(A02):5686-5692.
    [173]卢波,葛修润,朱冬林等.节理岩体表征单元体的分形几何研究[J].岩石力学与工程学报,2005,24(8):1355-1361.
    [174]陈卫忠,杨建平,邹喜德等.裂隙岩体宏观力学参数研究[J].岩石力学与工程学报,2008,27(8):1569-1575.
    [175]黄润秋等.复杂岩体结构精细描述及其工程应用[M].北京:科学出版社,2004.
    [176]孙广忠.岩体结构力学[M].北京:科学出版社,1998.
    [177]张倬元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社,1994.
    [178]谷德振.岩体工程地质力学基础[M].北京:科学出版社,1979.
    [179]孙玉科,李建国.岩质边坡稳定的工程地质研究[M].地质科学,1965(No.4).
    [180]罗国煜,王培清,吴浩等.敷溪口松动变形边坡稳定性和破坏机制浅析[J].湖南水利,1981,1:12-16.
    [181]重庆建筑工程学院,同济大学.岩体力学[M].北京:中国建筑工业出版社,1979.
    [182]B. Singh. Continuum characterization of jointed rock masses:Part Ⅰ—The constitutive equations[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1973,10(4):311-335.
    [183]B. Singh. Continuum characterization of jointed rock masses:Part Ⅱ—Significance of low shear modulus[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1973,10(4):337-349.
    [184]Morland L. W. Continuum Model of Regularly Jointed Mediums[J]. Journal of Geophysical Research,1974,79(2):357-362.
    [185]科茨著,雷化南等译.岩石力学原理[M].北京:冶金工业出版社,1978.
    [186]Amadei B, Goodman RE. A 3-D constitutive relation for fractured rock masses[C]. In:Selvadurai APS, editor. Proceedings of the International Symposium on the Mechanical Behavior of Structured Media, Ottawa, Part B,1981:249-268.
    [187]C.M. Gerrard. Elastic models of rock masses having one, two and three sets of joints[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1983,19(1): 12-23.
    [188]R. Yoshinaka, T. Yamabe. Joint stiffness and the deformation behaviour of discontinuous rock[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1986,23(1): 19-28.
    [189]Chang, C. S., Huang, T. H. (1989):A constitutive model for jointed rock masses[J]. J. Chinese Institute Engineers 11(1),25-34.
    [190]Amadei B. Effect of joints on rock mass strength and deformability[M]. Comprehensive Rock Engineering- principles, practice and projects, Pergamon Press, Oxford,1993.
    [191]C. Li. Technical Note A Method for Graphically Presenting the Deformation Modulus of Jointed Rock Masses[J]. Rock Mechanics and Rock Engineering,2001,34(1):67-75.
    [192]Chang C. S., Misra A. Weeraratne, S. P. A slip mechanism based constitutive model for granular soils[J]. ASCE,1989,115(4),790-807.
    [193]陈庆发,周科平,胡建华等.缓倾薄层弱结构松动圈声波测试时测孔布置的理论依据与验证[J].中南大学学报(自然科学版),2009,40(5):1406-1410.
    [194]雷化南,袁绍南.节理岩体变形参数的确定[J].金属矿山,1989(2):29-32,11.
    [195]雷化南,袁绍国.节理岩体的结构模型[J].金属矿山,1989(8):22-24,62.
    [196]徐光黎,潘别桐.节理岩体变形模量估算新方法[J].地球科学:中国地质大学学报,1991,16(5):573-580.
    [197]张飞,雷化南.节理岩体各向异性弹性模型及应力比矩阵取值研究[J].包头钢铁学院学报,1993,12(2):35-46.
    [198]张飞,雷化南.概率结构节理岩体各向异性弹性模型[J].金属矿山,1994(1):11-14,31.
    [199]保长汉.节理岩体的随机本构关系[J].工程力学,1996,S:274-278.
    [200]晏石林,王建平,吴代华.节理岩体三维复合等效模型[J].武汉工业大学学报,1997,19(2):111-114,118.
    [201]张建海,何江达.含断续节理岩体强度的各向异性[J].云南水力发电,2000,16(2):36-38.
    [202]晏石林,黄玉盈等.非贯通节理岩体等效模型与弹性参数确定[J].华中科技大学学报:自然科学版,2001,29(6):64-67.
    [203]晏石林,黄玉盈等.贯通节理岩体等效模型与弹性参数确定[J].华中科技大学学报:自然科学版,2001,29(6):60-63.
    [204]牛斌,杨海天.基于均匀化方法的斜交节理岩体复合本构关系研究[J].岩土工程学报,2007,29(5):773-778.
    [205]盛谦,黄正加等.三峡节理岩体力学性质的数值模拟试验[J].长江科学院院报,2001,18(1): 35-37.
    [206]Pinto, J. L. Deformability of schistous rocks[C]. Proc.,2nd Congress of the International Society for Rock Mechanics, Beograd, Jugoslavija,1970.
    [207]Sitharama T. G., Sridevib J., Shimizuc N. Practica equivalent continuum characterization of jointed rock masses[J]. International Journal of Rock Mechanics and Mining Sciences,2001,38(3): 437-48.
    [208]Maghous S., Hinton E. Non-linear global elastic behaviour of a periodically jointed material[J]. Mechanics Research Communications,2002,29(1):45-51.
    [209]赵吉东,尹健民,周维垣等.节理岩体断裂损伤模型在三峡坝基岩体力学参数模拟和预测中的应用[J].岩石力学与工程学报,2002,21(2):176-179.
    [210]李夕兵,宫凤强.岩土力学参数概率分布的推断方法研究综述[J].长沙理工大学学报(自然科学版),2007,4(1):1-8.
    [211]何满潮,邹友峰,邹正盛,岩石力学发展的新阶段——工程岩体力学[J].水文地质工程地质:1994,1:1-5.
    [212]四川大渡河大岗山水电站可行性研究报告[R].中国水电顾问集团成都勘测设计研究院.2006,8.
    [213]赵洪波,冯夏庭.位移反分析的进化支持向量机研究[J].岩石力学与工程学报,2003,22(10):1618-1622.
    [214]许传华,任青文,周庆华.基于支持向量机和模拟退火算法的位移反分析[J].岩石力学与工程学报,2005,24(22):4134-4138.
    [215]VAPNIK V N.张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000.
    [216]盛谦,丁秀丽,冯夏庭等.三峡船闸高边坡考虑开挖卸荷效应的位移反分析[J].岩石力学与工程学报,2000,19(S):987-993.
    [217]SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Process Letters,1999,9(3):293-299.
    [218]赵同彬,谭云亮,刘传孝.基于遗传算法的巷道位移反分析研究[J].岩土力学,2004,25(S):107-109.
    [219]邓建辉,王浩,姜清辉等.利用滑动变形计监测岩石边坡松动区[J].岩石力学与工程学报,2002,21(2):180-184.
    [220]沈育民.清江隔河岩导流洞灰岩体松动范围的声波测试[J].武汉水利电力学院学报,1989,22(6):40-43.
    [221]方仁应,付建军,张占荣.明月山隧道塑性区边界探讨[J].公路隧道,2008,3:12-14.
    [222]大岗山水电站岩石力学试验研究报告[R].中国水电顾问集团成都勘测设计研究院,2005,12.
    [223]三峡工程坝址区工程地质与岩石力学研究文集(下册)[R].中国三峡工程开发总公司(筹),1992,9.
    [224]李云林,蔡斌.“工程岩体分级”国家标准在高坝洲工程的应用[J].长江科学院院报,1994,11(3):31-40.
    [225]魏云杰.中国西南水电工程区峨眉山玄武岩岩体结构特性及其工程应用研究[D].成都:成都理工大学,2007.
    [226]蔡斌,喻勇,吴晓铭.《工程岩体分级标准》与Q分类法、RMR分类法的关系及变形参数估算[J].岩石力学与工程学报,2001,20(S):1677-1679.
    [227]R. K. Goel, J. L. Jethwa, A. G. Paithankar. Correlation between Barton's Q and Bieniawski's RMR—A new approach[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,1996,33(2):178-181.
    [228]Hoek E, Brown ET. Practical estimates of rock mass strength[J]. International Journal of Rock Mechanics and Mining Sciences,1997,34(8):1165-86.
    [229]陈昌彦,王贵荣.各类岩体质量评价方法的相关性探讨[J].岩石力学与工程学报,2002,(12):1894-1900.
    [230]Mahmoud Hashemi, Sh. Moghaddas, R. Ajalloeian. Application of Rock Mass Characterization for Determining the Mechanical Properties of Rock Mass:a Comparative Study[J]. Rock Mechnical and Rock Engineering, In Press
    [231]Hudson, J. A., S. D. Priest, Discontinuities and rock mass geometry[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,16,339-362,1979.
    [232]ISRM Commission on Standardization of Laboratory and Field Tests. Suggested methods for the quantitative description of discontinuities in rock masses[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,1978,15, pp.319-368.
    [233]卢书强.澜沧江糯扎渡水电站地下洞室群岩体质量分级及其对围岩稳定性的控制作用[D].成都:成都理工大学,2004.
    [234]严春风,徐建.岩体强度准则概率模型及其应用[M].重庆:重庆大学出版社,1999.
    [235]王广德.复杂条件下围岩分类研究-以锦屏二级水电站深埋隧洞围岩分类为例[D].成都:成都理工大学,2006.
    [236]周志东,胡卸文.西南某水电站坝肩岩体质量分级方法选取探讨[J].成都理工学院学报,1999,26(1):82-85.
    [237]董学晟,夏熙伦.三峡工程船闸高边坡历年岩体力学试验成果综合分析[J].长江科学院院报,1999,16(3):30-34.
    [238]Krzysztof Tajdus. New method for determining the elastic parameters of rock mass layers in the region of underground mining influence[J]. International Journal of Rock Mechanics and Mining Sciences, In Press, Corrected Proof, Available online 28 May 2009.
    [239]李建林,哈秋舲.三峡卸荷岩体宏观力学参数三维数值模拟[J].武汉水利电力大学(宜昌)学报,1997,19(3):1-6.
    [240]哈秋舲,李建林.岩石边坡卸荷岩体宏观力学参数研究[M].北京:中国建筑工业出版社,1996.
    [241]秦玉春,朱珍德,王战鹏.锦屏水电站引水隧洞大理岩卸荷变形特性试验[J].岩土力学,2006,(S2).
    [242]李宏哲,夏才初,闫子舰等.锦屏水电站大理岩在高应力条件下的卸荷力学特性研究[J].岩石力学与工程学报,2007,(10).
    [243]汪斌,朱杰兵,邬爱清等.锦屏大理岩加、卸载应力路径下力学性质试验研究[J].岩石力学与工程学报,2008,(10).
    [244]刘豆豆,陈卫忠,杨建平等.脆性岩石卸围压强度特性试验研究[J].岩土力学,2009,(9).
    [245]Fairhurst, C. and Damjanac, B. The Excavation Damage Zone—An International Perspective[J]. In Distinct Element Modeling in Geomechanics, Edit by Sharma,V.M., A.A.Balkema, Rotterdam, Brookfield,1999, pp:1-25.
    [246]Falls, S.D. and Young, P. R. Examination of the excavation-disturbed zone in the Swedish ZEDEX tunnel using acoustic emission and ultrasonic velocity measurements[J]. In Proceeding of EUROCK'96 Prediction and Performance in Rock Mechanics and Rock Engineering, Torino, Italy, A.A.Balkema, Rotterdam,1996, Vol.2, pp:1337-1344.
    [247]Bauer, C., Homand-Etienne, F., and Hinzen, K. G. Damage zone characterization in near field in the Swedish ZEDEX tunnel using in situ an laboratory measurements[J]. In Proceedings of EUROCK'96 Prediction and Performance in Rock Mechanics and Rock Engineering, Torino, Italy, A.A.Balkema, Rotterdam,1996, Vol.2, pp:1345-1352.
    [248]Davies, N. and Mellor, D. Review of excavation disturbance measurements undertaken within the ZEDEX project[J]. In Procedings of EUROCK'96 Prediction and Performance in Rock Mechanics and Rock Engineering, Torino, Italy, A.A.Balkema, Rotterdam,1996, Vol.2, pp:1315-1322.
    [249]Emsley, S. J., Olsson,O., Stanfors, R., et al. Intergrated characterization of a rock volume at the Aspo HRL utilized for an EDZ experiment[J]. In Proceedings of EUROCK'96 Prediction and Performance in Rock Mechanics and Rock Engineering, Torino, Italy, A.A.Balkema, Rotterdam,1996, Vol.2,pp:1329-1336.
    [250]Olsson, O., Backblom. G., et. al. Planning, organization and execution of an EDZ experiment while excavating two test drifts by TBM boring and blasting respectively[J]. In Proceedings of EUROCK'96 Prediction and Performance in Rock Mechanics and Rock Engineering, Torino, Italy, A.A.Balkema, Rotterdam,1996, Vol.2, pp:1323-1327.
    [251]Stephen D. Falls, R. Paul Young. Acoustic emission and ultrasonic-velocity methods used to characterize the excavation disturbance associated with deep tunnels in hard rock[J]. Tectonophysics, 1998, Vol.289, pp:1-15.
    [252]Zhengmeng Hou. Mechanical and hydraulic behavior of rock salt in the excavation disturbed zone around underground facilities[J]. International Journal of Rock Mechanics & Mining Sciences,2003, vol.40, pp:725-738.
    [253]M.souley, F.Homand, S.Pesa, D.Hoxha. Damage induced permeability changes in granite-a case example at URL in Canada[J]. International Journal of Rock Mechanics & Mining Sciences, 2001,vol,38,pp:297-310.
    [254]S. Kwon, C.S. Lee, S.J. Cho, et al. An investigation of the excavation damaged zone at the KAERI underground research tunnel[J]. Tunnelling and Underground Space Technology,2009,24(1):1-13.
    [255]T. Sato, T. Kikuchi, K. sugihhara. In-situ experiments on an excavation disturbed zone induced by mechanical excavation in Neogene Sedimentary rock at Tono mine[J]. Center Japan, Engineering Geology,2000, vol.52,pp:337-359.
    [256]盛谦.深挖岩质边坡开挖扰动区与工程岩体力学性状研究[D].武汉:中国科学院武汉岩土力学研究所,2002.
    [257]朱泽奇.坚硬裂隙岩体开挖扰动区形成机理研究[D].武汉:中国科学院武汉岩土力学研究所,2008.
    [258]伍佑伦,许梦国.根据工程岩体分级选择岩体力学参数的探讨[J].武汉科技大学学报(自然科学版),2002,25(1):22-23,27.
    [259]李良安,朱传统.小浪底水利枢纽地下工程爆破对隧洞围岩扰动影响的声波检测[J].工程爆破,1996,2(4):113-117,125.
    [260]周火明,盛谦,李维树等.三峡船闸边坡卸荷扰动区范围及岩体力学性质弱化程度研究[J].岩石力学与工程学报,2004,23(7):1078-1081.
    [261]熊诗湖,边智华.清江水布垭马崖高边坡岩体力学性质试验研究[J].岩土力学,2003,(S1).
    [262]张宜虎,石安池,钟作武等.基于数值模拟的未扰动岩体变形参数反演方法[J].长江科学院院报,2008,25(1):44-48.
    [263]宋战平,王昆等.开挖扰动作用下强卸荷风化层状岩体的变形特性及动态仿真反演分析[J].水利水电技术,2002,33(11):33-35,38.
    [264]Cheng, Y., and Liu, S.1990. Power caverns of the Mingtan Pumped Storage Project[C], Taiwan. In Comprehensive Rock Engineering. (ed. J.A. Hudson), Oxford:Pergamon,5,111-132.
    [265]Hoek E, Carranza-Torres CT, Corkum B. Hoek-Brown failure criterion-2002 edition[C]. In: Proceedings of the fifth North American rock mechanics symposium, Toronto, Canada, vol.1,2002. p. 267-73.
    [266]Faquan Wu, Jianyou Liu, Tong Liu, et al. A method for assessment of excavation damaged zone (EDZ) of a rock mass and its application to a dam foundation case[J]. Engineering Geology,2009, 104(3-4):254-262.
    [267]尤明庆.岩石的力学性质[M].北京:地质出版社,2007.
    [268]国际岩石力学学会实验室和现场试验标准化委员会编,郑雨天,傅冰骏,卢世宗等译.岩石力学试验建议方法上集[M].北京:煤炭工业出版社,1982.
    [269]中华人民共和国电力工业部,中华人民共和国水利部.水利水电工程岩石试验规程(DLJ204-81)[S].北京:水利水电出版社,1982.
    [270]中华人民共和国国家标准编写组.工程岩体试验方法标准(GB/T50266-99)[S].北京:中国计划出版社,1999.
    [271]铁路工程岩石试验规程[S],1998年版本
    [272]水利水电工程岩石试验规程[S],2001年版本
    [273]林宗元主编.岩土工程试验监测手册[M].北京:中国建筑工业出版社,2005.
    [274]刘佑荣,唐辉明.岩体力学[M].武汉:中国地质大学出版社,1999.
    [275]金沙江白鹤滩水电站可行性研究选坝阶段柱状节理玄武岩专题研究工程地质研究报告[R].中国水电顾问集团华东勘测设计研究院.杭州:2006年11月.
    [276]吴亚平.BEM-76型钻孔弹模仪的研制与应用[J].岩土力学,1992,13(2-3):196-201.
    [277]李光煜,周佰海.测定岩体变形特性的BJ-110钻孔弹模计[J].岩土工程学报,1991,13(4): 12-23.
    [278]王学滨.单轴拉伸岩样破坏过程及尺寸效应数值模拟[J].岩土力学,2005,26(S):189-195.
    [279]祝玉学,边坡可靠性分析[M].北京:冶金工业出版社.
    [280]铃木光.岩体力学与测定[M].杨其中等译.北京:煤炭工业出版社,1980.
    [281]李云林.三峡工程坝基岩体力学参数选择分析[J].长江科学院院报,1996,13(3):45-49.
    [282]李建林,王乐华.节理岩体卸荷非线性力学特性研究[J].岩石力学与工程学报,2007,26(10):1968-1975.
    [283]科研成果汇编-清江隔河岩水利枢纽(岩石力学专业)(一)[R].长江科学院,1990.
    [284]李仲奎,戴荣,姜逸明.FLAC3D分析中的初始应力场生成及在大型地下洞室群计算中的应用[J].岩石力学与工程学报,2002,21(S2):2387-2392.
    [285]陈良.水电站地下厂房洞室群施工监测反馈分析[D].北京:清华大学,2008.
    [286]四川大学.锦屏一级水电站地下厂房施工期围岩工程特性与反馈分析专题研究[R].2007.
    [287]中国科学院武汉岩土力学研究所,中国水电顾问集团华东勘测设计研究院.雅砻江锦屏二级水电站大型地下厂房洞室群施工期快速监测与反馈分析阶段报告三:厂房第二层和主变室第一层开挖后围岩稳定性评价与洞群后续开挖围岩力学行为预测[R].2008.
    [288]中国科学院武汉岩土力学研究所,中国水电顾问集团华东勘测设计研究院.雅砻江锦屏二级水电站大型地下厂房洞室群施工期快速监测与反馈分析阶段报告四:厂房第六层开挖后围岩稳定性评价与洞群后续开挖围岩力学行为预测[R].2009.
    [289]景茂贵.拉西瓦水电站地下厂房洞群监测资料反演分析与稳定性评价研究[D].西安:西安理工大学,2007.
    [290]周黎明,肖国强,尹健民.巴昆水电站发电洞开挖松动区岩体弹性模量测试与研究[J].岩石力学与工程学报,200625(S2):3971-3975.
    [291]中华人民共和国国家标准编写组.GB50218-94工程岩体分级标准[S].北京:中国计划出版社,1994.
    [292]李长雄.对现行工程岩体及隧道围岩分级标准的探讨[J].路基工程,2009,4:96-97.
    [293]B. Singh, R. Goel. Rock Mass Classification-A Practical Approach in Civil Engineering[M]. Elsevier,1999.
    [294]林韵梅.岩石分级的理论与实践[M].北京:冶金工业出版社,1996.
    [295]中华人民共和国水利部.GB5027-99水利水电工程地质勘察规范[S].北京:中国计划出版社,1999.
    [296]Deere D U. Technical Description of Rock Cores for Engineering Purposes[J]. Rock Mechanics and Engineering Geology,1964,1(1):16-22.
    [297]高尚,杨静宇.群智能算法及其应用[M].北京:中国水利水电出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700