用户名: 密码: 验证码:
生物视觉模型在自动目标识别技术中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自动目标识别是当今世界军事技术研究中最具攻关性的课题之一,众多计算机视觉技术均应用于该课题的研究领域中。许多诸如物体边缘检测、空间位置估计和运动跟踪等对于生物视觉来说是轻而易举视觉任务,然而至今在计算机视觉上仍然不能得到很好的解决,由此成为制约自动目标识别技术发展的一个瓶颈。本论文的完成基于2003航天支撑基金项目“基于生物视觉的自动目标识别算法研究及仿真”的研究工作,提出了一种生物视觉感知系统中的感受野改进模型,并将这种模型应用于自动目标识别中的物体边缘检测和运动估计及跟踪等关键技术的研究中。主要内容包括:
     (1)在广泛查阅国内外文献的基础上,讨论了几种具有代表性的经典和非经典感受野模型以及对它们的改进;实际上,对感受野模型的每一次改进均对应着某种视觉生理机制的融入。发现对于一种有趣的视觉生理机制:当人眼长时间注视某一斜方向变化的光强时,会对该方向的光强变化变得敏感;传统的生物视觉各向同性感受野模型及其改进型均不能对它进行解释。于是,提出了一种具有任意方向的各向异性弹性感受野模型。
     (2)利用所提出的具有任意方向的各向异性弹性感受野模型成功地解释了生物视觉同时对比现象,建立了生物视觉同时对比机制的数学模型。并对将生物视觉同时对比机制的数学模型应用到边缘检测的高通滤波技术中的可行性进行了研究,从而提出了“一种新的基于区域角度搜索的各向异性高通滤波算法”和“各向异性高通滤波中的一种改进型边缘方向估计算法”。
     (3)利用所提出的具有任意方向的各向异性弹性感受野模型成功地解释了生物视觉的注视现象,基于生物视觉突触短时可塑性导致视觉感受野在接受外界持续刺激时将发生感受野形变这一生理现象,提出了对感受野形变的假设,并建立了能描述生物视觉注视机制的数学模型。而“基于人眼视觉注视机制下突触短时可塑性的图像边缘检测算法”的提出也刚好验证了假设的合理性。进一步的研究使得这种基于视觉注视机制的自适应线型滤波算法得以建立和完善。
     (4)将所提出得具有任意方向的各向异性弹性感受野模型应用于运动估计中。提出了物体运动产生“虚拟边缘”这一新的概念,并对“虚拟边缘”给出了严格的数学定义,采用该感受野模型作为能检测“虚拟边缘”的探测函数,将该函数引入小目标运动事件中,分别建立了理想的帧间差探测函数模型和实际的帧间差探测函数模型。在对这两种模型的分析比较中,明确了参数选择策略,从而提出了一套基于帧间差探测函数模型的运动估计算法。
     (5)设计了几种新的模块用于解决目标跟踪中的方向纠错、可实现性和实时性问题,并将这些模块与前文所提出的运动估计算法相结合,从而构成了一套基于帧间差探测函数模型的运动目标跟踪算法。实验表明,该目标跟踪算法能够有效地对在简单和复杂背景下运动的小目标进行跟踪。随后对这种目标跟踪算法的复杂度进行了分析和比较。
     本文的最后对主要研究成果进行了概括,并指出以后需要进一步研究的问题和探索方向。
ATR (Automatic Target Recognition) is one of the tough challenges in the research of the world military technology nowadays, in which the computer vision technology has been applied. However, many visual missions such as edges detection, spatial location estimation and target tracking, which seem to be very simple in biological vision, are unable to be solved well now in computer vision. It leads to the bottleneck for the improvement on ATR. This doctoral dissertation is based on the project named Research and Simulation on the Algorithm of Automatic Target Recognition Based on the Model of Biological Vision. And the project is supported by the Foundation of Astronomic Technology in 2003. In this paper the improvement on the model of the receptive field in the system of biological vision is presented. With the improved model being used, several key technologies such as edges detection and target tracking in ATR are focused in this paper. The main parts are as follow:
     (1) Based on the widely learning of references, several representative types of classical and non-classical model of receptive field even the improvement on the models are discussed. Each improvement corresponds to a mechanism in biological visual. And the mechanism that when we keep our eyes on the optical intensity changes in given direction for a long time, the eyes are sensitive to the optical intensity change in the direction is interesting. But we can find that neither the classical receptive field which has the construction of concentric circles nor its improvement can explain the mechanism. Then an anisotropic stretch receptive field model which has arbitrary direction is put forward.
     (2) The new model of receptive field is applied to explain the phenomenon on the simultaneous contrast in biological vision successfully. Then the mathematical model that can describe the mechanism of the simultaneous contrast is constructed. After the analysis of the feasibility that applying the mathematical model to high-pass filtering on theory and in practice, two algorithms named A New Anisotropic High-pass Filtering Algorithm Based on Region Angle Searching and An Improved Edge’s Orientation Estimation Algorithm are proposed respectively.
     (3) The new model of receptive field is applied to explain the phenomenon on the gazing in biological visual system successfully. According to the mechanism that the Short-Term Synaptic Plasticity caused by repeating stimulation can lead to distortion in receptive fields of neurons in human vision system, a hypothesis on the manner of distortion in receptive fields is proposed in this paper. Based on the hypothesis, the mathematical model that can describe the mechanism of the gazing is constructed. A new algorithm named An Edge Detection Algorithm Based on Short-term Synaptic Plasticity in Gazing Mechanism in Human Visual System is advanced in order to verify the rationality of the hypothesis. Finally an adaptive linear filtering algorithm is established.
     (4) The new model of receptive field is also applied to motion estimation in this paper. The new concept called virtual edge and its mathematical definition are presented. The new receptive field model can be used as a function to detect the virtual edge with target’s moving. With the small target being inducted to the events of motion, the ideal model of temporal difference detection function and the actual one are brought forth. With the analysis of the characteristics of the two models, a rational strategy about parameters chosen is determined. Then a motion estimation algorithm based on the temporal difference detection function is proposed.
     (5) Several new modules are designed to solve the problems such as error correction on directions, the feasibility and the real-time performance in target tracking. Combined the proposed motion estimation algorithm with the several modules above, a new algorithm based on the temporal difference detection function is put forward. The experiments show that the small target which is moving at random on simple and complex backgrounds can be tracked effectively. The analysis and the comparison of the algorithm’s complexity are also completed at last.
     Finally, the main contributions in this dissertation are summarized and some suggestions and directions for the future work in this field are given.
引文
[1] Bhanu, B. Automatic target recognition: State of the art suvey. IEEE Trans on Aerospace and Electronic Systems, 1986, 22(4): 364~379.
    [2] Brown W M, Swonger C W. A prospectus for automatic target recognition. IEEE Trans on Aerospace and Electronics Systems, 1989, 25(3): 401~410.
    [3]李朴莲.自动目标识别(ATR)技术发展述评.现代防御技术,2000(4):10~20.
    [4] Know Oh-Kyn, Sim Dong-gyn, Park Rae-Hong. Robust hausdorff distance matching algorithms using Pyamidal structures. Pattern Recognition, 2001, 34(7): 2005~2013.
    [5]柯丽,黄廉倾. DSP芯片在实时图像处理系统中的应用.光机电信息, 2005(1):17~23.
    [6]周立伟,刘玉岩.目标识别与探测[M].北京:北京理工大学出版社,2002
    [7] D. E. Dudgeon, R. T. Lacoss. An overview of automatic target recognition. Lincoln Lab.J, 1993, 6(1): 3~9.
    [8] Zwicke P E, Imrekiss J R. A new implementation of the Mellin transform of range profile of ship. IEEE Trans on PAMI, 1983, 5(2): 139~142.
    [9] Shun Liu, Hagivara H, Shoji R ea al. Rada network system to observe & analyze Tokyo Bay vessel traffic. Aerospace and Electronic Systems Magazine. IEEE, 2004, 19(11): 3~11.
    [10]崔武军,张桂林.航拍图像序列的地面运动目标跟踪.红外与激光工程,2006,35(1): 111~116.
    [11] Stewart C, Lu Y C, Larson V. A neural clustering approach for high resolution radar target identification. Pattern Recognition, 1994, 27(4): 503~513.
    [12] Hudson S, Psaltis D. Correlation filters for aircraft identification from radar range profiles. IEEE Trans. on AES, 1993, 29(3): 741~748.
    [13] K. T, Kim and D. K, Seo. Radar target identification using one-dimensional scattering centers. IEE pro. Sonar Naving, 2001, 148(5): 285~296.
    [14] S A Dudani. Aircraft Indentification by Moment Invariants[J]. IEEE Trans on Computers, 1997, C-26(1): 39~45.
    [15]王蜂.飞行器下视景象匹配与定位方法研究[M].博士论文.西安:西北工业大学,1998.
    [16]王丽霞. AIM-9X现在真正具有杀伤性的武器[J].航空兵器,2002,1:17.
    [17]田振华.红外制导空空导弹先进技术综述[J].航空兵器, 1995. 5:11~17.
    [18] Jain A K, Prabhakar S. Filterbank- based fingerprint matching [J]. IEEE Trans on Image Processing, 2000, 9(5): 846~859.
    [19] Jain A K, Hong L, Bolle R. On-Line Fingerprint Verification[J]. IEEE Trans Pattern and Machine Intel, 1997, 19(4): 302~314.
    [20]谭台哲,宁新宝,尹义龙等.一种基于指纹中心点的匹配算法[J].南京大学学报(自然科学版),2003,39(4):483~490.
    [21]杨利敏,杨杰,李钢.基于指纹分类的模式匹配[J].电子学报,2003,31(7):1030~1034.
    [22]罗希平,田捷.自动指纹识别中的图像增强何细节匹配算法[J].软件学报,2002,13(5):946~956.
    [23] Yang M H, Kriegman. D; Ahuja N. Detecting face in image: a survey[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(1): 34~58.
    [24] Deng J, Lai F. Region-based template deformation and masking for eye-feature extraction and description[J]. Pattern Recognition, 1997, 30(3): 403~419.
    [25]李英,赖剑煌,阮邦志.眼睛状态检测的组合方法[J].中国图象图形学报,2003, 8(10):1140~1145.
    [26] John Daugman. How iris recognition works[J]. IEEE Trans on Circuits and Systems for video Technology, 2004, 14(1): 21~30.
    [27] John Daugman. The importance of being random: statistical principles of iris recognition[J]. Pattern Recognition, 2003, 36(2): 279~291.
    [28]王蕴红,朱勇,谭铁牛.基于虹膜识别的身份鉴别[J].自动化学报,2002,28(1):1~10.
    [29] Naito T. Robust license plate recognition method for passing vehicle under outside environment[J]. IEEE Transactions on Vehicular Technology, 2000, 49(6): 2309~2319.
    [30]张引,潘云鹤.彩色汽车图像牌照定位新方法[J].中国图象图形学报,2001,6(4):374~377.
    [31] Richard O;Duda Peter E; Hart David G.模式分类(第二版)[M].李宏东,姚天翔译.北京:机械出版社,2003.
    [32] Jain A K, Duin R P W, Jianchang Mao. Statistical pattern recognition: a review. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(1): 4~37.
    [33] Sergios Theodoridis, Konstantinos Koutroumbas.模式识别(第二版)[M].李晶皎译.北京:电子工业出版社,2004.
    [34] A Jonathan Howell, Hilary Buxton. Learning identity with radial basis function networks[J]. Neurocomputing, 1998, 20(1): 15~34.
    [35] Rajesh Patekh, Jihoon Yang, Vasant Honaver. Constructive neural-network learning algorithm for pattern classification[J]. IEEE Trans on Neural Network, 2002,11(2): 436~451.
    [36] Michiael I Jordan, Zoubin Ghahramani, Tommi Jaakkola et al. An introduction to variational methods for graphical models. Machine Learning, 1999, 37(2): 183~233.
    [37]张志华,郑南宁,王天树.广义LVQ神经网络的性能分析及其改进.自动化学报,1999,25(5): 583~589.
    [38]熊承义,李玉梅.统计模式识别及其发展现状综述[J].科技进步与对策,2003,(8):173~176.
    [39] Cai Wen, Yang Chunyan, Lin Weichu. Extension Engineering Methods[M]. Beijing: Science Press, 2003.
    [40] Yang Guowei, Zhou Xianpu, Tu Xuyan. Extensibility of the matter element system and its applications[J]. Advances in Modelling & Analysis A, 2003, 40(1):23~29.
    [41] Mitchell T, Keller R M, Kedar-Cabelli S. Explanation-based learning: a unifying view. Machine Learning, 1986, 1(1): 47~80.
    [42]徐胜荣,徐凡,叶秀清等.基于知识的桥梁目标识别方法研究.模式识别与人工智能,1992,5(2):123~128.
    [43]袁晓辉,金立左.基于兴趣区域检测与分析的水上桥梁识别.红外与毫米波学报,2003,2(5):331~336.
    [44] Ying Wang, Qingfen Zheng. Recognition of roads and bridge in SAR images. Pattern Recognition. 1998, 31(7): 953~962.
    [45] Nicoas Lomenie, Jerome Baubeau, Roger Trias-Sanz. Integrating textural and geometric information for an automatic bridge detection system. In proceedings of International Geoscience and Remote Sensing Symposium 2003(IGARSS2003), Toulouse, France, 2003, 6: 3952~3954.
    [46]左震,张天序,汪国有.远距红外图像中桥梁目标识别研究.电子学报,1998,26(11):6~9.
    [47]李闻,吴秀清.基于先验知识的小目标快速随机识别方法.计算机工程与应用. 2003,12:110~112.
    [48] Ray B, Ray K S. Corner detection using iterative Gaussian smoothing with constant window size[J]. pattern Recognition, 1995, 28(11): 1965~1781.
    [49]王炎.用于精确起爆控制的空中目标红外成像建模及图象识别技术研究[D].博士论文,北京:北京理工大学,2002.
    [50]吴樊,王超,张红等.基于知识的中高分辨率光学卫星遥感影像桥梁目标识别研究.电子与信息学报,2006,28(4):587~591.
    [51] J. G. Verly, R. L. Delanoy, D. E. Dudgeon. Machine intelligence technology for automatic target recognition. Lincoln Lab. J., 1989, 2(2): 277~311.
    [52] J. G. Verly, B. D. Williams, D. E. Dudgeon. Automatic object recognition from range imagery using appearance modles. In: Proc. IEEE Comput. Soc. Workshop on Comput. Vision. Miami Beach, FL. Nov. 1987. 244~246.
    [53] G. J. Ettinger, G. A. Klanderman, W. M. Wells et al. A probabilistic optimization approach to SAR feature matching. SPIE,1996. 318~329.
    [54]刘宏伟,杜兰,袁莉等.雷达高分辨距离像目标识别研究发展.电子与信息学报,2005,27(8):1328~1334.
    [55] L M Ehrman. Automatic target recognition using passive radar and a coordinated flight model[R]. Master’s Thesis, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 2004.
    [56]刘同明,夏祖勋,解洪成.数据融合技术及其应用[M].北京:国防工业出版社,2000.
    [57]何友,王国宏等.多传感器信息融合及应用[M].北京:电子工业出版社,2000.
    [58] Briem G J, Benediktsson J A. Multiple classifiers applied to multisource remote seningData[J]. IEEE Trans on Geoscience and Remote Sensing, 2002, 40(10): 2291~2299.
    [59] Waltz E, Llinas J. Multisensor Data Fusion[M]. Aretch House, 1989.
    [60] Moghaddam B; Jebara T; Pentland A. Bayesian face recognition[J]. Pattern Recognition. 2000. 33(11): 1171~1182.
    [61] Peng Jin-ye, Wang Da-kai, Yu Bian-zhang et al. Bayesian face recognition based on the coefficients of wavelet demoposition[J]. Acta Photonica Sinica. 2001, 30(10): 1263~1269.
    [62] Nair D, Aggarwal J K. Bayesian recognition of targets by parts in second generation forward looking infrared image. Image and Vision Computing, 2000, 18(10): 849~864.
    [63] Jinhui Lan, Baohua Ma, Tian Lan et al. D-S evidence reasoning and its data fusion application in target recognition. Journal of Tsinghua University, 2001, 41(2): 53~55.
    [64]聂伟荣. D-S证据理论在目标识别中的应用[J].弹道学报,2002,14(4):40~43.
    [65] L Hong, A K Jain, S Pankanti. Intergrationg faces and fingerprints for personal identification[J]. IEEE Trans on Pattern Anal and Machine Intell, 1998, 20(12): 1295~1307.
    [66] A K Jain, S Pankanti, A Ross. Fingerprint matching: Data acquisition and performance evaluation[J]. IEEE Trans on Pattern Anal and Machine Intell, 1999, 21(2): 348~359.
    [67] Salil Prabhakar. Fingerprint classification and matching using a Fi-Iterbank[D]. PhD thesis. Michigan State University, 2001.
    [68] P. Verlinde, G. Chollet, M. Acheroy. Multi-model identity verification using decision fusion[J]. Information Fusion, 2000, 1(1): 17~33.
    [69] Chin, L. Application of neural networks in target tracking data fusion. IEEE Trans on Aerospace and Electronic Systems. 1994, 30(1): 281~287.
    [70] Strehl A, Ghosh J. Cluster ensembles: A knowledge reuse framework for combining partitions[J]. Journal on Machine Learning Research, 2002, 3(3): 583~617.
    [71] Topchy A, Jain A, Punch W. A mixture modle for clustering ensembles[C]. Proc SIAM Data Mining Florida: SIAM Press, 2004 , 379~390.
    [72] W. S. Chaer, R. H. Bishop, J. Ghosh. A mixture of experts framework for adaptive Kalman filtering. IEEE Trans on Systems, Man and Cybernetics, 1997, 31(4): 452~464.
    [73]林尧瑞,张钹,石纯一.专家系统原理与实践.北京:清华大学出版社,1988.
    [74] Mania K, Wooldridge D, Coxon M. The effect of visual and interaction fidelity on spatial cognition in immersive virtual environments. IEEE Trans on Visualization and Computer Graphics. 2006, 12(3): 396~404.
    [75] Rook F W, Donnell M L. Human cognition and the expert system interface: mental models and inference explanations. IEEE Trans on Systems, Man and Cybernetics. 1993, 23(6): 1649~1661.
    [76] Michaea W. Roth. Survey of neural network technology for automatic target recognition. IEEE Trans on Neural Networks. 1990, 1(1): 28~43.
    [77] Chelsea C, White III. A survey on the integration of decision analysis and expert systems for decision support. IEEE Trans on Systems, Man and Cybernetics. 1990, 20(2): 358~364.
    [78]程慧霞.用C++建造专家系统[M].北京:电子工业出版社,1996.
    [79] Bimal K. Bose. Expert system, fuzzy logic, and neural network application in power electronics and motion control.In: Proceedings of the IEEE. 1994, 82(8): 1303~1323.
    [80] Srinivasan. D, Swee Sien Tan, Cheng, C. S et al. Parallel neural network-fuzzy expert system strategy for short-term load forecasting: system implementation and performance evaluation. IEEE Trans on Power Systems. 1999, 14(3): 1100~1106.
    [81] Mei Liu, Taifan Quan, Shaohua Luan. An attribute recognition system based on rough set theory-fuzzy neural network and fuzzy expert system. In: Proceedings of Fifth World Congress on Intelligent Control and Automation, 2004. WCICA 2004. 3: 2355~2359.
    [82]刘怡光,游志胜.一种用于图像目标识别系统的神经网络一级车型识别应用[J].计算机工程,2003,29(3):30~32.
    [83]陈振羽,李德华,周焰.利用多种特征和Hopfield神经网络的有遮挡的目标识别[J].中国图象图形学报,2000,5(12):1034~1038.
    [84] Galushkin. A. I, Savushkin. S. A. Neural network expert system. In Proceedings of RNNS/IEEE Symposium on Neuroinformatics and Neruocoputers. 1992, 7-10, Oct: 1116~1123.
    [85] Atamanchuk. Z. M, Petrov. A. A. Some problems of building and learning of neural networks while creating user’s expert system. In: Proceedings of RNNS/IEEE Symposium on Neuroinformatics and Neruocoputers. 1992, 7-10, Oct: 1133~1135.
    [86] Lindberg P. Measuement of contrast transmission characteristics[J]. Opt Acta, 1954, (1): 80~89.
    [87] Kubota H, Ohzu H. Method of measurement for response function by means of random chart[J]. J Opt Soc Am, 1957, 47(7): 666~667.
    [88]徐建华.图像处理与分析[M].北京:科学出版社,1992.
    [89] Rafael C. Gonzalez, Richard E. Woods. Digital image processing. Reading MA, Addison-Wesley, 2003.
    [90] A. Elmabrouk, A. Aggoun. Edge detection using histogram analysis. Electronics Letters. 1998, 34(12): 1216~1217.
    [91] A. Khalil, A. Aggoun, A. Elmabrouk. On edge detection using local histogram analysis. In: Proc. of SPIE Vol. 5150, 2003: 2141~2151.
    [92] E. R. Hancock; J. Kittler. Adaptive estimation of hysteresis thresholds. IEEE computer Society Conf. on Computer Vision and Pattern Recognition, 1991, 196~201.
    [93] P. Rosin. Unimodal threshold. Pattern Recognition. 2001, 34(11): 2083~2096.
    [94] Hardie R. C, boncelet C. G. Gradient-based edge detection using nonlinear edge enhancing prefilters. IEEE Trans on Image Processing. 1995, 4(11): 1572~1577.
    [95] Liang, Lily Rui, Looney, Carl G. Competitive fuzzy edge detection. Applied Soft Computing. 2003, 3(2): 123~137.
    [96] Kanopoulos N, vasanthavada N, Baker R. L. Design of an image edge detectionfilter using the sobel operator. IEEE Journal of Solid-State Circuit. 1988, 23(2): 358~367.
    [97] Bliton A C, Patton, M J, Rolli M L et al. Microscopic motion analysis: Laplacian-of-Gaussian mask for subpixel edge detection. In: Proceedings of the Annual International Conference of the IEEE on Engineering in Medicine and Biology Society, 4-7 Nov, 1988: 1098~1099.
    [98] Zhixiang Xu, Qiang Xia, Jianfeng Chen. The performances of the Laplacian of binomial distribution and the discrete Laplacian of Gaussian edge detection operators. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, 1995.‘Intelligent Systems for the 21st Century’. Vol. 1, 22-25 Oct. 1995: 673~678.
    [99] J, Canny. A computational approach to edge detection. IEEE Trans on Pattern Analysis and Machine Intelligence. 1986, 8(1): 679~698.
    [100] H.D. Tagare, R. J. P. de Figueiredo. On the localization performance measure and optimal edge detection. IEEE Trans on Patter analysis and Machine Intelligence, 1994,16(12): 1186~1190.
    [101] H.S. Wong, L. Guan. A neural learning approach for adaptive image restoration using a fuzzy model-based network architecture. IEEE Trans on Neural Network. 2001, 12(3): 516~531.
    [102] Rong Wang, Liqun Gao, Shu Yang et al. An edge detection method by combining fuzzy logic and neural network. In: Proceedings of 2005 International Conference on Machine Learning and Cybernetics. Vol.7, 18-21 Aug. 2005, 4539~4543.
    [103] Niya. J. M, Aghagolzadeh. A. Edge detection using combined isotropic and directional wavelets and fuzzy logic method. In: Proceedings 2004 International Conference on Information and Communication Technologies: Form Theory to Application. 19-23 April, 2004, 353~354.
    [104] Beltran J.R, Gaucia-Lucia J, Navarro J. Edge detection and classification using Mallat’s wavelet.In: Proceedings. ICIP-94, IEEE International Conference on Image Processing. Vol. 1, 13-16 Nov. 1994; 293~297.
    [105] Yuping Wang, Yuanlong Cai. Construction and properties of B-spline wavelet filters for multiscale edge detection. In: Proceedings of 1995 InternationalConference on Image Processing. Vol. 2, 23-26 Oct, 1995, 145~148.
    [106] Aydin T, Yemez Y, Anarim E et al. Multidirectional and multiscale edge detection via M-band wavelet transform. IEEE Trans on Image Processing. 1996, 5(9): 1370~1377.
    [107] Yishu Zhai, Xiaoming Liu. Adaptive edge detection based on multi-scale wavelet features. WCICA 2006. The Sixth World Congress on Intelligent Control and Automation, 2006. Vol. 2, 21-23 June, 2006: 10289~10293.
    [108] Mahalanobis Abhijit, Muise Robert. Advanced detection and correlation based automatic target recognition. In: Proceedings of SPIE- The International Society for Optical Engineering, v 4379, 2001, 466~471.
    [109] M Sameh Yamanu, A Aly Farag; Shin Yi Hsu. A fuzzy hyperspectral classifier for automatic target recognition system[J]. Pattern Recognition Letters, 1999, 20(5): 1431~1438.
    [110] A Kenneth Augustyn. A new approach to automatic target recognition[J]. IEEE Trans on Aerospace and Electronic Systems, 1992, 28(1): 105~114.
    [111]夏德深,傅德胜.现代图像处理技术[M].南京:东南大学出版社,1997.
    [112]靳中鑫.数字图像信息处理[M].北京:国防工业出版社,2003.
    [113]吴立德.计算机视觉[M].上海:复旦大学出版社,1993.
    [114] Horn B, Schunch B. Determining optical flow[J]. Artificial Intelligence, 1981, 17(2): 185~203.
    [115] Nagel H H. Constrains for the estimation of displacement vector fields from image sequences[A]. In: Proceeding IJCAI’-83[C], Karlsruhe, Genmany, 1983, 945~951.
    [116] Otte M; Nagel H H. Estimation of optical flow based on higher-order spatiotemporal derivatives in interlaced and non-interlaced image sequences[J]. Artificial Intelligence, 1995, 78(1/2), 5~43.
    [117] Tretiak O, Pastor L. Velocity estimation from image sequences with second order differential operators[A]. In: Proceedings of International Conference on Pattern Recognition[C]. Montreal, Canada, 1984: 16~19.
    [118] Wohn K, Divis L S, Thrift P. Motion estimation based on multiple local constraints and nonlinear smoothing[J]. Pattern Rrcognition, 1983, 16(6): 563~570.
    [119] Jason Z Z, Jonathan Q M. A pyramid approach to motion tracking[J]. Reak-Time Imaging, 2001, 7(3): 529~544.
    [120] Ji S Zhang; G Dong X. Study on imgae correlation tracking algorithm in the condition of complicated ground background[J]. Laser & Infrared, 2002, 32(6): 428~430.
    [121]李静;杨涛;潘泉等.基于层叠分类器的快速相关跟踪算法.计算机应用,2006,26(7):1583~1586.
    [122] Yu Huang, Huang T S, Niemann H. Segmentation-based object tracking using image warping and kalman filtering. In: Proceedings of 2002 International Conference on Image Processing. Vol. 3, 24-28 June 2002, 601~604.
    [123]卿光弼,王学楷,郭勇等.“猫眼效应“的物理模型及证明[J].激光技术,1995,19(4):244.
    [124]李玉旗,梁峰.基于“猫眼效应“的光学识别[J].激光与红外,2000, 30(4):252.
    [125] Cojan, Yves, Fertala et al. Method and system for protecting optoelectronic search and tracking equipment from an illumination[P]. United States Patent: 6194723, 2001.
    [126] Mazerolle, Denis, Puech et al. System for the reduction of laser equivalent surface and for optical protention[P]. United States Patent: 6097527, 2000.
    [127]唐世明.果蝇的视觉模式识别具有视网膜位置不变性.中国科学院院刊. 2004,19(6):446~448.
    [128] Tabb K, George S, Adams R et al. Human shape recognition from snakes using neural networks. In: Proceedings of 3th International Conference on Computational Intelligence and Multimedia Applications, 1999. ICCIMA’99. 23-26 Sept. 1999: 292~269.
    [129]林大键,周崇喜,尹燕.大视场紫外高均匀照明光学系统构成原理和光能分布模拟计算[J].微细加工技术,1999,(4):24~27.
    [130] Alan E, Rosenbumth, Rama N. Singh. Projection optics for reflective light valves[J], SPIE, 1999, 36(4): 87.
    [131] Ingle D. Visuomotor Functions of the Frog Optic-Tectum[J]. Brain, Behavior, and Evolution, 1970, (3): 57~71.
    [132]陈建军.新威胁促进机载预警及控制的发展电子工程信息. 2006,5:8~12.
    [133]高阳,李言俊,张科.人眼视觉仿生在光电坐标信息检测、估计和跟踪技术中的应用.航空兵器. 2006,1:22~25.
    [134]寿天德.视觉信息处理的脑机制.上海:上海科技教育出版社,1998
    [135] Wiesel T N, Hubel D H. Spatial and Chromatic Interactions in the lateral geniculate body of the rhesus monkey[J]. J. Neurophysiol, 1966,29: 1115~1116.
    [136]福岛邦彦.视觉生理与仿生学.马万禄,蔡浩然,张少吾译.北京科学出版社,1980.
    [137]张光年,杨俭华,王光毓等.两种GC感受野模型的空间传输特性研究[J].首都师范大学学报(自然科学版),1997,18(9):17~21.
    [138] Daniels J. D, Norman J L, Petteigrew J D. Biases for oriented moving bars in lateral geniculate neucleus neurons of normal and stripe-reared cats. Exp. Brain Res., 29, 155~172.
    [139] Kuffler S W. Discharge patterns and functional organization of mammalian retina[J]. Journal of Neurophys, 1953, 16(1): 37~68.
    [140]王光毓,林书黄,卢涛等.以菌紫质LB膜为基础的两种视觉感受野的某些特性的模拟.生物物理学报,1996,12(1):97~102.
    [141] Enroth- Cugell C, Pinto L. Properties of the surround reponse mechanism of cat retinal ganglion cells and center surround interaction. J. Physical., 1972, 220: 403~409.
    [142] Rodieck R. W. Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vision Res., 1965, 5: 583~601.
    [143] Dayan P, Abbott Lf. Theoretical neuroscience[M]. Massachusette: The MIT Press, 2001.
    [144] Isal Hayashi, Hiromasa Maeda and James R. Oillianmson. A formulation of receptive field type input layer for TAM network using Gabor function. In: Budapest, Hungary. 25-29 July, 2004: 427~431.
    [145] Wang R. A network model for the optic flow computation of the MST neurons. Neural Network, 1996, 9(3): 411~426.
    [146]陈育志,汪云九,齐翔林.感受野动态特性的一种修正模型.自然科学进展,2000,10(3):224~229.
    [147] D Marr, E Hildreth. Theory of edge detection. In: Proc. Royal Soc London, 1980, Vol. 207, 187~217.
    [148] McIIwain J. T. Receptive fields of optic tract axons and lateral geniculate cells: Peripheral extent and barbiturate sensitivity. J. neurophysiol., 1964, 27: 1154~1173.
    [149] McIIwain J. T. Some evidence concerning the physiological basis of the periphery effect in the cat’s retian. Exp. Brain Res, 1966,1: 265~271.
    [150] Ikeda H., Wright M. J. Functional organization of the periphery effect in retinal ganglion cells. Vision Res., 1972, 12: 1857~1879.
    [151] Kruger J., Fischer B. Strong periphery effect in cat retinal ganglion cells. Exitatory responses in On-and Off- center neurons to single grid displacement. Exp. Brain Res., 1973, 18: 316~318.
    [152] Li C. Y., Zhou Y. X., Pei X. et al. Extensive disinhibitory region beyond the classical receptive field of cat retinal ganglion cell. Vision Res., 1992, 32: 219~228.
    [153] Li C. Y., Integration field beyond the classical receptive field organization and function properties. News Phsol. Sci., 1996, 11: 1~6.
    [154]王伟.视皮层下视觉信息加工与处理若干问题的研究:博士论文合肥:中国科学技术大学,1998.
    [155] Shou, T., Wang, W., Yu, H. Orientation-biased extended surround beyond the classical receptive field center may help the retinal detect texture segmentation. In: Proceedings 29th Annual Meeting of Soc. Neurosci. Miami, Flo., Abst. 1999
    [156]黎臧,邱志诚,顾凡及等.视网膜神经节细胞感受野的一种新模型I.含大周边的感受野模型.生物物理学报,2000,16(2):288~295.
    [157]邱芳土,李朝义.同心圆感受野去抑制特性的数学模拟.生物物理学报,1995,11(2):113~220.
    [158] Campbell F, Kulikowski J. Orientation selectivity of the human visual system. JPhysical, 1966, 197: 437~441.
    [159]龙公,王玉平,谈正.具有方向性、变尺度的过零交叉特征检测算子.数据采集与处理[J], 1995, 10(3), 175~180
    [160]黄铁军,柳健.利用弹性感受野检测弱小目标.红外与激光工程. 1998, 27(3): 53~56
    [161]刘晓玲.视觉神经生理学[M].北京.人民卫生出版社, 2004
    [162] Witkin A P. Scale-space filtering [C]. Proc Int Joint Conf. Artifical Intelligence, 1983, 2: 1019~1022
    [163] Freeman W T, Adelson E H. The design and use of steerable filters [J]. IEEE Patt Anal Machine Intell, 1991, 13(9): 891~906.
    [164] Deng G, Cahill L W. An adaptive gaussian filter for noise reduction and edge detection [C]. In: Proc IEEE, Nuclear Science Symposium and Medical Imaging Conference San Francisco: CA, 1993, 3: 1615~1619.
    [165] Geusebroek J M, Smeulders A W M, Weije J V D. Fast anisotropic gauss filtering [J]. IEEE Trans Image Processing, 2003, 12(8): 938~943.
    [166]王怀野,张科,李言俊.各向异性滤波在红外图像处理中的应用[J].红外与毫米波学报, 2005, 24(2): 109~113.
    [167]贾云德.机器视觉.北京:科学出版社, 2000.
    [168]王植,贺赛先.一种基于Canny理论的自适应边缘检测方法[J].中国图象图形学报,2004,9(8): 957~962.
    [169] Larkman A U, Jack J J. Synaptic plasticity: hippocampal LTP. Curr Opin Neurobial, 1995, 5(3): 324~334
    [170] Zucker R S. Calcium- and activity-dependent synaptic plasticity. Curr Opin Neurobiol, 1999, 9 (3): 305~313.
    [171] Zucker R S. Short-term synaptic plasticity. Ann Pev Neurosci, 1989, 12 (1): 13~31
    [172]李青宇,荣培晶,徐卫兵.条件刺激引起脊髓神经元外周感受野的变化.中国神经科学杂志,1999,15(4):316~319
    [173] Litbin A, Konrad J. Probabilistic Video Stabilization Using Kalman Filtering and Mosaicking.In Proceedings of IS&T/SPIE Symposiumon Electronic Imaging,Image and Video Communications ,2003,5022:663~674.
    [174] Yu Mei, Jiang Gang-yi, Yu Bo-kang. An integrative method for video based traffic parameter extraction in ITS. In Proceedings IEEE Asia Pacific Conference on Circuits and Systems,2000, 136~139.
    [175] Puentes J, Roux C, Garreau M et al. Dynamic feature extraction of coronary artery motion using DSA image sequence. IEEE Transaction on Medical Imaging,1998,17(6):857~871.
    [176] Du G.Y.,Huang T.S.,Song L.X, A novel fast motion estimation method based on particle swarm optimization. In: Proceedings of International Conference on Machine Learning and Cybernetics, 2005, 5038~5042.
    [177] Duanmu C J, Ahmad M.O. A continuous tracking algorithm for long-term memory motion estimation.In: Proceedings of IEEE International Symposium on Circuits and Systems, 2003, 356~359.
    [178] Sarma Monalisa, Samanta Debasis, Dhar Anindya Sundar. Motion estimation using multi-resolution based on Haar wavelet transformation. In: Proceedings of IEEE Region 10 Annual International Conference, 2004, 247~250.
    [179] Mietens Stephan, De With Peter H N, Hentschel Christian. Computational-complexity scalable motion estimation for mobile MPEG encoding. IEEE Trans on Consumer Electronics, 2004, 50(1):281~291.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700