用户名: 密码: 验证码:
含氮族元素嵌锂材料的合成与电化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨类碳材料因具有良好的可逆嵌脱锂性能而在目前的锂离子电池中得以广泛应用。然而该类材料的嵌脱锂容量较低(理论容量372mAh/g),难以满足高能量密度电池的要求,因此开发高性能的负极材料是当务之急。
     本论文采用高能球磨法(机械化学过程)制备了一系列锂金属氮化物和金属磷化物,并对其脱嵌锂特性等电化学性能进行了研究,同时对一些Ⅲ-Ⅴ族化合物半导体材料和硒化物半导体材料的脱嵌锂特性进行了初步探讨。
     研究发现氮气气氛有利于高能球磨法制备锂金属氮化物材料。在三元锂金属氮化物Li_(3-x)M_xN(M=Co,Cu,Ni)中以Li_(2.6)Co_(0.4)N有着最高的容量,前10次循环可逆脱嵌锂容量高达880mAh/g。用Cu、Fe部分取代Co的Li_(2.6)Co_(0.2)Cu_(0.2)N和Li_(2.6)Co(0.2)Fe_(0.2)N材料脱嵌锂容量有所降低,然而在循环性能方面有了较大的改善。而将Co完全取代的Li_(2.6)Ni_(0.2)CH_(0.2)N材料的电化学性能相对较差。此类氮化物材料首次脱锂时从晶态转变为无定形态,随后的嵌脱锂过程保持该无定形态。这种无定形态允许大量锂离子的脱嵌,但是在最初的几个循环会发生结构重排。材料的电化学活性与其本身的微结构(比如脱锂后的结构排序等)密切相关。
     CuP_2材料首次嵌锂过程对应于Cu的还原和Li_3P的产生,随后的脱锂过程呈现三步反应,对应于Li_2CuP等新相的形成。其脱嵌锂机理与CoP_3和MnP_4不同,其中Cu和P在氧化还原过程中都起着重要作用。而加入Li_3N为反应物制备的三元磷化物Li_(1.75)Cu_(1.25)P_2材料有效地消除了CuP_2材料的首次不可逆容量,首次脱嵌锂容量750mAh/g左右,充放电效率为100%,其脱嵌锂机理与CuP_2类似。
     GaAs、GaSb、InP和InAs的脱嵌锂特性比较相似,充放电过程可能对应于合金化与去合金化过程。而SnSe和PbSe的脱嵌锂恃性与各自的氧化物类似。
Graphite-based carbonaceous materials have been widely used as the anode material of commercial lithium-ion batteries for its excellent cycleability. With the growing demands of high-energy secondary batteries, the low capacity of graphite (theoretical capacity: 372 mAh/g) has been thought to be a limiting factor for the wide applications. Therefore, a great deal of effort has been put into research on high-performance anode materials for lithium ion batteries.
    In this study, two series of lithium metal nitrides and phosphides were synthesized by high-energy ballmilling technique (mechanochemical synthesis). Their electrochemical properties and reaction mechanisms with lithium were investigated. In addition, the charge and discharge characteristics of some semiconductor materials were also studied.
    The test results show that nitrogen atmosphere is favorable for the ball-milling synthesis of lithium metal nitrides. Of the many ternary lithium metal nitrides Li3-xMxN (M=Co, Cu, Ni), Li2.6Co0.4N shows the highest specific capacity which is about 880mAh/g in the first 10 cycles. Li2.6Co0.2Cu0.2N and Li2.6Coo.2Fe0.2N have a lower capacity but much better cycle life than Li2.6Co0.4N, in which part of Co is substituted by Cu or Fe. By contrast, Li2.6Ni0.2Cu0.2N presents worse electrochemical reversibility than Li2.6Co0.2Cu0.2N. The structure of all these nitrides changes from the crystalline to the amorphous phase in the first lithium extraction process. The amorphous state is maintained during subsequent cycles, which is the reason for the very large capacity. However, it undergoes the structure rearrangement in the initial cycles. The electrochemical reactivity of lithium metal nitrides is strongly influenced by the micro-structures (e.g. short-range ordering after the first lithium extraction).
    The first lithium insertion into the CuP2 phase leads to copper reduction and the
    
    
    
    formation of lithium phosphide . The subsequent lithium extraction presents three voltage plateaus related to the formation of new phases such as Li2CuP. It means that both copper and phosphorus face a change of the oxic ation state for the electrochemical insertion and extraction. Lithium copper phosphide exhibits a similar reaction process. It provides a reversible capacity of 750 mAh/g and faradic yield of 100% at the first cycle.
    The electrochemical characteristics of GaAs, GaSb, InP and InAs are greatly similar. The charge and discharge behavior probably corresponds to alloying and de-alloying process. The reaction mechanism of SnSe and PbSe with lithium is similar to that of the respective oxides.
引文
1 R. A. Marsh, S. Vukson. Li-ion batteries for aerospace applications. J. Power Sources, 2001 (97-98): 25-27.
    2 K. N. Han, H. M. Seo. Development of a plastic Li-ion battery cell for EV application. J. Power Sources, 2001 (101): 196-200.
    3 雷永泉,万群,石永康.新能源材料.第一版.天津:天津大学出版社,2000:32.
    4 C. G. Benjamin, D. R. Shackle, T. N. Andersen. A vanadium-based cathode for lithium-ion batteries. J. Electrochem. Soc. 2000 (147): 3575-3578.
    5 J. L. Wang, J. Yang, J. Y, Xie, et al. A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries. Advanced materials, 2002 (14): 963-965.
    6 S. F. Yang, R Y. Zavalij, M. S. Whittingham. Hydrothermal synthesis of lithium iron phosphate cathodes. Electrochem. Commun. 2001 (3): 505-508.
    7 J. H. Choy, D. H. Kim, C. W. Kwon, et al. Physical and electrochemical characterization of nanocrystalline LiMn_2O_4 prepared by a modified citrate route. J. Power Sources, 1999 (77): 1-11.
    8 C. Sigala, A. Verbaere, J. L. Mansot, et al. The Cr-substituted spinel Mn Oxides LiCr_yMn_(2-y)O_4(0≤y≤1): Analysis of the structure modifications induced by the electrochemical lithium deintercalation. J. Solid State Chem. 1997 (132): 372-381.
    9 H. Shi, J. Barker, M. Y. Saidi, et al. Structure and lithium intercalation properties of synthetic and natural graphite. J. Electrochem. Soc. 1996 (143): 3466-3472.
    10 K. Tatsumi, T. Akai, T. Imamura, et al. ~7Li-nuclear magnetic resonance observation of lithium intercalation into mesocarbon microbeads. J. Electrochem. Soc. 1996 (143): 1923-1930.
    11 R. Alcantara, F. J. Fernandez Madrigal, P. Lavela, et al. Characterisation of mesocarbon microbeads (MCMB) as active electrode material in lithium and sodium cells Carbon, 2000 (38): 1031-1041.
    12 Y. Ein-eli, V. R. Koch. Chemical oxidation: a route to enhanced capacity in Li-ion
    
    graphite anodes. J. Electrochem. Soc. 1997 (144): 2968-2973.
    13 M. C. Menchem. E. Peled, L. Burstein, et al. Characterization of modified NG7 graphite as an improved anode for lithium-ion batteries. J. Power Sources, 1997 (68): 277-282.
    14 R. Tossici, M. Berrettoni, M. Rosolen, et al. Electrochemistry of KC8 in lithium-containing electrolytes and its use in lithium-ion cells. J. Electrochem. Soc. 1997 (144): 186-191.
    15 J. R. Dahn, T. Zheng, Y. Liu, et al. Mechanisms for lithium insertion in carbonaceous materials. Science, 1995 (270): 590-595.
    16 K. Tatsumi, T. Kawamura, S. Higuchi, et al. Anode characteristics of non-graphitizable carbon fibers for rechargeable lithium-ion batteries. J Power Sources, 1997 (68): 263-266.
    17 Y. Liu, J. S. Xue, T. Zheng, J. R. Dahn. Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins. Carbon 1996 (34): 193-200.
    18 G. Che, B. B. Lakshmi, E. R. Fisher, C. R Martin. Carbon nanotubule membranes for electrochemical energy storage and production. Nature, 1998 (393): 346-349.
    19 K. Kanamura, S. Shiraishi, Z. Takehara. Electrochemical deposition of very smooth lithium using nonaqueous electrolytes containing HF. J. Electrochem. Soc. 1996 (143): 2187-2197.
    20 K. Kanamura, S. Shiraishi, Z. Takehara. Electrochemical deposition of lithium metal in nonaqueous electrolyte containing (C_2H_5)_4NF(HF)_4 additive. J. Fluorine Chemistry, 1998 (87): 235-243.
    21 T. Osaka, T. Momma, Y. Matsumoto, et al. Effect of carbon dioxide on lithium anode cycleability with substrates. J. Power Sources. 1997 (68): 497-500.
    22 D. Aurbach, Y. Gofer, M. B. Zion, et al. The behavior of lithium electrodes in propylene and ethylene carbonate: the major factors that influence Li cycling efficiency. J. Electroanal. Chem. 1992 (339): 451-471.
    23 Y. Matsuda. Behavior of lithium/electrolyte inte?face in organic solutions. J. Power Sources, 1993 (43): 1-7.
    24 Y. Matsuda, M. Ishikawa, S. Yoshitake, et al. Characterization of the lithium-organic
    
    electrolyte interface containing inorganic and organic additives by in situ techniques. J. Power Sources, 1995 (54): 301-305.
    25 M. Ishikawa, S. Machino, M. Morita. Electrochemical control of a Li metal anode interface: inprovement of Li cyclability by inorganic additives compatible with electrolytes. J. Electroanal. Chem. 1999 (473): 279-284.
    26 A. T. Ribes, P. Beaunier, P. Willmann, et al. Correlation between cycling efficiency and surface morphology of electrodeposited lithium. Effect of fluorinated surface active additives, 1996 (58): 189-195.
    27 F. Croce, B. Scrosati. Interracial phenomena in polymer-electrolyte cells: lithium passivation and cycleability. J. Power Sources, 1993 (43): 9-19.
    28 M. Mori, Y. Naruoka, K. Naoi, et al. Modification of the Lithium Metal Surface by Nonionic Polyether Surfactants: Quartz Crystal Microbalance Studies. J. Electrochem. Soc. 1998 (145): 2340-2347.
    29 Y. Matsuda, M. Sekiya. Effect of organic additives in electrolyte solutions on lithium electrode behavior. J. Power Sources, 1999 (81-82): 759-761.
    30 K. Saito, Y. Nemoto, S. Tobishima, et al. Improvement in lithium cycling efficiency by using additives in lithium metal. J. Power Sources, 1997 (68): 476-479.
    31 Y. Matsuda, T. Takemitsu, T. Tanigawa, et al. Effect of organic additives in electrolyte solutions on behavior of lithium metal anode. J. Power Sources, 2001 (97-98): 589-591.
    32 M. S. Foster, C. E. Crouthamel, S. E. Wood. J. Phys. Chem. 1966 (70): 3042.
    33 C. J. Wen, R. A. Huggins. Thermodynamic study of the lithium-tin system. J. Electrochem. Soc. 1981 (128): 1181-1187.
    34 W. J. Weydanz, M. Wohlfahrt-Mehrens, R. A. Huggins. A room temperature study of the binary lithium-silicon and the ternary lithium-chromium-silicon system for use in rechargeable lithium batteries. J. Power Sources, 1999 (81-82): 237-242.
    35 L. Y. Beaulieu, K. W. Eberman, R. L. Turner, et al. Colossal Reversible Volume Changes in Lithium Alloys. Electrochemical and Solid-State Letters, 2001 (4): A137-A140.
    36 J. Yang, M. Winter, J. O. Besenhard. Small particle size multiphase Li-alloy anodes
    
    for lithium-ion batteries. Solid state Ionics, 1996 (90): 281-287.
    37 J. Yang, Y. Takeda, N. Imanishi, et al. Ultrafine Sn and SnSb_(0.14) powders for lithium storage matrices in lithium-ion batteries. J. Electrochem. Soc. 1999 (146): 4009-4013.
    38 Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka. Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material. Science, 1997 (276): 1395-1397.
    39 I. A. Courtney, J. R. Dahn. Electrochemical and In Situ X-Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites. J. Electrochem. Soc. 1997 (144): 2045-2052.
    40 I. A. Courtney, J. R. Dahn. Key Factors Controlling the Reversibility of the Reaction of Lithium with SnO_2 and Sn_2BPO_6 Glass. J. Electrochem. Soc. 1997 (144): 2943-2948.
    41 I. A. Courtney, W. R. McKinnon, J. R. Dahn. On the Aggregation of Tin in SnO Composite Glasses Caused by the Reversible Reaction with Lithium. J. Electrochem. Soc. 1999 (146): 59-68.
    42 Y. W. Xiao, J. Y. Lee, A. S. Yu, et al. Electrochemical Performance of Amorphous and Crystalline Sn_2P_2O_7. J. Electrochem. Soc. 1999 (146): 3623-3629.
    43 M. L. Moubtassim, J. I. Corredor, J. M. Lloris, et al. Li-to-Network Interaction in Electrochemically Lithiated Tin Hydrogen Phosphate. J. Electrochem.l Soc. 2002 (149): A1030-A1036.
    44 F. J. Fern(?)ndez Madrigal, C. P. Vicente, J. D. Tirado. On the Structure and Electrochemical Reactions with Lithium of Tin (Ⅱ) Phosphate Chloride. J. Electrochem. Soc. 2000 (147): 1663-1667.
    45 M. Nagayama, T. Morita, H. Ikuta, et al. A new anode material SnSO_4 for lithium secondary battery. Solid State Ionics, 1998 (106): 33-38.
    46 A. M. Wilson, J. R. Dahn. Lithuim insertion in carbons containing nanodispersed silicon. J. Electrochem. Soc. 1995 (142): 326-332.
    47 M. Yoshio, H. Y. Wang, K. Fukuda, et al. Carbon-coated Si as a lithium-ion battery anode material. J. Electrochem. Soc. 2002 (149): A1598-A1603.
    
    
    48 W. B. Xing, A. M. Wilson, K. Eguchi, et al. Pyrolyzed polysiloxanes for use as anode materials in lithium-ion batteries. J. Electrochem. Soc. 1997 (144): 2410-2416.
    49 D. Larcher, C. Mudalige, A. E. George, et al. Si-containing disordered carbon prepared by pyrolysis of pitch/polysilane blends: effect of oxygen and sulfur. Solid State Ionics, 1999 (122): 71-83.
    50 C. S. Wang, G. T. Wu, X. B. Zbang, et al. Lithium insertion in carbon-silicon composite materials produced by mechanical milling. J. Electrochem. Soc. 1998 (145): 2751-2758.
    51 I. S. Kim, P. N. Kumta, G. E. Blomgren, et al. Si/TiN nanocomposites novel anode materials for lithium-ion batteries. Electrochemical Solid-State Letters. 2000 (3): 493-496.
    52 S. B. Ng, Jim Y. Lee, Z. L. Liu. Si-O network encapsulated graphite-silicon mixtures as negative electrodes for lithium-ion batteries. J. Power Sources, 2001 (94): 63-67.
    53 J. T. Vaughey, K. D. Kepler, R. Benedek, et al. NiAs-versus zinc-blende-type intermetallic insertion electrodes for lithium batteries: lithium extraction from Li_2CuSn. Electrochem. Commun. 1999 (1): 517-521.
    54 H. Kim, J. Choi, H. J. Sohn, et al. The Insertion Mechanism of Lithium into Mg_2Si Anode Material for Li-Ion Batteries. J. Electrochem. Soc. 1999 (146): 4401-4405.
    55 G. X. Wang, L. Sun, D. H. Bradhurst, et al. Innovative nanosize lithium storage alloys with silica as active center. J. Power Sources. 2000 (88): 278-281.
    56 R. Alcantara, F. J. F. Madrigal, P. Lavela, et al. Electrochemical reaction of lithium with the CoSb_3 skutterudite. J. Mater. Chem. 1999 (9): 2517-2521.
    57 F. J. F. Madrigal, P. Lavela, C. P. Vicente, et al. Electrochemical reactions of polycrystalline CrSb_2 in lithium batteries. J. Electroanal. Chem. 2001 (501): 205-209.
    58 J. T. Vaughey, C. S. Johnson, A. J. Kropf, et al. Structural and mechanistic features of intermetallic materials for lithium batteries. J. Power Sources. 2001 (97-98): 194-197.
    59 M. Winter, J. O. Besenhard. Electrochemical lithiation of tin and tin-based
    
    intermetallics and composites. Electrochim. Acta, 1999 (45): 31-50.
    60 M. Nishijima, N. Tadokoro, Y. Takeda, et al. Li deintercalation-intercalation reaction and structural change in lithium transition metal nitride, Li_7MnN_4. J. Electrochem. Soc. 1994, 141 (11): 2966-2971.
    61 S. Suzuki, T. Shodai. Electronic structure and electrochemical properties of electrode material Li_(7-x)MnN_4. Solid State Ionics. 1999 (116): 1-9.
    62 M. Nishijima, Y. Takeda, N. Imanishi, et al. Li de ntercalation and structural change in the lithium transition metal nitride Li_3FeN_2. J. Solid State Chem. 1994 (113): 205-210.
    63 M. Nishijima, T. Kagohashi, M. Imanishi, et al. Synthesis and electrochemical studies of a new anode material, Li_(3-x)Co_xN. Solid State Ionics, 1996 (83): 107-111.
    64 D. H. Gregory, P. M. O'Meara, A. G. Gordon, et al. Layered ternary transition metal nitrides; synthesis, structure and physical properties. J. Alloys and Compounds, 2001 (237-244): 317-318.
    65 T. Shodai, S. Okada, S. Tobishima, et al. Study of Li_(3-x)M_xN (M: Co, Ni or Cu) system for use as anode material in lithium rechargeable cells. Solid State Ionics, 1996 (86-88): 785-789.
    66 M. Nishijima, T. Kagohashi, Y. Takeda, et al. Electrochemical studies of a new anode material, Li_(3-x)M_xN (M: Co, Ni, Cu) J. Power Sources, 1997 (68): 510-514.
    67 T. Shodai, S. Okada, S. Tobishima, et al. Anode performance of a new layered nitride Li_(3-x)Co_xN (x=0.2-0.6). J. Power Sources, 1997 (68): 515-518.
    68 Y. Takeda, M. Nishijima, M. Yamahata, et al. Lithium secondary batteries using a lithium cobalt nitride, Li_(2.6)Co_(0.4)N, as the anode. Solid State Ionics, 2000 (130): 61-69.
    69 T. Shodai, y. Sakurai, T. Suzuki. Reaction mechanisms of Li_(2.6)Co_(0.4)N anode material. Solid State Ionics, 1999 (122): 85-93.
    70 S. Suzuki, T. Shodai, J. Yamaki. Electron energy loss spectroscopy of Li_(2.6-x)Co_(0.4)N (x=0.0 and 1.6) J. Phys. Chem. Solids, 1998 59 (3): 331-336.
    71 T. Y. Kim, M. G. Kim, J. M. Lee, et al. Local structural variations of Li_(2.6)Co_(0.4)N during the first charge and discharge. Electrochemical and Solid-State Letters, 2002,
    
    5 (5): A103-A106.
    72 J. Yang, Y. Takeda, N. Imanishi, et al. Morphology modification and irreversibility compensation for SnO anodes. J. Power Sources, 2001 (97-98): 216-218.
    73 J. Yang, Y. Takeda, N. Imanishi, et al. Novel composite anodes based on nano-oxides and Li_(2.6)Co_(0.4)N for lithium ion batteries. Electrochimica Acta, 2001 (46): 2659-2664.
    74 J. Yang, Y. Takeda, N. Imanishi, et al. Tin-containing anode materials in combination with Li_(2.6)Co_(0.4)N for irreversibility compensation. J. Electrochem. Soc. 2000, 147 (5): 1671-1676.
    75 J. Yang, Y. Takeda, Q. Li, et al. Solid polymer electrolyte cells using SnSb/Li_(2.6)Co_(0.4)N composite anodes. J. Power Sources, 2001 (97-98): 779-781.
    76 Y. Takeda, J. Yang, N. Imanishi. Advanced composite anodes containing lithium cobalt nitride for secondary lithium battery. Solid State Ionics, 2002 (152-153): 35-41.
    77 Y. Takeda, J. Yang. New composite anode systems combined with Li_(2.6)Co_(0.4)N. J. Power Sources, 2001 (97-98): 224-246.
    78 J. L. C. Rowsell, V. Pralong, L. F. Nazar. Layered lithium iron nitride: a promising anode material for Li-ion batteries. J. Am. Chem. Soc. 2001 (123): 8598-8599.
    79 D. C. S. Souza, V. Pralong, A. J. Jacobson, et al. A reversible solid-state crystalline transformation in a metal phosphide induced by redox chemistry. Science 2002, 296 (14): 2012-2015.
    80 V. Pralong, D. C. S. Souza, K. T. Leung, et al. Reversible lithium uptake by CoP_3 at low potential: role of the anion. Electrochem. Commun. 2002 (4): 516-520.
    81 R. Alcantara, J. L. Tirado, J. C. Jumas, et al. Electrochemical reaction of lithium with CoP_3. J. Power Sources. 2002 (109): 308-312.
    82 D. C. S. Souza, V. Pralong, G. Ouvrard et al. Transition metal phophides as anod materials for Li-ion batteries, 11th international meeting on lithium batteries Monterey, California, 23-28 June 2002, Abstract 60.
    83 L. Monconduit, F. Gillot, M. L. Doublet, et al. The Li_xM'P_4 (M'=Ti, Mn) Phosphides: New negative electrode materials for Li-ion rechargeable batteries. 11th
    
    international meeting on lithium batteries. Monte?ey, California, 23-28 June 2002, Abstract 61.
    84 Van de Krol, A. Goossens, E, A. Meulenkamp. In Situ X-Ray Diffraction of Lithium Intercalation in Nanostructured and Thin Film Anatase TiO_2. J. Electrochem. Soc. 1999 (146): 3150-3154.
    85 L. Kavana, M. Gratzel. Facile Synthesis of Nanocrystalline Li_4Ti"_5O_(12) (Spinel) Exhibiting Fast Li Insertion. Electrochem. Solid-State Letters, 2002 (5): A39-A42.
    86 P. Poizot, S. Laruelle, S. Grugeon, et al. Nanc-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 2000 (407): 496-499.
    87 R. Alc(?)ntara, M. Jaraba, P. Lavela, et al. New Ni_xMg_(6-x)MnO_8 Mixed Oxides as Active Materials for the Negative Electrode of Lithium-Ion Cells. J. Solid State Chem. 2002 (166): 330-335.
    88 R. Alc(?)ntara, M. Jaraba, P. Lavela, et al. Changes in oxidation state and magnetic order of iron atoms during the electrochemical reaction of lithium with NiFe_2O_4. Electrochem. Commun. 2003 (5): 16-21.
    89 R. Alc(?)ntara, M. Jaraba, P. Lavela, et al. NiCo_2O_4 Spinel: First Report on a Transition Metal Oxide for the Negative Electroce of Sodium-Ion Batteries. Chem. Mater. 2002 (14): 2847-2848.
    90 Sung-Soo Kim, H. Ikuta, M. Wakihara. Synthesis and characterization of MnV_2O_6 as a high capacity anode material for a lithium secondary battery. Solid State Ionics, 2001 (139): 57-65.
    91 Sung-Soo Kim, S. Ogura, H. Ikuta, et al. Reaction mechanisms of MnMoO_4 for high capacity anode material of Li secondary battery. Solid State Ionics, 2002 (146): 249-256.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700