用户名: 密码: 验证码:
纳米多孔金属薄膜的制备与电催化性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,纳米多孔金属因为其独特的结构、性能成为了纳米材料家族中的重要一员,并在电子、光学、催化工业中得到了广泛的应用。进一步优化、发展这类材料的制备方法,研究它们的结构、性能,拓展它们的应用对纳米材料科学及工业应用都具有重要意义。由于工业界对新型能源材料,如高效率的燃料电池催化剂的迫切需求,本论文致力于制备超低金属载量的纳米多孔Au、Pt/Au、Pd/Au薄膜,并研究它们的结构与电催化性能,探索它们在电化学传感及燃料电池等领域的应用前景。主要结果如下:
     1.以Au/Ag合金薄膜为前躯体,通过在浓硝酸中腐蚀溶解掉Ag,成功制备了纳米多孔Au (NP-Au)薄膜。制备的NP-Au薄膜的厚度约为100 nm,其金属载量约为0.1mg/cm2。以NP-Au为基底,制备了纳米多孔的Pt/Au (NP-Pt/Au)薄膜,我们采用化学镀和欠电位沉积加置换的方法分别在NP-Au表面均匀地修饰上Pt原子层,通过控制反应条件,其厚度可以从次原子层到数个原子层内得到精确调控。成分分析表明该薄膜的Pt载量从1到25μg/cm2间得到精确调控。运用扫描电子显微镜(SEM)和高分辨透射电子显微镜(HR-TEM)研究了NP-Au和NP-Pt/Au薄膜的结构,发现它们具有三维双连续的海绵状结构,使大量活性原子暴露在表面。研究了不同化学环境下Pt在NP-Au表面的生长过程,HR-TEM、电化学的结果表明Pt在NP-Au表面以岛状的方式生长。利用循环伏安法(CV)研究了这些纳米多孔金属薄膜的基本电化学行为,并探索了NP-Au对NO2-氧化的电催化性能,发现其对该反应具有高灵敏的响应。计时电流的研究表明NO2-在NP-Au电极上从1μM到1mM都具有良好的线性关系,表明NP-Au薄膜可能在电化学传感方面得到应用。
     2.系统研究了NP-Pt/Au薄膜对甲醇、甲酸的电氧化,氧还原等重要电化学反应的催化性能,并以该薄膜为催化剂进行了质子交换膜燃料电池测试。以NP-Pt/Au薄膜为阳极催化剂,利用CV等方法评估了不同Pt载量的NP-Pt/Au薄膜的电催化活性,发现高Pt载量的NP-Pt/Au薄膜的催化特性与商业Pt/C相似,但具有更高的本征活性,低Pt载量的NP-Pt/Au薄膜则表现出比Pt/C更高的质量比催化活性。利用SEM、HR-TEM、X射线光电子能谱(XPS)、电化学CO扫除等表面科学手段研究了该薄膜的表面结构、性能,分析了其高催化活性的起因。将该薄膜作为阳极催化剂,进行了H2/空气,直接甲醇、甲酸燃料电池测试,探索了其理想的工作条件参数,探讨了其工业应用的可能。
     3.探索了NP-Pt/Au薄膜的结构稳定性,尤其是其在低温加热时的结构、性能的演化。将具有不同Pt载量的NP-Pt/Au薄膜在100到400℃之间加热不同时间,并利用SEM、HR-TEM、XPS和电化学技术研究了其结构的演化及表面原子的化学状态,探讨了温度等因素对其结构的影响。结果表明NP-Pt/Au薄膜在300℃仍能保持其原有的纳米多孔结构,但其表面的Pt纳米粒子与Au衬底之间发生了相互扩散并形成了表面合金薄层,使得其表面原子的排列和化学状态发生了明显的改变。讨论了结构演化对其催化性能的影响,电化学测试显示发生表面Pt原子重排的NP-Pt/Au薄膜对甲酸电氧化具有更高的催化活性。
     4.制备了纳米多孔Pd/Au (NP-Pd/Au)薄膜。通过发展、优化NP-Pt/Au的制备工艺,成功在将Pd沉积到NP-Au表面。XPS结果显示其表面Pd为金属态,HR-TEM研究表明Pd原子层在NP-Au表面为层状模式的外延生长,从而形成了连续核壳结构的NP-Pd/Au薄膜。探索了该薄膜的基本电化学性质及在酸性介质中对甲酸的电催化性能,CV测试结果表明NP-Pd/Au薄膜的电催化活性比商业Pd/C催化剂的电催化活性提高了两倍多。并以该薄膜为阳极催化剂进行了直接甲酸燃料电池测试。
Nanoporous metal is one of the most important nanomaterials and widely used in electronics, optic, catalysis, due to its unique structure and property. Exploiting new method to fabricate it, further studying its structure, and exploring its applications are of special significance for nanomaterial science and modern industry. On the other hand, the novel material for energy conversion, such as effective fuel cell catalysts, recently is highly desirable for industry. Here we focus on fabricating nanoporous Au, Pt/Au, Pd/Au membranes with ultra-low metal loading. We also investigated their structure and electrocatalytic activity and explored their applications for the electrochemical detection and fuel cells. The results are as follows:
     1. Nanoporous Au (NP-Au) membrane was made by dealloying Au/Ag alloy in concentrated HNO3. Upon silver dissolution, gold atoms left behind will self-organize into an interconnected network of pores and ligaments. The as-prepared (NP-Au) membrane is about 100 nm in thickness, with a metal loading about 0.1 mg/cm2. On the basis of the NP-Au, we prepared nanoporous Pt/Au (NP-Pt/Au) membrane by plating an atomically thin layer of Pt over NP-Au substrate. Two routes were developed to fabricate NP-Pt/Au membrane, i.e. interface electroless plating technique and electrochemical under potential deposition combining redox replacement method. By controlling the reaction process, the deposited Pt overlayers can be tuned from sub-monolayer to several monolayers. Composition analysis suggests the Pt loadings in NP-Pt/Au membrane are in the range of 1 to 25μg/cm2. The structure of NP-Au and NP-Pt/Au membranes were studied via scanning electron microscope (SEM) and high-resolution transmission electron microscope (HR-TEM), which exhibits a three-dimensional continuous porous structure, exposing a large number of active Pt atoms on the surface. The HR-TEM and electrochemical study suggest that Pt overlayers epitaxially grow on NP-Au surfaces, adopting an islanding growth mode. Cyclic voltammetry (CV) was also performed to study their electrochemical behaviors in acidic medium. As an electrode material, the electrocatalytic activity of NP-Au towards NO2- oxidation was evaluated. NP-Au exhibits sensitive responses to this reaction. Amperometric study showed a linear relationship for NO2- determination in a concentration range from 1 uM to 1 mM. These results suggest that NP-Au has potential applications in electrochemical sensor.
     2. We systematically studied the electrocatalytic activity of NP-Pt/Au membrane towards a series of important fuel cell reactions, including methanol, formic acid oxidation and oxygen reduction. CV was earried out to evaluate the activity of a series of NP-Pt/Au membranes with the various Pt loadings. While the heavily plated samples (high Pt loadings) were found to display an similar electrocatalysis behavior and better activity with that of commercial Pt/C electrocatalyst, the slightly plated samples (low Pt loadings) display an enhanced mass-normalized activity towards these reactions. To reveal the origin of the observed activities, SEM, HR-TEM, X-ray photoelectron spectroscopy (XPS), and electrochemical CO stripping were combined to characterize the surface structure and property of NP-Pt/Au membrane. Using the NP-Pt/Au membrane as an anodic catalyst, we also performed the H2/air, direct methanol, formic acid fuel cells test and optimized the work parameter.
     3. We studied the stability and structure evolution of NP-Pt/Au membrane during thermal annealing at relatively low temperatures. A series of NP-Pt/Au samples with various Pt loadings were annealed in an electronic oven under various temperatures ranging from 100 to 400℃. The annealing time, according to the experimental requirement, varies from 2 to 48 h. SEM, HR-TEM, XPS, and electrochemical techniques were combined to characterize the surface structures and chemical state of the annealed NP-Pt/Au membranes. The results suggest that the NP-Pt/Au membranes preserve initial nanoporous structure at the temperature as high as 300℃. But the surface Pt nanoislands smoothed out and alloyed with the Au substrate to form a thin alloy layer coating on NP-Au, resulting in obvious change of surface atom arrangement. The effect from this change on the electrocatalytic property was evaluated. The rearrangement Pt atoms were found to show an enhanced activity for formic acid oxidation.
     4. By developing the fabrication method, we succeed depositing Pd on NP-Au surface to form nanoporous Pd/Au (NP-Pd/Au) membrane. XPS study suggests that the surface Pd atoms are metallic and HR-TEM observation demonstrates the Pd layer epitaxially deposits on NP-Au surfaces with a layer growth mode. The electrochemical behavior and the electrocatalytic property of the as prepared NP-Pd/Au membrane were characterized, which exhibits a more than two times activity towards formic acid oxidation in acidic medium than that of commercial Pd/C catalyst. Further test was performed on direct formic acid fuel cell using NP-Pd/Au membrane as anodic catalyst.
引文
[1]蒂吉斯切H.P.,克雷兹特B.多孔泡沫金属.北京:化学工业出版社,2005.
    [2]徐彩霞.纳米多孔金属材料的设计、制备与催化.(博士论文)山东大学,2009.
    [3]Erri, P.; Nader, J.; Varma, A. Controlling Combustion Wave Propagation for Transition Metal/Alloy/Cermet Foam Synthesis. Adv. Mater.2008,20, 1243-1245.
    [4]Erlebacher, J.; Aziz, M. J.; Karama, A.; Dimitrov, N.; Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 2001,410,450-453.
    [5]Chang, J. K.; Hsu, S. H.; Sun, I. W.; Tsai, W. T. Formation of Nanoporous Nickel by Selective Anodic Etching of the Nobler Copper Component from Electrodeposited Nickel-Copper Alloys. J. Phys. Chem. C2008,112,1371-1376.
    [6]Sun, L.; Chien, C. L.; Searson, P. C. Fabrication of Nanoporous Nickel by Electrochemical Dealloying. Chem. Mater.2004,16,3125-3129.
    [7]Smith, A. J.; Tran, T.; Wainwright, M.S. Kinetics and mechanism of the formation of doped skeletal copper catalysts:the effect of zincate compared to undoped and chromate-doped systems. J. Appl. Electrochem.2000,30,1103-1108.
    [8]Hayes, J. R.; Hodge, A. M.; Biener J.; Hamza, A. V.; Sieradzki, K. Monolithic nanoporous copper by dealloying Mn-Cu. J. Mater. Res.2006,21,2611-2616.
    [9]Chen, L. Y.; Yu, J. S.; Fujita, T.; Chen, M. W. Nanoporous Copper with Tunable Nanoporosity for SERS Applications. Adv. Funct. Mater.2009,19,1221-1226.
    [10]Zok, F. W.; Waltner, S. A.; Wei, Z.; Rathbun, H. J.; McMeeking, R.M.; Evans, A.G. A protocol for characterizing the structural performance of metallic sandwich panels:application to pyramidal truss cores. Int. J. Solids Structures 2004,41,6249-6271.
    [11]Ding, Y.; Erlebacher, J. Nanoporous Metals with Controlled Multimodal Pore Size Distribution. J. Am. Chem. Soc.2003,125,7772-7773.
    [12]Ding, Y.; Kim, Y. J.; Erlebacher, J. Nanoporous Gold Leaf:Ancient Technology/ Advanced Material. Adv. Mater.2004,16,1897-1900.
    [13]周辉,金兰,徐伟.一种制备纳米多孔金膜的方法.复旦学报(自然科学版)2006,45,362-366.
    [14]Deng, Y.; Huang. W.; Chen, X.; Li Z. Facile fabrication of nanoporous gold film electrodes. Electroche. Commun.2008,10,810-813.
    [15]Jia, F.; Yu, C.; Ai, Z.; Zhang, L. Fabrication of nanoporous gold film electrodes with ultrahigh surface area and electrochemical activity. Chem. Mater.2007,19, 3648-3653.
    [16]谭秀兰,唐永建,刘颖,罗江山,李恺,刘晓波.去合金化制备纳米多孔金属材料的研究进展.材料导报:综述篇2009,23,68-76.
    [17]Hakamada, M.; Mabuchi, M. Fabrication of nanoporous palladium by dealloying and its thermal coarsening. J. Alloys Comp.2009,479,326-329.
    [18]Yu, J.; Ding, Y.; Xu, C.; Inoue, A.; Sakurai, T.; Chen, M. Nanoporous Metals by Dealloying Multicomponent Metallic Glasses. Chem. Mater.2008,20, 4548-4550.
    [19]Antoniou, A.; Bhattacharrya, D.; Baldwin, K.; Goodwin, P.; Nastasi, M.; Picraux, S. T.; Misra A. Controlled nanoporous Pt morphologies by varying deposition parameters. Appl. Phys. Lett,2009,95,073116.
    [20]Huang, J. F.; Sun, I. W. Formation of Nanoporous Platinum by Selective Anodic Dissolution of PtZn Surface Alloy in a Lewis Acidic Zinc Chloride-1-Ethyl-3-methylimidazolium Chloride Ionic Liquid. Chem. Mater. 2004,16,1829-1831.
    [21]Pugh, D. V.; Dursun, A.; Corcoran, S.G.Formation of nanoporous platinum by selective dissolution of Cu from Cu0.75Pt0.25.J. Mater. Res.2003,18,216-221.
    [22]Jin, H. J.; Kramer, D.; Ivanisenko, Y.; Weissmuller, J. Macroscopically StrongNanoporous Pt Prepared by Dealloying. Adv. Eng. Mater.2007,9, 849-854.
    [23]Dou, R.; Xu B.; Derby B. High-strength nanoporous silver produced by inkjet printing. Scripta Mater.2010,63,308-311.
    [24]Jia, F.; Yu, C.; Deng, K.; Zhang, L. Nanoporous Metal (Cu, Ag, Au) Films with High Surface Area:General Fabrication and Preliminary Electrochemical Performance. J. Phys. Chem. C 2007,111,8424-8431.
    [25]Zhang, Z.; Wang, Y.; Qi, Z. Zhang, W.; Qin, J.; Frenzel, J. Generalized Fabrication of Nanoporous Metals (Au, Pd, Pt, Ag, and Cu) through Chemical Dealloying. J. Phys. Chem. C 2009,113, 12629-12636.
    [26]Bartlett, P. N.; Birkin P. R.; Ghanem, M. A. Electrochemical deposition of macroporous platinum, palladium and cobalt films using polystyrene latex sphere templates. Chem. Commun. 2000, 1671-1672.
    [27]Barlett, P. N.; Baumberg, J. J.; Birkin, P. R.; Ghanem, M. A.; Netti, M. C. Highly ordered macroporous gold and platinum films formed by electrochemical deposition through templates assembled from submicron diameter monodisperse polystyrene spheres. Chem. Mater. 2002, 14, 2199-2208.
    [28]Fujita, T.; Qian, L. H.; Inoke, K.; Erlebacher, J. Chen, M. W. Three-dimensional morphology of nanoporous gold. Appl. Phys. Lett. 2008, 92, 251902.
    [29]Petegem, S. V; Brandstetter, S.; Maass, R.; Hodge, A. M; El-Dasher, B. S.; Biener, J.; Schmitt, B.; Borca, C; Swygenhoven, H. V. On the Micro structure of Nanoporous Gold: An X-ray Diffraction Study. Nano Lett. 2009, 9, 1158-1163.
    [30]Qiu, H.; Xu, C; Huang, X.; Ding, Y.; Qu, Y; Gao, P. Adsorption of Laccase on the Surface of Nanoporous Gold and the Direct Electron Transfer between Them. J. Phys. Chem. C 2008, 112, 14781-14785.
    [31]Yu, F.; Ahl, S.; Caminade, A.M.; Majoral, J. P.; Knoll, W.; Erlebacher, J. Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes. Anal. Chem. 2006, 78, 7346-7350.
    [32]Maaroof, A. I.; Gentle, A.; Smith, G. B.; Cortie, M. B. Bulk and surface plasmons in highly nanoporous gold films. J. Phys. D: Appl. Phys. 2007, 40, 5675-5682.
    [33]Dixon, M. C; Daniel, T. A.; Hieda, M.; Smilgies, D. M.; Chan, M. H. W.; Allara, D. L. Preparation, Structure, and Optical Properties of Nanoporous Gold Thin Films. Langmuir 2007, 23, 2414-2422.
    [34]Schofield, E. J.; Ingham. B.; Turnbull, A.; Toney, M. R; Ryana, M. P. Strain development in nanoporous metallic foils formed by dealloying. Appl. Phys. Lett. 2008,92,043118.
    [35]Hodge, A. M.; Hayes, J. R.; Caro, J. A.; Biener, J.; Hamza, A. V. Characterization andMechanical Behavior of Nanoporous Gold. Adv. Eng. Mater. 2006, 8, 853-857.
    [36]Zeis, R., Lei, T., Sieradzki, K., Snyder, J., Erlebacher, J., Catalytic reduction of oxygen and hydrogen peroxide by nanoporous gold. J. Catal.2008,253, 132-138.
    [37]Zhang, J.; Huang, M.; Ma, Houyi.; Tian, F.; Pan, W.; Chen, S. High catalytic activity of nanostructured Pd thin films electrochemically deposited on polycrystalline Pt and Au substrates towards electro-oxidation of methanol. Electrochem. Commun.2007,9,1298-1304.
    [38]Sealy, C. Nanoporous Au shows promise as'green" catalyst. Nano Today 2010,5, 82-82.
    [39]Zielasek, V.; Jiirgens, B.; Schulz, C.; Biener, J.; Biener, M. M.; Hamza, A. V.; %1/XPHU 0* ROG & (?) 1 (?) RDP V Angew. Chem. Int. Edit. 2006,45,8241-8244.
    [40]Xu, C. X.; Su, J. X.; Xu, X. H.; Liu, P. P.; Zhao, H. J.; Tian, F.; Ding, Y. Low temperature CO oxidation over unsupported nanoporous gold. J. Am. Chem. Soc. 2007,129,42-43.
    [41]Xu, C. X.; Xu, X. H.; Su, J. X.; Ding, Y. Research on unsupported nanoporous gold catalyst for CO oxidation, J. Catal.2007,252,243.
    [42]Wittstock, A.; Zielasek, V.; Biener, J.; Friend, C. M.; %1 XP HU M. Nanoporous Gold Catalysts for Selective Gas-Phase Oxidative Coupling of Methanol at Low Temperature. Science 2010,327,319-322.
    [43]Zhang, J.; Liu, P.; Ma, H.; Ding, Y. Nano structured Porous Gold for Methanol Electro-Oxidation. J. Phys. Chem. C 2007,111,10382-10388.
    [44]Yu, C.; Jia, F.; Ai, Z.; Zhang, L. Direct Oxidation of Methanol on Self-Supported Nanoporous Gold Film Electrodes with High Catalytic Activity and Stability. Chem. Mater.2007,19,6065-6067.
    [45]Lang, X. Y.; Guan, P. F.; Zhang, L.; Fujita, T.; Chen, M. W. Characteristic Length and Temperature Dependence of Surface Enhanced Raman Scattering of Nanoporous Gold. J. Phys. Chem. C2009,113,10956-10961.
    [46]Lang, X. Y.; Guan, P. F.; Zhang, L.; Fujita, T.; Chen, M. W. Size dependence of molecular fluorescence enhancement of nanoporous gold. Appl. Phys. Lett.2010, 95,073701.
    [47]Snyder, J.; Asanithi, P.; Dalton, A. B.; Erlebacher, J. Stabilized Nanoporous Metals by Dealloying Ternary Alloy Precursors. Adv. Mater.2008,20, 4883-4886.
    [48]Jin, H. J.; Wang, X. L.; Parida, S.; Wang, K.; Masahiro Seo, M.; Weissmuller, J. Nanoporous Au-Pt Alloys As Large Strain Electrochemical Actuators. Nano Lett. 2010,10,187-194.
    [49]Xu, C.; Wang, R.; Chen, M.; Zhang, Y.; Ding, Y. Dealloying to nanoporous Au/Pt alloys and their structure sensitive electrocatalytic properties. Phys. Chem. Chem. Phys.2010,12,239-246.
    [50]Yi, Q.; Huang, W.; Liu, X.; Xu, G.; Zhou, Z.; Chen, A. Electroactivity of titanium-supported nanoporous Pd-Pt catalysts towards formic acid oxidation. J. Electroanal. Chem.2008,619-620,197-205.
    [51]Yi, Q.; Chen, A.; Huang, W.; Zhang, J.; Liu, X.; Xu, G.; Zhou, Z. Titanium-supported nanoporous bimetallic Pt-Ir electrocatalysts for formic acid oxidation. Electrochem. Commun.2007,9,1513-1518.
    [52]Chen, S.; Adams, B. D.; Chen, A. Synthesis and electrochemical study of nanoporous Pd-Ag alloys for hydrogen sorption. Electrochim. Acta 2010,56, 61-67.
    [53]Koczkur, K.; Yi, Q.; Chen, A. Nanoporous Pt-Ru Networks and Their Electrocatalytical Proper. Adv. Mater.2007,19,2648-2652.
    [54]Wang, J.; Dan F. Thomas, D. F.; Chen, A. Nonenzymatic Electrochemical Glucose Sensor Based on Nanoporous PtPb Networks. Anal. Chem.2008,80, 997-1004.
    [55]Xu, C.; Wang, L.; Wang, R.; Wang, K.; Zhang, Y.; Tian, F.; Ding, Y. Nanotubular Mesoporous Bimetallic Nanostructures with Enhanced Electrocatalytic Performance. Adv. Mater.2009,21,2165-2169.
    [56]Chen, L. Y.; T. Fujita, T.; Ding, Y.; M. W. Chen, M. W. A Three-Dimensional Gold-Decorated Nanoporous Copper Core-Shell Composite for Electrocatalysis and Nonenzymatic Biosensing. Adv. Funct. Mater.2010,20,2279-2285.
    [57]Lang, X. Y.; Guo, H.; Chen, L. Y.; Kudo, A.; Yu, J. S.; Zhang, W.; Inoue, A.; Chen, M. W. Novel Nanoporous Au-Pd Alloy with High Catalytic Activity and Excellent Electrochemical Stability. J. Phys. Chem. C 2010,114,2600-2603.
    [58]Gu, X.; Xu, L.; Tian, F.; Ding, Y. Au-Ag Alloy Nanoporous Nanotubes. Nano Res. 2009,2,386-393.
    [59]Qian, L. H.; Ding, Y.; Fujita, T.; Chen, M. W. Synthesis and Optical Properties of Three-Dimensional Porous Core-Shell Nano architectures. Langmuir,2008,24, 4426-4429.
    [60]Liu, L.; Pippel, E.; Scholz, R.; Gosele, U. Nanoporous Pt-Co Alloy Nanowires: Fabrication, Characterization, and Electrocatalytic Properties. Nano Lett.2009,9, 4352-358.
    [61]詹姆斯·拉米尼,安德鲁·迪克斯.燃料电池系统-原理·设计·应用.北京:科学出版社,2005.
    [62]Santos, E.; Schmickler, W. Electrocatalysis of Hydrogen Oxidation-Theoretical Foundations. Angew. Chem. Int. Ed.2007,46,8262-8265.
    [63]Gasteiger, H. A.; Markovic, N. M.; Ross, Jr. P. N. H2 and CO Electrooxidation on Well-Characterized Pt, Ru, and Pt-Ru.1. Rotating Disk Electrode Studies of the Pure Gases Including Temperature Effects. J. Phys. Chem.1995,99,8290-8301.
    [64]Gasteiger, H. A.; Markovic, N. M.; Ross, Jr. P. N. H2 and CO Electrooxidation on Well-Characterized Pt, Ru, and Pt-Ru.2. Rotating Disk Electrode Studies of CO/H2 Mixtures at 62℃. J. Phys. Chem.1995,99,16757-16767.
    [65]Innocente, A.F.; Angelo, A.C.D. Electrocatalysis of oxidation of hydrogen on platinum ordered intermetallic phases:Kinetic and mechanistic studies. J. Power Sources 2006,162,151-159.
    [66]Markovic, N. M.; Grgur, B. N.; Ross, P. N. Temperature-Dependent Hydrogen Electrochemistry on Platinum Low-Index Single-Crystal Surfaces in Acid Solutions. J. Phys. Chem. B 1997,101,5405-5413.
    [67]Sun, Y.; Lu, J.; Zhuang. L. Rational determination of exchange current density for hydrogen electrode reactions at carbon-supported Pt catalysts. Electrochim. Acta 2010,55,844-850.
    [68]Lee, S. J.; Mukerjee, S.; Ticianelli, E. A.; McBreen, J. Electrocatalysis of CO tolerance in hydrogen oxidation reaction in PEM fuel cells. Electrochim. Acta 1999,44,3283-3293.
    [69]Uchida, H.; Izumi, K.; Watanabe, M. Temperature Dependence of CO-Tolerant Hydrogen Oxidation Reaction Activity at Pt, Pt-Co, and Pt-Ru Electrodes. J. Phys. Chem.B 2006,110,21924-21930.
    [70]Xu, Y. H.; Chen, C. P.; Geng, W. X.; Wang, Q. D. The hydrogen storage properties of Ti-Mn-based C14 Laves phase intermetallics as hydrogen resource for PEMFC. Inter. J. Hydrogen Energy 2001,26,593-596.
    [71]Batista, E. A.; Malpass, G. R. P.; Motheo, A. J.; Iwasita, T. New insight into the pathways of methanol oxidation. Electrochem. Commun.2003,5(10),843-846.
    [72]Cao, D.; Lu, G. Q.; Wieckowski, A.; Wasileski, S. A.; Neurock, M. Mechanisms of methanol decomposition on platinum:A combined experimental and ab initio approach. J. Phys. Chem. B 2005,109(23),11622-11633.
    [73]Neurock, M.; Janikb, M.; Wieckowski, A. A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt. Faraday Discuss.2008,140,363-378.
    [74]. Steigerwalt, E. S.; Deluga, G.A.; Lukehart, C. M. Pt-Ru/Carbon Fiber Nanocomposites:Synthesis, Characterization, and Performance as Anode Catalysts of Direct Methanol Fuel Cells. A Search for Exceptional Performance. J. Phys. Chem. B 2002,106,760-766.
    [75]Sau, T. K.; Lopez, M.; Goia, D. V. Method for Preparing Carbon Supported Pt-Ru Nanoparticles with Controlled Internal Structure. Chem. Mater.2009,21, 3649-3654.
    [76]Rice, C.; Ha, S.; Masel, R. I.; Waszczuk, P.; Wieckowski, A.; Barnard, T. Direct formic acid fuel cells. J. Power Sources 2002, 111,83-89.
    [77]Capon, A.; Parsons, R. The oxidation of formic acid at noble metal electrodes Part III:Intermediates and mechanism on platinum electrodes. J. Electrochem. Soc.1973,45,205-231.
    [78]Wieckowski, A.; Sobkowski, J. Comparative study of adsorption and oxidation of formic acid and methanol on platinized electrodes in acidic solution. J. Electrochem. Soc.1975,63,365-377.
    [79]Markovic, N. M.; Gasteiger, H. A.; Grgur, B. N.; Ross, P. N. Oxygen reduction reaction on Pt(111):effects of bromide. J. Electroanal. Chem.1999,467, 157-163.
    [80]Stamenkovic, V.; Schmidt, T. J.; Ross, P. N.; Markovic, N. M. Surface segregation effects in electrocatalysis:kinetics of oxygen reduction reaction on polycrystalline Pt3Ni alloy surfaces. J. Electroanal. Chem.2003,554-555, 191-199.
    [81]张云河.质子交换膜燃料电池阴极催化剂及电极过程动力学研究.(博士论文)中南大学,2004.
    [82]Wang, J. X.; Markovic, N. M.; Adzic, R. R. Kinetic Analysis of Oxygen Reduction on Pt (111) in Acid Solutions:Intrinsic Kinetic Parameters and Anion Adsorption Effects. J. Phys. Chem. B 2004,108,4127-4133.
    [83]Tang, H.; Chen, J. H.; Huang, Z. P.; Wang, D. Z.; Ren, Z.F.; Nie, L. H.; Kuang, Y. F.; Yao, S. Z. High dispersion and electrocatalytic properties of platinum on well-aligned carbon nanotube arrays. Carbon 2004,42,191-197.
    [84]Kim, Y. T.; Ohshima, K.; Higashimine, K.; Uruga, T.; Takata, M.; Suematsu, H.; Mitani, T. Fine Size Control of Platinum on Carbon Nanotubes:From Single Atoms to Clusters. Angew. Chem. Int. Ed.2006,45,407-411.
    [85]Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang. Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007,316,732-735.
    [86]田娜.高指数晶面结构Pt、Pd纳米催化剂的电化学制备与性能.(博士论文)厦门大学,2007.
    [87]Chen, J.; Lim, B.; Lee, E. P.; Xia, Y. Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today 2009,4, 81-95.
    [88]Peng, Z.; Yang, H. Designer platinum nanoparticles:Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 2009,4,143-164.
    [89]Rao, C. V.; Viswanathan, B. Monodispersed Platinum Nanoparticle Supported Carbon Electrodes for Hydrogen Oxidation and Oxygen Reduction in Proton Exchange Membrane Fuel Cells. J. Phys. Chem. C 2010,114,8661-8667.
    [90]Ferrando, R.; Jellinek, J.; Johnston, R. L. Nanoalloys:From Theory to Applications of Alloy Clusters and Nanoparticles. Chem. Rev.2008,108, 846-904.
    [91]Ralph, T. R.; Hogarth, M. P. Catalysis for Low Temperature Fuel Cells PART Ⅱ: THE ANODE CHALLENGES. Platinum Met. Rev.2002,46,117-135.
    [92]Roth, C.; Papworth, A. J.; Hussain, I.; Nichols, R. J.; Schiffrin, D. J. A Pt/Ru nanoparticulate system to study the bifunctional mechanism of electrocatalysis. J. Electroanal. Chem.2005,581,79-85.
    [93]Frelink, T.; W. Visscher, W.; van Veen, J. A. R. Measurement of the Ru Surface Content of Electrocodeposited PtRu Electrodes with the Electrochemical Quartz Crystal Microbalance:Implications for Methanol and CO Electrooxidation. Langmuir 1996,12,3702-3708.
    [94]Green, C. L.; Kucernak, A. Determination of the Platinum and Ruthenium Surface Areas in Platinum-Ruthenium Electrocatalysts by Underpotential Deposition of Copper.2. Effect of Surface Composition on Activity. J. Phys. Chem. B 2002,106,11446-11456.
    [95]Iwasita, T.; Hoster, H.; John-Annacker, A.; Lin, W. F.; Vielstich, W. Methanol Oxidation on PtRu Electrodes. Influence of Surface Structure and Pt-Ru Atom Distribution. Langmuir 2000,16,522-529.
    [96]Hable, C. T.; Wrighton, M. S. Electrocatalytic Oxidation of Methanol by Assemblies of Platinum/Tin Catalyst Particles in a Conducting Polyaniline Matrix. Langmuir 1991,7,1305-1309.
    [97]Mikahailova, A. A.; Osetrova, N. N.; Vassiliev, Y. B. Electrocatalysis of Methanol Oxidation on Pt-Sn Bimetallic Alloy. Elektrokhimiya 1977,13,518-522.
    [98]Rahim, M. A. A.; Khalil, M. W.; Hassan, H. B. Platinum-tin alloy electrodes for direct methanol fuel cells. J. Appl. Electrochem.2000.30,1151-1155.
    [99]Tillmann, S.; Samjeske, G.; Friedrich, K. A.; Baltruschat, H. The adsorption of Sn on Pt (111) and its influence on CO adsorption as studied by XPS and FTIR. Electrochim. Acta 2003,49,73-83.
    [100]Colmati, F.; Antolini, E.; Gonzalez, E. R. Pt-Sn/C electrocatalysts for methanol oxidation synthesized by reduction with formic acid. Electrochim. Acta 2005,50,5496-5503.
    [101]Guo, Y. G.; Hu, J. S.; Zhang, H. M.; Liang, H. P.; Wan, L. J.; Bai, C. L. Tin/Platinum bimetallic nanotube array and its electrocatalytic activity for methanol oxidation. Adv. Mater.2005,17,746-750.
    [102]Antolini, E.; Salgado, J. R. C.; Gonzalez, E. R. The methanol oxidation reaction on platinum alloys with the first row transition metals:The case of Pt-Co and-Ni alloy electrocatalysts for DMFCs:A short review. Appl. Catal. B: Environ.2006,63,137-149.
    [103]Deivaraj, T. C.; Chen, W. X.; Lee, J. Y. Preparation of PtNi Nanoparticles for the Electrocatalytic Oxidation of Methanol. J. Mater. Chem.2003,13, 2555-2560.
    [104]Shen, P. K.; Tseung, A. C. C. Anodic Oxidation of Methanol on Pt WO3 in Acidic Media. J. Electrochem. Soc.1994,141,3082-3089.
    [105]Lima, A.; Coutanceau, C.; Leager, J. M.; Lamy, C. Investigation of ternary catalysts for methanol electrooxidation. J. Appl. Electrochem.2001,31,379-386.
    [106]Lamy, C.; Lima, A.; LeRhum, V.; Delime, F.; Coutanceau, C.; Leger, J. M. Recent advances in the development of direct alcohol fuel cells (DAFC). J. Power Sources 2002,105,283-296.
    [107]Ha, S.; Larsen, R.; Masel, R. I. Performance characterization of Pd/C nanocatalyst for direct formic acid fuel cells. J. Power Sources 2005,144,28-34.
    [108]Lee, H.; Habas, S. E.; Somorjai, G.A.; Yang, P. Localized Pd Overgrowth on Cubic Pt Nanocrystals for Enhanced Electrocatalytic Oxidation of Formic Acid. J. Am. Chem. Soc.2008,130,5406-5407.
    [109]Kim, J.; Jung, C.; Rhee, C. K.; Lim, T. Electrocatalytic Oxidation of Formic Acid and Methanol on Pt Deposits on Au(111). Langmuir 2007,23, 10831-10836.
    [110]Uhm, S.; Lee, H. J.; Kwon, Y.; Lee, J. A Stable and Cost-Effective Anode Catalyst Structure for Formic Acid Fuel Cells. Angew. Chem. Int. Ed.2008,47, 10163-10166.
    [111]Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B:Environ.2005,56,9-35.
    [112]Bing, Y.; Liu, H.; Zhang, L.; Ghosh, D.; Zhang, J. Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem. Soc. Rev. 2010,39,2184-2202.
    [113]Markovic, N. M.; Ross, P. N. Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep.2002,45,117-229.
    [114]Lim, B.; Jiang, M.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X.; Zhu, Y.; Xia, Y. Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction Science 2009,324,1302-1305.
    [115]Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability. Science 2007,315,493-497.
    [116]Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater.2007,6,241-247.
    [117]Toda, T.; Igarashi, H.; Uchida, H.; Watanabe, M. Enhancement of the Electroreduction of Oxygen on Pt Alloys with Fe, Ni, and Co.J. Electrochem. Soc.1999,146,3750-3756.
    [118]Koh, S.; Strasser, P. Electrocatalysis on bimetallic surfaces:Modifying catalytic reactivity for Oxygen reduction by voltammetric surface dealloying. J. Am. Chem. Soc.2007,129,12624-12625.
    [119]Chen, Z. W.; Waje, M.; Li, W. Z.; Yan, Y S. Supportless Pt and PtPd nanotubes as electrocatalysts for Oxygen-reduction reactions. Angew.Chem. Int. Ed. 2007,46,4060-4063.
    [120]Peng, Z.; Hong Yang, H. Synthesis and Oxygen Reduction Electrocatalytic Property of Pt-on-Pd Bimetallic Heteronanostmctures. J. Am. Chem. Soc. 2009, 131, 7542-7543.
    [121]Stamenkovic, V.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M.; Rossmeisl, J.; Greeley, J.; Norskov, J. K. Changing the Activity of Electrocatalysts for Oxygen Reduction by Tuning the Surface Electronic Structure. Angew. Chem. Int. Ed. 2006, 45, 2897-2901.
    [122]Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.; Norskov, J. K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 2009,1, 552-556.
    [123]Vukmirovic, M. B.; Zhang, J.; Sasaki, K.; Nilekar, A. U.; Uribe, R; Mavrikakis, M.; Adzic, R. R. Platinum monolayer electrocatalysts for oxygen reduction. Electrochim. Ada 2007, 52, 2257-2263.
    [124]Zhang, J.; Vukmirovic, M. B.; Xu, Y.; Mavrikakis, M.; Adzic, R. R. Controlling the Catalytic Activity of Platinum-Monolayer Electrocatalysts for Oxygen Reduction with Different Substrates. Angew. Chem. Int. Ed. 2005, 44, 2132-2135.
    [125]Sasaki, K.; Wang, J. X.; Naohara, H.; Mavrikakis, N.; More, K.; Inada, H.; Adzic, R. R. Recent advances in platinum monolayer electrocatalysts for oxygen reduction reaction: Scale-up synthesis, structure and activity of Pt shells on Pd cores. Electrochim. Acta 2010, 55, 2645-2652.
    [126]Wang, J. X.; Inada, H.; Wu, L.; Zhu, Y; Choi, Y; Liu, P.; Zhou, W. P.; Adzic, R. R. Oxygen Reduction on Well-Defmed Core-Shell Nanocatalysts: Particle Size, Facet, and Pt Shell Thickness Effects. J. Am. Chem. Soc. 2009, 131, 17298-17302.
    [127]Gong, K.; Su, D.; Adzic, R. R. Platinum-Monolayer Shell on AuNi0.5Fe Nanoparticle Core Electrocatalyst with High Activity and Stability for the Oxygen Reduction Reaction. J. Am. Chem. Soc. 2010, 132, 14364-14366.
    [128]Zhang, J.; Sasaki, K.; Sutter, E.; Adzic, R. R. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 2007,315, 220-222.
    [129]Lin, Y.; Cui, X.; Ye, X. Electrocatalytic reactivity for oxygen reduction of palladium-modified carbon nanotubes synthesized in supercritical fluid. Electrochem. Commun.2005,7,267-274.
    [130]Salvador-Pascual, J. J.; Citalan-Cigarroa, S.; Solorza-Feria, O. Kinetics of oxygen reduction reaction on nanosized Pd electrocatalyst in acid media. J. Power Sources 2007,172,229-234.
    [131]Fernandez, J. L.; Raghuveer, V.; Manthiram, A.; Bard, A. J. Pd-Ti and Pd-Co-Au Electrocatalysts as a Replacement for Platinum for Oxygen Reduction in Proton Exchange Membrane Fuel Cells. J. Am. Chem. Soc.2005,127, 13100-13101.
    [132]Shao, M. H.; Sasaki, K.; Adzic, R. R. Pd-Fe Nanoparticles as Electrocatalysts for Oxygen Reduction. J. Am. Chem. Soc.2006,128,3526-3527.
    [133]Van Noort, D.; Mandenius, C. F. Porous gold surfaces for biosensor applications. Biosen. Bioelectron.2000,15,203-209.
    [134]Liu, Z.; Huang, L.; Zhang, L.; Ma, H.; Ding, Y Electrocatalytic oxidation of d-glucose at nanoporous Au and Au-Ag alloy electrodes in alkaline aqueous solutions. Electrochim. Acta 2009,54,7286-7293.
    [135]Hu, K.; Lan, D.; Li, X.; Zhang, S. Electrochemical DNA biosensor based on nanoporous gold electrode and multifunctional encoded DNA-Au bio bar codes. Anal. Chem.2008,80,9124-9030.
    [136]Fu, Z.; Li, W.; Zhang, W.; Sun, F.; Zhou, Z.; Xiang, X. Preparation and activity of carbon-supported porous platinum as electrocatalyst for methanol oxidation. Inter. J. Hydrogen Energy 2010,35,8101-8105.
    [137]Wang, X.; Wang, W.; Qi, Z.; Zhao, C.; Ji, H.; Zhang, Z. High catalytic activity of ultrafine nanoporous palladium for electro-oxidation of methanol, ethanol, and formic acid. Electrochem. Commun.2009,11,1896-1899.
    [138]Xu, C.; Wang, L.; Mu, X.; Ding, Y Nanoporous PtRu Alloys for Electrocatalysis. Langmuir 2010,26,7437-7443.
    [139]Jia, J.; Cao, L.; Wang, Z. Platinum-Coated Gold Nanoporous Film Surface: Electrodeposition and Enhanced Electrocatalytic Activity for Methanol Oxidation. Langmuir 2008,24,5932-5936.
    [140]Wang, R.; Wang, C.; Cai, W. B.; Ding, Y. Ultralow-Platinum-Loading High-Performance Nanoporous Electrocatalysts with Nanoengineered Surface Structures. Adv. Mater.2010,22,1845-1848.
    [141]Snyder, J.; Fujita, T.; Chen, M. W.; Erlebacher, J. Oxygen reduction in nanoporous metal-ionic liquid composite electrocatalysts. Nat. Mater.2010,9, 904-907.
    [142]Ding, Y.; Chen, M. W.; Erlebacher, J. Metallic mesoporous nanocomposites for electrocatalysis. J. Am. Chem. Soc.2004,126,6876-6877.
    [143]Zeis, R.; Mathur, A.; Fritz, G.; Lee, J.; Erlebacher, J. Platinum-plated nanoporous gold:An efficient, low Pt loading electrocatalyst for PEM fuel cells. J. Power Sources 2007,165,65-72.
    [1]Peng, X.; Koczkur, K.; Nigro, S.; Chen, A. Fabrication and electrochemical properties of novel nanoporous platinum network electrodes. Chem. Commun. 2004,21,2872-2783.
    [2]Cortie, M. B.; Maaroof, A. I.; Smith, G. B. Electrochemical Capacitance of Mesoporous Gold. Gold Bull.2005,38,14-22.
    [3]Ding, Y.; Kim, Y. J.; Erlebacher, J. Nanoporous Gold Leaf:Ancient Technology/ Advanced Material. Adv. Mater.2004,16,1897-1900.
    [4]Dixon, M. C.; Daniel, T. A.; Hieda, M.; Smilgies, D. M.; Chan, M. H. W.; Allara, D. L. Preparation, Structure, and Optical Properties of Nanoporous Gold Thin Films. Langmuir 2007,23,2414-2422.
    [5]Zielasek, V.; Jiirgens, B.; Schulz, C.; Biener, J.; Biener, M. M.; Hamza, A. V.; %d XP HU 0 * ROG &(?) WW 1 DQRSRURXV* ROG) REP V Angew. Chem. Int. Edit. 2006,45,8241-8244.
    [6]Xu, C. X.; Su, J. X.; Xu, X. H.; Liu, P. P.; Zhao, H. J.; Tian, F.; Ding, Y. Low temperature CO oxidation over unsupported nanoporous gold. J. Am. Chem. Soc. 2007,129,42-43.
    [7]Xu, C. X.; Xu, X. H.; Su, J. X.; Ding, Y. Research on unsupported nanoporous gold catalyst for CO oxidation, J. Catal.2007,252,243-248.
    [8]Ferrando, R.; Jellinek, J.; Johnston, R. L. Nanoalloys:From Theory to Applications of Alloy Clusters and Nanoparticles. Chem. Rev.2008,108, 846-904.
    [9]Ralph, T. R.; Hogarth, M. P. Catalysis for Low Temperature Fuel Cells PART Ⅱ: THE ANODE CHALLENGES. Platinum Met. Rev.2002,46,117-135.
    [10]Pedersen, M.(?).; Helveg, S.; Ruban, A.; Stensgaard, I.; Laegsgaard, E.; Nφrskov, J. K.; Besenbacher, F. How a gold substrate can increase the reactivity of a Pt overlayer. Surf. Sci.1999,426,395-409.
    [11]Park, I. S.; Lee, K. S.; Jung, D. S.; Park, H. Y.; Sung, Y. E. Electrocatalytic activity of carbon-supported Pt-Au nanoparticles for methanol electro-oxidation. Electrochim. Acta 2007,52,5599-5605.
    [12]Mott, D.; Luo, J.; Njoki, P. N.; Lin, Y.; Wang, L.; Zhong, C. J. Synergistic activity of gold-platinum alloy nanoparticle catalysts. Catal. Today 2007,122, 378-385.
    [13]Erlebacher, J.; Aziz, M. J.; Karama, A.; Dimitrov, N.; Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 2001,410,450-453.
    [14]Wittstock, A.; Neumann, B.; Schaefer, A.; Dumbuya, K.; Kubel, C.; Biener, M. M.; Zielasek, V.; Steinruck, H. P.; Gottfried, J. M.; Biener, J.; Hamza, A.; Baumer, M. Nanoporous Au:An Unsupported Pure Gold Catalyst? J. Phys. Chem. C 2009,113,5593-5600.
    [15]Ding, Y.; Chen, M. W.; Erlebacher, J. Metallic mesoporous nanocomposites for electrocatalysis. J. Am. Chem. Soc.2004,126,6876-6877.
    [16]Bauer, E.; van der Merwe, J. H. Structure and growth of crystalline superlattices: From monolayer to superlattice. Phys. Rev. B 1986,33,3657-3672.
    [17]Habas, S.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P. Shaping binary metal nanocrystals through epitaxial seeded growth. Nat. Mater.2007,6, 692-697.
    [18]Fan, F. R.; Liu, D. Y.; Wu, Y. F.; Duan, S.; Xie, Z. X.; Jiang, Z. Y.; Tian, Z. Q. Epitaxial Growth of Heterogeneous Metal Nanocrystals:From Gold Nano-octahedra to Palladium and Silver Nanocubes. J. Am. Chem. Soc.2008, 130,6949-6951.
    [19]Schofield, E. J.; Ingham, B.; Turnbull, A.; Toney, M. F.; Ryan, M. P. Strain development in nanoporous metallic foils formed by dealloying. Appl. Phys. Lett. 2008,92,043118-3.
    [20]Sanchez, P. L.; Elliott, J. M. Underpotential deposition and anodic stripping voltammetry at mesoporous microelectrodes. Analyst 2005,130,715-720.
    [21]Brankvic, S. R.; Wang, J. X.; Adzic, R. R. Metal monolayer deposition by replacement of metal adlayers on electrode surfaces. Surf. Sci.2001,474, L173-L179.
    [22]Mrozek, M. F.; Xie, Y.; Weaver, M. J. Surface-Enhanced Raman Scattering on Uniform Platinum-Group Overlayers:Preparation by Redox Replacement of Underpotential-Deposited Metals on Gold. Anal.Chem.2001,73,5953-5960.
    [23]Uosaki, K.; Ye, S.; Naohara, H.; Oda, Y.; Hada, T.; Kondo, T. Electrochemical Epitaxial Growth of a Pt(111) Phase on an Au(111) Electrode. J. Phys. Chem. B 1997,101,7566-7572.
    [24]Ding, Y.; Mathur, A.; Chen, M. W.; Erlebacher, J. Epitaxial casting of nanotubular mesoporous Platinum. Angew. Chem. Int. Ed.2005,44,4002-4006.
    [25]Brummer, S. B.; Makrides, A. C. Surface Oxidation of Gold Electrodes. J. Electrochem. Soc.1964,111,1122-1128.
    [26]Abd Ei Aal, E. E. Limits determination of toleration of aggressive anions by a certain passivator on zinc surface. Corros. Sci.2008,50,47-54.
    [27]Song, H. W.; Saraswathy, V.; Muralidharan, S. Role of alkaline nitrites in the corrosion performance of steel in composite cements. J. Appl. Electrochem.2009, 39,15-22.
    [28]Chen, H.; Mousty, C.; Cosnier, S.; Silveira, C. J. J.; Moura, J. J. G.; Almeida, M. G. Highly sensitive nitrite biosensor based on the electrical wiring of nitrite reductase by [ZnCr-AQS] LDH. Electrochem. Commun.2007,9,2240-2245.
    [29]Haghighi, B.; Tavassoli, A. Flow injection analysis of nitrite by gas phase molecular absorption UV spectrophotometry. Talanta 2002,56,137-144.
    [30]Sandford, R. C.; Exenberger, A.; Worsfold, P. J. Nitrogen Cycling in Natural Waters using In Situ, Reagentless UV Spectrophotometry with Simultaneous Determination of Nitrate and Nitrite. Environ. Sci. Technol.2007,41,8420-8425.
    [31]Abbas, M. N.; Mostafa, G. A. Determination of traces of nitrite and nitrate in water by solid phase spectrophotometry. Anal. Chim. Acta 2000,410,185-192.
    [32]Connolly, D.; Paull, B. Rapid determination of nitrate and nitrite in drinking water samples using ion-interaction liquid chromatography. Anal. Chim. Acta 2001,441,53-62.
    [33]Kamyabi, M. A.; Aghajanloo, F. Electrocatalytic oxidation and determination of nitrite on carbon paste electrode modified with oxovanadium(Ⅳ)-4-methyl salophen. J. Electroanal. Chem.2008,614,157-165.
    [34]Liu, Y.; Gu, H. Y. Amperometric detection of nitrite using a nanometer-sized gold colloid modified pretreated glassy carbon electrode. Microchim Acta 2008, 162,101-106.
    [35]Huang, X.; Li, Y.; Chen, Y.; Wang, L. Electrochemical determination of nitrite and iodate by use of gold nanoparticles/poly(3-methylthiophene) composites coated glassy carbon electrodeSens. Actuators, B 2008,134,780-786.
    [36]Kerkeni, S.; Lamy-Pitara, E.; Barbier, J. Copper-platinum catalysts prepared and characterized by electrochemical methods for the reduction of nitrate and nitrite. Catal. Today 2002,75,35-42.
    [37]Caro, C. A.; Bedioui, F.; Zagal, J. H. Electrocatalytic oxidation of nitrite on a vitreous carbon electrode modified with cobalt phthalocyanine. Electrochim. Acta 2002,47,1489-1494.
    [38]Wang, P.; Mai, Z.; Dai, Z.; Li, Y.; Zou, X. Construction of Au nanoparticles on choline chloride modified glassy carbon electrode for sensitive detection of nitrite. Biosens. Bioelectron.2009,24,3242-3247.
    [39]Liu, T. S.; Kang, T. F.; Lu, L. P.; Zhang, Y.; Cheng, S. Y. Au-Fe(III) nanoparticle modified glassy carbon electrode for electrochemical nitrite sensor. J. Electroanal. Chem.2009,632,197-200.
    [40]van Noort, D.; Mandenius, C. F. Porous gold surfaces for biosensor applications. Biosens. Bioelectron.2000,15,203-209.
    [41]Wang, J.; Dan F. Thomas, D. F.; Chen, A. Nonenzymatic Electrochemical Glucose Sensor Based on Nanoporous PtPb Networks. Anal. Chem.2008,80, 997-1004.
    [42]Liu, Z.; Huang, L.; Zhang, L.; Ma, H.; Ding, Y. Electrocatalytic oxidation of d-glucose at nanoporous Au and Au-Ag alloy electrodes in alkaline aqueous solutions. Electrochim. Acta 2009,54,7286-7293.
    [1]Ralph, T. R.; Hogarth, M. P. Catalysis for Low Temperature Fuel Cells PART Ⅱ: THE ANODE CHALLENGES. Platinum Met. Rev.2002,46,117-135.
    [2]Li, W.; Liang, C.; Zhou, W.; Qiu, J.; Zhou, Z.; Sun, G.; Xin, Q. Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. J. Phys. Chem. B 2003,107,6292-6299.
    [3]Li, W.; Liang, C.; Qiu, J.; Zhou, W.; Han, H.; Wei, Z.; Sun, G.; Xin, Q. Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell. Carbon 2002,40,787-803.
    [4]Mu, Y.; Liang, H.; Hu, J.; Jiang, L.; Wan, L. Controllable Pt Nanoparticle Deposition on Carbon Nanotubes as an Anode Catalyst for Direct Methanol Fuel Cells. J. Phys. Chem. B 2005,109,22212-22216.
    [5]Liao, S.; Holmes, K. A.; Tsaprailis, H.; Birss, V. I. High Performance PtRuIr Catalysts Supported on Carbon Nanotubes for the Anodic Oxidation of Methanol. J. Am. Chem. Soc.2006,128,3504-3505.
    [6]Hoor, F. S.; Ahmed, M. F.; Mayanna, S. M.; Methanol Oxidative Fuel Cell: Electrochemical Synthesis and Characterization of Low-Priced WO3-Pt Anode Material. J. Solid State Electrochem.2004,8,572-576.
    [7]Chen, W.; Sun, G.; Liang, Z.; Mao, Q.; Li, H.; Wang, G.; Xin, Q.; Chang, H.; Pak, C.; Seung, D. The stability of a PtRu/C electrocatalyst at anode potentials in a direct methanol fuel cell. J. Power Sources 2006,160,933-939.
    [8]Kumar, S.; Zou, S. Electrooxidation of Carbon Monoxide and Methanol on Platinum-Overlayer-Coated Gold Nanoparticles:Effects of Film Thickness. Langmuir 2007,23,7365-7371.
    [9]Zeng, J.; Yang, J.; Lee, J. Y.; Zhou, W. Preparation of Carbon-Supported Core-Shell Au-Pt Nanoparticles for Methanol Oxidation Reaction:The Promotional Effect of the Au Core. J. Phys. Chem. B 2006,110,24606-24611.
    [10]Luo, J.; Maye, M. M.; Kariuki, N. N.; Wang, L.; Njoki, P.; Lin, Y.; Schadt, M.; Naslund, H. R.; Zhong, C. J. Electrocatalytic oxidation of methanol: carbon-supported gold-platinum nanoparticle catalysts prepared by two-phase protocol. Catal. Today 2005,99,291-297.
    [11]Du, B.; Tong, Y. A Coverage-Dependent Study of Pt Spontaneously Deposited onto Au and Ru Surfaces:Direct Experimental Evidence of the Ensemble Effect for Methanol Electro-Oxidation on Pt. J. Phys. Chem. B 2005,109, 17775-17780.
    [12]Chang, S. C.; Ho, Y.; Weaver, M. J. Applications of real-time infrared spectroscopy to electrocatalysis at bimetallic surfaces:I. Electrooxidation of formic acid and methanol on bismuth-modified Pt (111) and Pt (100). Surf. Sci. 1992,265,81-94.
    [13]Park, S.; Xie, Y.; Weaver, M. J. Electrocatalytic Pathways on Carbon-Supported Platinum Nanoparticles:Comparison of Particle-Size-Dependent Rates of Methanol, Formic Acid, and Formaldehyde Electrooxidation. Langmuir 2002,18, 5792-5798.
    [14]Capon, A.; Parsons, R.; The oxidation of formic acid at noble metal electrodes Part III:Intermediates and mechanism on platinum electrodes. J. Electrochem. Soc.1973,45,205-231.
    [15]Wieckowski, A.; Sobkowski, J.; Comparative study of adsorption and oxidation of formic acid and methanol on platinized electrodes in acidic solution. J. Electrochem. Soc.1975,63,365-377.
    [16]Okamoto, H.; Kon, W.; Mukouyama, Y. Five Current Peaks in Voltammograms for Oxidations of Formic Acid, Formaldehyde, and Methanol on Platinum. J. Phys. Chem. B 2005,109,15659-15666.
    [17]Kim, J.; Jung, C.; Rhee, C. K.; Lim, T. H. Electrocatalytic Oxidation of Formic Acid and Methanol on Pt Deposits on Au(111). Langmuir 2007,23, 10831-10836.
    [18]Neurock, M.; Janikb, M.; Wieckowski, A. A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt. Faraday Discuss.2008,140,363-378.
    [19]Park, I. S.; Lee, K. S.; Choi, J. H.; Park, H. Y.; Sung, Y. E. Surface Structure of Pt-Modified Au Nanoparticles and Electrocatalytic Activity in Formic Acid Electro-Oxidation. J. Phys. Chem. C 2007,111,19126-19133.
    [20]Zhang, J.; Vukmirovic, M. B.; Xu, Y.; Mavrikakis, M.; Adzic, R. R. Controlling the Catalytic Activity of Platinum-Monolayer Electrocatalysts for Oxygen Reduction with Different Substrates. Angew. Chem. Int. Ed.2005,44,2132-2135.
    [21]Lim, B.; Jiang, M.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X.; Zhu, Y.; Xia, Y. Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction Science 2009,324,1302-1305.
    [22]Toda, T.; Igarashi, H.; Uchida, H.; Watanabe, M. Enhancement of the Electroreduction of Oxygen on Pt Alloys with Fe, Ni, and Co. J. Electrochem. Soc.1999,146,3750-3756.
    [23]Pedersen, M. O.; Helveg, S.; Ruban, A.; Stensgaard, I.; Laegsgaard, E.; Nφrskov, J. K.; Besenbacher, F. How a gold substrate can increase the reactivity of a Pt overlayer. Surf. Sci.1999,426,395-409.
    [1]Ferrando, R.; Jellinek, J.; Johnston, R. L. Nanoalloys:From Theory to Applications of Alloy Clusters and Nanoparticles. Chem. Rev.2008,108, 846-904.
    [2]Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 ℃. Chem. Lett.1987, 16,405-408.
    [3]Ruban, A.; Hammer, B.; Stoltze, P.; Skriver, H. L.; Norskov, J. K. Surface electronic structure and reactivity of transition and noble metals. J. Mol. Catal. A 1997,115,421-429.
    [4]Demirci, U.B. Theoretical means for searching bimetallic alloys as anode electrocatalysts for direct liquid-feed fuel cells. J. Power Sources 2007,173, 11-18.
    [5]Mandal, S.; Mandale, A. B.; Sastry, M. Keggin ion-mediated synthesis of aqueous phase-pure Au@Pd and Au@Pt core-shell nanoparticles. J. Mater. Chem. 2004,14,2868-2871.
    [6]Kristian, N.; Wang, X. Pt-shell-Au-core/C electrocatalyst with a controlled shell thickness and improved Pt utilization for fuel cell reactions. Electrochem. Commun.2008,10,12-15.
    [7]Zeng, J.; Yang, J.; Lee, J. Y.; Zhou, W. Preparation of carbon-supported core-shell Au-Pt nanoparticles for methanol oxidation reaction:The promotional effect of the Au core. J. Phys. Chem. B 2006,110,24606-24611.
    [8]Luo, J.; Wang, L.; Mott, D.; Njoki, P. N.; Lin, Y.; He, T.; Xu, Z.; Wanjana, B. N.; Lim, I. I. S.; Zhong, C. J. Core/Shell Nanoparticles as Electrocatalysts for Fuel Cell Reactions. Adv. Mater.2008,20,4342-4347.
    [9]Luo, J.; Maye, M. M.; Petkov, V.; Kariuki, N. N.; Wang, L.; Njoki, P. N.; Mott, D.; Lin, Y.; Zhong, C. J. Phase Properties of Carbon-Supported Gold-Platinum Nanoparticles with Different Bimetallic Compositions. Chem. Mater.2005,17, 3086-3091.
    [10]Zhou, S.; Jackson, G. S.; Eichhorn, B. AuPt alloy nanoparticles for CO-tolerant hydrogen activation:Architectural effects in Au-Pt bimetallic nanocatalysts. Adv. Funct. Mater.2007,17,3099-3104.
    [11]Liu, H. B.; Pal, U.; Ascencio, J. A. Thermodynamic Stability and Melting Mechanism of Bimetallic Au-Pt Nanoparticles. J. Phys. Chem. C 2008,112, 19173-19177.
    [12]Zhang, J.; Liu, P.; Ma, H.; Ding, Y. Nanostructured Porous Gold for Methanol Electro-Oxidation. J. Phys. Chem. C 2007,111,10382-10388.
    [13]Erlebacher, J.; Aziz, M. J.; Karama, A.; Dimitrov, N.; Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 2001,410,450-453.
    [14]Ding, Y.; Kim, Y. J.; Erlebacher, J. Nanoporous Gold Leaf:Ancient Technology/ Advanced Material. Adv. Mater.2004,16,1897-1900.
    [15]Snyder, J.; Asanithi, P.; Dalton, A. B.; Erlebacher, J. Stabilized Nanoporous Metals by Dealloying Ternary Alloy Precursors. Adv. Mater.2008,20, 4883-4886.
    [16]Seebauer, E. G.; Allen, C. E. Estimating surface diffusion coefficients. Prog. Surf. Sci.1995,49,265-330.
    [17]Moulder, J. F., Stickle, W. F., Sobol, P. E., Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy. Physical Electronics, Inc.1995.
    [18]Hammer, B.; Norskov, J. K. Theoretical surface science and catalysis-Calculations and concepts. Adv. Catal.2000,45,71-129.
    [19]Zhou, W.; Lewera, A.; Bagus, P. S.; Wieckowski, A. Electrochemical and Electronic Properties of Platinum Deposits on Ru(0001):Combined XPS and Cyclic Voltammetric Study. J. Phys. Chem. C 2007,111,13490-13496.
    [20]Ding, Y.; Mathur, A.; Chen, M. W.; Erlebacher, J. Epitaxial casting of nanotubular mesoporous Platinum. Angew. Chem. Int. Ed.2005,44,4002-4006.
    [21]Bastl, Z.; Pick, S. Angle resolved X-ray photoelectron spectroscopy study of Au deposited on Pt and Re surfaces. Surf. Sci.2004,566-568,832-836.
    [22]Norskov, J. K.; Bligaard, T.; Logadottir, A.; Bahn, S.; Hansen, L. B.; Bollinger, M.; Bengaard, H.; Hammer, B.; Sljivancanin, Z.; Mavrikakis, M.; Xu, Y.; Dahl, S.; Jacobsen, C. J. H. Universality in heterogeneous catalysis. J. Catal.2002,209, 275-278.
    [23]Zhou, S.; Jackson, G. S.; Eichhorn, B. AuPt alloy nanoparticles for CO-tolerant hydrogen activation:Architectural effects in Au-Pt bimetallic nanocatalysts. Adv. Funct. Mater.2007,17,3099-3104.
    [24]Du, B.; Tong, Y. A Coverage-Dependent Study of Pt Spontaneously Deposited onto Au and Ru Surfaces:Direct Experimental Evidence of the Ensemble Effect for Methanol Electro-Oxidation on Pt. J. Phys. Chem. B 2005,109,17775-17780.
    [25]Kumar, S.; Zou, S. Electrooxidation of Carbon Monoxide and Methanol on Platinum-Overlayer-Coated Gold Nanoparticles:Effects of Film Thickness. Langmuir 2007,23,7365-7371.
    [26]Capon, A.; Parsons, R.; The oxidation of formic acid at noble metal electrodes Part III:Intermediates and mechanism on platinum electrodes. J. Electrochem. Soc.1973,45,205-231.
    [27]Okamoto, H.; Kon, W.; Mukouyama, Y. Five Current Peaks in Voltammograms for Oxidations of Formic Acid, Formaldehyde, and Methanol on Platinum. J. Phys. Chem. B 2005,109,15659-15666.
    [28]Park, I. S.; Lee, K. S.; Choi, J. H.; Park, H. Y.; Sung, Y. E. Surface Structure of Pt-Modified Au Nanoparticles and Electrocatalytic Activity in Formic Acid Electro-Oxidation. J. Phys. Chem. C 2007,111,19126-19133.
    [29]Kristian, N.; Yan, Y. S.; Wang, X. Highly efficient submonolayer Pt-decorated Au nano-catalysts for formic acid oxidation. Chem. Commun.2008,5,353-355.
    [30]Chang, S. C.; Ho, Y.; Weaver, M. J. Applications of real-time infrared spectroscopy to electrocatalysis at bimetallic surfaces:I. Electrooxidation of formic acid and methanol on bismuth-modified Pt (111) and Pt (100). Surf. Sci. 1992,265,81-94.
    [31]Park, S.; Xie, Y.; Weaver, M. J. Electrocatalytic Pathways on Carbon-Supported Platinum Nanoparticles:Comparison of Particle-Size-Dependent Rates of Methanol, Formic Acid, and Formaldehyde Electrooxidation. Langmuir 2002,18, 5792-5798.
    [32]Neurock, M.; Janikb, M.; Wieckowski, A. A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt. Faraday Discuss.2008,140,363-378.
    [1]Tungler, A.; Fogassy, G. Catalysis with supported palladium metal, selectivity in the hydrogenation of C=C, C=O and C=N bonds, from chemo-to enantioselectivity. J. Mol. Catal. A:Chem.2001,173,231-247.
    [2]Venezia, A. M.; Parola, V. L.; Nicoli, V.; Deganello, G. Effect of Gold on the HDS Activity of Supported Palladium Catalysts. J. Catal.2002,212,56-62.
    [3]Chen, M.; Kumar, D.; Yi, C. W.; Goodman, D. W. The Promotional Effect of Goldin Catalysis by Palladium-Gold. Science 2005,310,291-293.
    [4]Zhou, W.; Lee, J. Y. Highly active core-shell Au@Pd catalyst for formic acid electrooxidation. Electrochem. Commun.2007,9,1725-1729.
    [5]Sarkany, A.; Hargittai, P.; Horvath, A. Controlled synthesis of PDDA stabilized Au-Pd bimetallic nanostructures and their activity in hydrogenation of acetylene. Top. Catal.2007,46,121-128.
    [6]Jose, D.; Jagirdar, B. R. Au@Pd Core-Shell Nanoparticles through Digestive Ripening. J. Phys. Chem. C 2008,112,10089-10094.
    [7]Mandal, S.; Mandale, A. B.; Sastry, M. Keggin ion-mediated synthesis of aqueous phase-pure Au@Pd and Au@Pt core-shell nanoparticles. J. Mater. Chem.2004,14,2868-2871.
    [8]Kim, J. H.; Chung, H. W.; Lee, T. R. Preparation and Characterization of Palladium Shells with Gold and Silica Cores. Chem. Mater.2006,18,4115-4120.
    [9]Lee, Y. W.; Kim, N. H.; Lee, K. Y.; Kwon, K.; Kim, M.; Han, S. W. Synthesis and Characterization of Flower-Shaped Porous Au-Pd Alloy Nanoparticles. J. Phys. Chem. C2008,112,6717-6722.
    [10]Wu, M. L.; Chen, D. H.; Huang, T. C. Synthesis of Au/Pd Bimetallic Nanoparticles in Reverse Micelles. Langmuir 2001,17,3877-3883.
    [11]Lee, Y. W.; Kim, M.; Kim, Z. H.; Han, S. W. One-Step Synthesis of Au@Pd Core-Shell Nanooctahedron. J. Am Chem. Soc.2009,131,17036-17037.
    [12]Qian, L.; Yang, X. Dendrimer films as matrices for electrochemical fabrication of novel gold/palladium bimetallic nanostructures. Talanta 2008,74,1649-1653.
    [13]Mizukoshi, Y.; Fujimoto, T.; Nagata, Y.; Oshima, R.; Maeda, Y. Characterization and Catalytic Activity of Core-Shell Structured Gold/Palladium Bimetallic Nanoparticles Synthesized by the Sonochemical Method. J. Phys. Chem. B 2000, 104,6028-6032.
    [14]Harpeness, R.; Gedanken, A. Microwave Synthesis of Core-Shell Gold/Palladium Bimetallic Nanoparticles. Langmuir 2004,20,3431-3434.
    [15]Remita, H.; Etcheberry, A.; Belloni, J. Dose Rate Effect on Bimetallic Gold-Palladium Cluster Structure. J. Phys. Chem. B 2003,107,31-36.
    [16]Xiang, Y.; Wu, X.; Liu, D.; Jiang, X.; Chu, W.; Li, Z.; Ma, Y.; Zhou, W.; Xie, S. Formation of Rectangularly Shaped Pd/Au Bimetallic Nanorods:Evidence for Competing Growth of the Pd Shell between the{110} and{100} Side Facets of Au Nanorods. Nano Lett.2006,6,2290-2294.
    [17]Habas, S.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P. Shaping binary metal nanocrystals through epitaxial seeded growth. Nat. Mater.2007,6, 692-697.
    [18]Lee, H.; Habas, S. E.; Somorjai, G. A.; Yang, P. Localized Pd Overgrowth on Cubic Pt Nanocrystals for Enhanced Electrocatalytic Oxidation of Formic Acid. J. Am. Chem. Soc.2008,130,5406-5407.
    [19]Fan, F. R.; Liu, D. Y.; Wu, Y. F.; Duan, S.; Xie, Z. X.; Jiang, Z. Y.; Tian, Z. Q. Epitaxial Growth of Heterogeneous Metal Nanocrystals:From Gold Nano-octahedra to Palladium and Silver Nanocubes. J. Am. Chem. Soc.2008, 730,6949-6951.
    [20]Lim, B.; Wang, J.; Camargo, P. H. C.; Jiang, M.; Kim, M. J.; Xia, Y. Facile Synthesis of Bimetallic Nanoplates Consisting of Pd Cores and Pt Shells through Seeded Epitaxial Growth. Nano Lett.2008,8,2535-2540.
    [21]Ding, Y.; Chen, M. W.; Erlebacher, J. Metallic mesoporous nanocomposites for electrocatalysis. J. Am. Chem. Soc.2004,126,6876-6877.
    [22]Zeis, R.; Mathur, A.; Fritz, G.; Lee, J.; Erlebacher, J. Platinum-plated nanoporous gold:An efficient, low Pt loading electrocatalyst for PEM fuel cells. J. Power Sources 2007,165,65-72.
    [23]Qian, L. H.; Ding, Y.; Fujita, T.; Chen, M. W. Synthesis and Optical Properties of Three-Dimensional Porous Core-Shell Nanoarchitectures. Langmuir,2008,24, 4426-4429.
    [24]Moulder, J. F., Stickle, W. F., Sobol, P. E., Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy. Physical Electronics, Inc.1995.
    [25]Liu, F.; Wechsler, D.; Zhang, P. Alloy-structure-dependent electronic behavior and surface properties of Au-Pd nanoparticles. Chem. Phys. Lett.2008,461, 254-259.
    [26]Mandal, S.; Mandale, A. B.; Sastry, M. Keggin ion-mediated synthesis of aqueous phase-pure Au@Pd and Au@Pt core-shell nanoparticles. J. Mater. Chem. 2004,14,2868-2871.
    [27]Fernandez, J. L.; Raghuveer, V.; Manthiram, A.; Bard, A. J. Pd-Ti and Pd-Co-Au Electrocatalysts as a Replacement for Platinum for Oxygen Reduction in Proton Exchange Membrane Fuel Cells. J. Am. Chem. Soc.2005,127,13100-13101.
    [28]Nie, M.; Shen, P. K.; Wei, Z. Nanocrystaline tungsten carbide supported Au-Pd electrocatalyst for oxygen reduction. J. Power Sources 2007,167,69-73.
    [29]Liu, Z.; Zhao, B.; Guo, C.; Sun, Y.; Xu, F.; Yang, H.; Li, Z. Novel Hybrid Electrocatalyst with Enhanced Performance in Alkaline Media:Hollow Au/Pd Core/Shell Nanostructures with a Raspberry Surface. J. Phys. Chem. C 2009,113, 16766-16771.
    [30]Ukaszewski, M. L.; Czerwinski, A. Electrochemical behavior of palladium-gold alloys. Electrochim. Acta 2003,48,2435-2445.
    [31]Zhang, J.; Qiu, C.; Ma, H.; Liu, X. Facile Fabrication and Unexpected Electrocatalytic Activity of Palladium Thin Films with Hierarchical Architectures. J. Phys. Chem. C 2008,112,13970-13975.
    [32]Li, H.; Sun, G.; Jiang, Q.; Zhu, M.; Sun, S. Xin, Q. Synthesis of highly dispersed Pd/C electro-catalyst with high activity for formic acid oxidation. Electrochem. Commun.2007,9,1410-1415.
    [33]Kibler, L. A.; El-Aziz, A. M.; Kolb, D. M. Electrochemical behaviour of pseudomorphic overlayers:Pd on Au (111). J. Mol. Catal. A:Chem.2003,199, 57-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700