用户名: 密码: 验证码:
全固态薄膜锂离子电池新型电极材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微机电系统(MEMS)的发展,对微能源的需求日益迫切。全固态薄膜锂离子电池是迄今为止最适合用于MEMS器件上的一种可集成的微能源之一。薄膜电极材料对于电池的性能有着至关重要的影响,常用的嵌锂复合物如LiCoO2、石墨等电极材料虽然性能稳定,但电池比容量却很难提高,因此,发展新型大容量的薄膜电极是未来薄膜电池的一个重要的发展方向。本文采用脉冲激光沉积(PLD)方法获得了CuF2、MnF2、CoP3和InP四种薄膜锂电池电极材料,并采用X射线衍射(XRD)、扫描电子显微镜(SEM)与能量色散X射线分析(EDX)、透射电子显微镜(TEM)与选区电子衍射(SAED)、X射线光电子能谱(XPS)和恒电流充放电法、循环伏安法(CV)对其物理化学结构和电化学性能进行了表征,结果表明:
     (1)CuF2薄膜在2.8和2.0 V处的两个可逆的放电平台分别对应于部分Li进入CuF2晶格和更多的Li置换金属Cu,而得到LiF和纳米级的金属Cu,其后的可逆反应是纳米级Cu驱动下的LiF与CuF2之间的可逆转化。首次放电后较大的容量损失可能是由于相变和部分Cu不能再回到晶格中重新形成CuF2导致的,但是在前45次循环[1.0,4.0 V]的电化学窗口,CoF2薄膜仍然保持了544 mAh/g左右的可逆容量,每周容量衰减约为0.6%,放电平台稳定在1.8-2.0V之间,显示了较大的容量优势和较好的电化学稳定性。有意义的是,我们首次在其CV曲线上观察到了2.8 V以上的清晰的可逆氧化还原峰,并发现CuF2薄膜在前20次的[2.8,4.2V]之间的电化学反应中,放电平台保持在3.1 V左右,平均可逆容量为125mAh/g。这表明经PLD纳米化后的CuF2表现出2.8 V以上的电化学可逆性,并具有可利用的容量。
     (2)制备出良好的循环保持力、较大容量和极化小的MBF2薄膜电极。充放电特性显示纳米化的氟化锰负极薄膜的可逆容量达到530 mAh/g,相当于1mol MnF2可与1.84 mol Li发生反应。其循环伏安曲线中1.0 V和0.5 V处的一对可逆性较好的氧化还原峰,分别归属于LiF在过渡金属Mn的驱动下的可逆的分解和形成,并为SAED结果所证实。其反应机理是由首次放电生成的纳米金属Mn驱动LiF的可逆分解和形成,再一次证实了氟化物以金属为反应中心的机理特征。充放电实验表明这种负极薄膜的充放电平台差值比其他氟化物都小,表明其很适合用做负极材料。同时室温沉积条件便于和IC工艺兼容,有利于全固态薄膜锂离子电池与微芯片的集成。
     (3)CoP3薄膜中的金属在首次还原后,不再参与氧化还原反应,该机理体现出典型的以阴离子为中心的反应机理,这与前人关于CoP3粉末的机理研究一致。PLD方法制备的纳米薄膜放电后得到的纳米级金属颗粒高度分散,对于Li3P和LiP的电化学可逆反应起到了促进作用,因此CoP3薄膜表现出比粉体材料更好的电性能,在前25次循环中,薄膜可逆容量800mAh/g,且每次循环容量衰减率仅为0.05%。
     (4)首次将PLD制备的InP薄膜作为锂离子电池的负极材料,且表现出良好的电化学可逆性。InP在O到2V的反应过程如下:放电过程,首先是Li进入InP晶格,置换出In并生成Li3P;在0.3 V以下,In继续和Li发生合金化反应,生成InLi合金;充电过程中,InLi合金发生分解,在合金和去合金化过程中,是以In作为活性反应中心,之后在纳米金属In的驱动下,Li3P和InP发生可逆转化,这一步是以阴离子P3-为中心的反应。
     (5)作为对实验研究的补充,采用第一原理的理论计算方法对Li/CuF2体系结构与性能进行了研究,包括Li嵌入CuF2晶体前后的电子结构、嵌入途径和电化学性能参数。计算结果与已有的实验数据相当,即随着嵌入的Li原子增加而体系的导电性增强和计算所得的嵌入平均电势能与观测到实验值相近。
     本论文的研究表明PLD方法是获得新型性能优异锂电池薄膜电极材料的重要途径,新型氟化物和磷化物纳米薄膜由于其独特的反应机理和纳米效应而具有远大于传统材料的超大容量,显示出良好的发展前景。
Micro-power sources are increasingly required with the development of microelectromechanical systems (MEMS).The advantages of all-solid-state thin film lithium ion battery (TFLB),high power densities, low self-discharge rate and long cycle life and easy to be fabricated in specific shape and size, make them be one of the most promising micro-power sources.Obviously, the battery performance is mostly influenced by its electrode properties,such as capacity, potential, etc. Because it is very difficult to enlarge the capacities of current lithium-inserting electrode of TFLB,for example, LiCoO2 and graphite, great efforts should be made to develop new thin film electrodes with higher capacities to satisfy the increasing requirements.Four kinds of thin film electrodes available for lithium batteries, CuF2, MnF2, CoP3 and InP, were successfully obtained by the pulsed laser deposition method (PLD).Their composition and structure were characterized by XRD, SEM, EDX, TEM, SAED and XPS,and their electrochemical porformance were also investigated by constant current charge/discharge method and cyclic voltammograms (CV), respectively. The results are listed as following:
     (1)There are two reversible discharge plateaus located on 2.8 and 2.0 V for CuF2 film, which respectively correspond to two processes:the inset of Li ions into CuF2 lattice and the appearance of nano-particles of Cu after their displacement by Li, and a reversible transformation between LiF and CuF2 activated by the nano-particles of Cu. Much loss of the capacity after the first discharge may be resulted from the phase change and partial Cu atoms not back to the lattice to reform CuF2. However, the reversible capacity of 544 mAh/g of CuF2 film is obtained during the first 45 cycles between the scope of [1.0,4.0V],in which the capacity decreases 0.6% per cycle with a stable discharge plateau of 1.8-2.0V. It suggests the CuF2 thin film fabricated by PLD could be used as the cathode film of the TFLB because of its high capacity and little fading. It is noticeable that a pair of reversible redox peaks above 2.8 V appears on its CV curve, and a discharge plateau located on 3.1V and an average capacity 125mAh/g in first 20 cycles during [2.8,4.2V].It indicates that the nano film of CuF2 fabricated by PLD shows good electrochemical reversibility when voltage is above 2.8V.
     (2) The MnF2 film fabricated by PLD shows good capacity retentivity, high reversible capacity, and lower polarization. The polycrystalline film of MnF2 has a reversible capacity of 530 mAh/g, implying one mol MnF2 reacts with 1.84 mol Li. There is a pair of redox peaks sited on 1.0 and 0.5 V on its CV curve, respectively corresponding to the reversible decomposition and formation of LiF activated by nano particles of metal Mn, which is confirmed by SAED results.Nano metal Mn appears after the first discharge and drives the reactions of LiF subsequently, which proves again the metal reaction center mechanism of fluoride.It shows there is the least difference in charge/discharge plateaus among all fluorides in experiments, suggesting good properties available for anode film. At the same time, it is an attractive way to deposit MnF2 at room temperature, which just satisfies the temperature required in IC technology.
     (3)A Li electrochemical reaction in CoP3 film takes place after the first metal reduction, which does not take part in the subsequent reactions. This result agrees with the previous research on powdery CoP3.Differently, the highly diffused nano metal in the film obtained by PLD can activate the reversible reaction between Li3P and LiP, in which there is an anion center mechanism.
     (4) InP film deposited by PLD was firstly applied as a electrode material for lithium battery with good electrochemical reversibility. The reaction of InP under the condition of 0 to 2 V includes:in discharge, Li is firstly inserted into LiP lattice and then In is displaced with the product of L13P, and successively, In reacts with Li to form InLi alloy below 0.3 V; in charge, InLi alloy decomposes.It is In which is the reaction center in the decomposition and the formation of the alloy. Afterwards, there are transformations between Li3P and InP, where P3" is the reaction center.
     (5)To complement the experiments, the structures and properties of Li/CuF2 system was theoretically investigated using the first principle method, including the electronic structure changes after Li lithiation, lithiation pathway and electrochemical parameters. The calculated results are comparable to the experimental data. That is, the conductivity of the system enhances with the increasing of Li atoms, and the calculated average potentials are close to the experimental.
     Summarily, this work shows that PLD is an important approach to excellent film electrode materials in lithium battery. There is an attractive perspective for novel nano film of fluoride and phosphide due to their large capacities resulted from their unique reaction mechanism and nano effect.
引文
[1]J. Mullins. The topsy turvy world of quantum computing[J].Ieee Spectrum.2001;38:42-44.
    [2]S. D. Glaser. Some real-world applications of wireless sensor nodes[J].Smart Structures and Materials 2004:Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems.2004; 5391:344-355
    [3]Rechargeable Thin Film Battery,2004,http://www.cymbet.com/MContentA/pdfs/DS-72-02.pdf
    [4]Min Chen,Justin P. Vogt, Design Methodology of a Hybrid Micro-Scale Fuel Cell-Thin-Film Lithium Ion Source 2007, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.113.711&rep=rep1&type=pdf
    [5]J. M. Kahn, R. H. Katz, K. S. J. Pister. Emerging challenges:Mobile networking for "Smart Dust"[J]. Journal of Communications and Networks.2000;2:188-196.
    [6]J. B. Bates, G. R. Gruzalski, N. J. Dudney, C. F. Luck, X. H. Yu, S. D. Jones. Rechargeable Thin-Film Lithium Microbatteries[J].Solid State Technology.1993;36:59-63.
    [7]J.B. Bates, N. J. Dudney, G. R. Gruzalski, R. A. Zuhr, A. Choudhury, C. F. Luck, J. D. Robertson. Fabrication and Characterization of Amorphous Lithium Electrolyte Thin-Films and Rechargeable Thin-Film Batteries[J].Journal of Power Sources.1993;43:103-110.
    [8]H. G.Kim, M. K. Kim. The fabrication of thin film cathode for solid-state microbattery by sol-gel method[J].Asian Ceramic Science for Electronics I.2002;7:209-214.
    [9]C. H. Chen, E. M. Kelder, J.Schoonman. Electrode and solid electrolyte thin films for secondary lithium-ion batteries[J].Journal of Power Sources.1997;68:377-380.
    [10]P. Liu, J.G. Zhang, J.A. Turner, C.E. Tracy, D. K. Benson. Lithium-manganese-oxide thin-film cathodes prepared by plasma-enhanced chemical vapor deposition [J].J Electrochem Soc.1999; 146: 2001-2005.
    [11]Z. Takehara, Z. Ogumi, Y.Uchimoto, E. Endo, Y. Kanamori. Thin-Film Solid-State Lithium Batteries Prepared by Consecutive Vapor-Phase Processes[J].Journal of the Electrochemical Society.1991; 138:1574-1582.
    [12]Z. Ogumi, T. Iwamoto, M. Teshima, Y. Uchimoto. Preparation of functional gradient solid polymer electrolyte thin-films for secondary lithium batteries[J].Proceedings of the Symposium on Lithium Polymer Batteries.1997; 96:4-9
    [13]S. W. Jeon, J. K. Lim, S. H.Lim, S.M. Lee. As-deposited LiCoO2 thin film cathodes prepared by rf magnetron sputtering[J].Electrochimica Acta.2005;51:268-273.
    [14]高国棉,陈长乐,王永仓,陈钊,李谭.脉冲激光沉积(PLD)技术及其应用研究[J].空军工程大学学报(自然科学版).2005;2005:77-81.
    [15]N. J.Dudney, J. B. Bates, R. A. Zuhr, S. Young, J. D. Robertson, H. P. Jun, S. A. Hackney. Nanocrystalline LixMn2-yO4 cathodes for solid-state thin-film rechargeable lithium batteries[J]. Journal of the Electrochemical Society.1999; 146:2455-2464.
    [16]J. B. Bates, G. R. Gruzalski, N. J. Dudney, C. F. Luck, X. H. Yu. Rechargeable Thin-Film Lithium Batteries[J].Solid State Ionics.1994;70:619-628.
    [17]J.B.Bates, N. J. Dudney, B.J. Neudecker, F. X. Hart, H. P. Jun, S.A. Hackney. Preferred orientation of polycrystalline LiCoO2 films[J].Journal of the Electrochemical Society.2000; 147:59-70.
    [18]J.B.Bates, N.J. Dudney, B.Neudecker, A. Ueda, C. D. Evans. Thin-film lithium and lithium-ion batteries[J].Solid State Ionics.2000;135:33-45.
    [19]J.B.Bates, N. J. Dudney, D. C. Lubben, G. R. Gruzalski, B. S.Kwak, X. H. Yu, R. A. Zuhr. Thin-Film Rechargeable Lithium Batteries[J].Journal of Power Sources.1995;54:58-62.
    [20]J.B. Bates, N.J. Dudney. Thin film rechargeable lithium batteries for implantable devices[J].Asaio Journal.1997;43:M644-M647.
    [21]Y.I.Jang, N. J.Dudney, D. A. Blom, L. F. Allard. High-voltage cycling behavior of thin-film LiCoO2 cathodes[J]. Journal of the Electrochemical Society.2002; 149:A1442-A1447.
    [22]N. K. R. Baskaran, O. Kamishima,J. Kawamura, S. Selvasekarapandian. Structural and electrochemical studies on thin film LiNi0.8Co0.2O2 by PLD for micro battery[J].Solid State Ionics 2009;180:636-643.
    [23]B.H. Kim, J. H. Kim, I. H. Kwon, M. Y. Song. Electrochemical properties of LiNiO2 cathode material synthesized by the emulsion method[J].Ceramics International.2007;33:837-841.
    [24]B. H. Kim, J. H. Kim, M. Y. Song, T. Ida, N. Ishizawa. The effect of oxygen pressure on the synthesis of LiNiO2 [J].Advances in Nanomaterials and Processing, Pts 1 and 2.2007; 124-126:1043-1046
    [25]C. J. Kim, I. S. Ahn, K. K. Cho, S. G. Lee, J. K. Chung. Characteristics of LiNiO2 thin films synthesized by Li diffusion on the surface oxidized epitaxial layer of Ni-alloy[J].Journal of Alloys and Compounds.2008;449:335-338.
    [26]J. Kim, B. H. Kim, Y. H. Baik, P. K. Chang, H. S. Park, K. Amine. Effect of (Al, Mg) substitution in LiNiO2 electrode for lithium batteries[J].Journal of Power Sources.2006;158:641-645.
    [27]H. K. Kim, T. Y. Seong, W.I. Cho, Y. S. Yoon. Rapid thermal annealing effect on surface of LiNi1-xCoxO2 cathode film for thin-film microbattery[J].Journal of Power Sources.2002; 109: 178-183.
    [28]H. K. Kim, Y. S. Yoon. Characteristics of rapid-thermal-annealed LiCoO2 cathode film for an all-solid-state thin film microbattery[J].Journal of Vacuum Science & Technology A.2004;22: 1182-1187.
    [29]Y. S. Park, S. H. Lee, B. I. Lee, S. K. Joo. All-solid-state lithium thin-film rechargeable battery with lithium manganese oxide[J].Electrochemical and Solid State Letters.1999; 2:58-59.
    [30]周永宁.纳米薄膜作为锂离子电池电极材料的性能与反应机理研究[J].[D].复旦大学.2008;
    [31]Z. W. F. C. L. Li. Electrochemical Characterization of Amorphous LiFe(WO4)2 Thin Films as Positive Electrodes for Rechargeable Lithium Batteries[J].Electrochimica Acta.2008;
    [32]Z. W. F. C. L. Li. Nano-sized Copper Tungstate Thin Films as Positive Electrodes for Rechargeable Li Batteries[J]. Electrochimica Acta.2008; 53:4293-4301.
    [33]V. Palomares,I. R. de Larramendi, J. Alonso, M. Bengoechea, A. Goni, O. Miguel, T. Rojo. LiFePO4 thin films grown by pulsed laser deposition:Effect of the substrate on the film structure and morphology[J].Applied Surface Science.2010; 256:2563-2568.
    [34]F. Sauvage, L. Laffont, J. M. Tarascon, E. Baudrin. Factors affecting the electrochemical reactivity vs. lithium of carbon-free LiFePO4 thin films[J].Journal of Power Sources.2008;175:495-501.
    [35]L. T. Y. Goldner R B, Slaven S. A transient method for measuring diffusion coefficients of thin film battery electrodes-Results for LiyCoO2 and LixC6 thin films[J].J.Electrochem. Soc.1996; 143: L129-L130.
    [36]T. Abe. Materials of lithium battery for the next generation. All-solid-state lithium batteries[J]. Electrochemistry.2003;71:728-731.
    [37]Y. L. Kim, H. Y.Lee, S. W. Jang, S. H. Lim, S. J. Lee, H. K. Baik, Y. S. Yoon, S. M. Lee. Electrochemical characteristics of Co-Si alloy and multilayer films as anodes for lithium ion microbatteries[J].Electrochimica Acta.2003;48:2593-2597.
    [38]S. J.Lee, H. K. Balk, S. M. Lee. An all-solid-state thin film battery using LISIPON electrolyte and Si-V negative electrode films[J].Electrochemistry Communications.2003;5:32-35.
    [39]S. J.Lee, H. Y. Lee, S.H. Jeong, H. K. Baik, S.M. Lee. Performance of tin-containing thin-film anodes for rechargeable thin-film batteries[J].Journal of Power Sources.2002;111:345-349.
    [40]L. Baggetto, N. A. M. Verhaegh, R. A. H. Niessen, F. Roozeboom, J. C. Jumas, P. H. L. Notten. Tin Nitride Thin Films as Negative Electrode Material for Lithium-Ion Solid-State Batteries[J].Journal of the Electrochemical Society.2010;157:A340-A347.
    [41]J. J. Wu, Z. W. Fu. Pulsed-Laser-Deposited Sn4P3 Electrodes for Lithium-Ion Batteries[J].Journal of the Electrochemical Society.2009;156:A22-A26.
    [42]M. Z. Xue, J. Yao, S.C.Cheng, Z. W. Fu. Lithium electrochemistry of a novel SnSe thin-film anode[J].Journal of the Electrochemical Society.2006; 153:A270-A274.
    [43]Y. L. Kim, H. Y.Lee, S. W. Jang, S.J.Lee, H. K. Baik, Y.S. Yoon, Y.S. Park, S. M. Lee. Nanostructured Ni3Sn2 thin film as anodes for thin film rechargeable lithium batteries[J].Solid State Ionics.2003;160:235-240.
    [44]S. H. Lee, P. Liu, C. E. Tracy. Lithium thin-film battery with a reversed structural configuration SS/Li/Lipon/LixV2O5/Cu[J].Electrochemical and Solid State Letters.2003;6:A275-A277.
    [45]J. B. Bates, N. J. Dudney, G. R. Gruzalski. Electrical-properties of amorphous lithium electrolyte thin-films [J].Solid State Ionics.1992;53:647-654.
    [46]J.B. Bates, N. J. Dudney, G. R. Gruzalski., R. A.Zuhr., A. Choudhury. Fabrication and characterization of amorphous lithium electrolyte thin-films and rechargeable thin-film batteries[J].J. Power Sources.1993;43:103-110.
    [47]X. H. Yu, J. B.Bates, G. E. Jellison. Characterization of lithium phosphorous oxynitride thin films[J]. Proceedings-Electrochemical Society.1996; 95-22:23-30.
    [48]C. H. Choi, W. I. Cho, B.W. Cho, H. S. Kim, Y.S. Yoon, Y. S. Taka. Radio-frequency magnetron sputtering power effect on the ionic conductivities of upon films [J].Electrochem. Solid-State Lett. 2002;5:A14-A17.
    [49]Lee S J, Bae J H, L. H. W. Electrical conductivity in Li-Si-P-O-N oxynitride thin-films[J].J. Power Sources.2003;123:61-64.
    [50]Kuwata N, Kawamura J, Toribami K. Thin-film lithium-ion battery with amorphous solid electrolyte fabricated by pulsed laser deposition[J].Electrochem. Commun.2004; 6:417-421.
    [51]Joo K H, Sohn H J, Vinatier P. Lithium ion conducting lithium sulfur oxynitride thin film[J]. Electrochem. Solid State Lett.2004;7:A256-A258.
    [52]Ahn J K, Y.S. G. Characteristics of Amorphous Lithium Lanthanum Titanate Electrolyte Thin Films Grown by PLD for Use in Rechargeable Lithium Microbatteries [J].Electrochem. Solid State Lett. 2005;8:A75-A78.
    [53]P. Poizot, S.Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon. Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries[J].Nature.2000; 407:496-499.
    [54]J. M. Tarascon, G.Vaughan, Y. Chabre, L. Seguin, M. Anne, P. Strobel, G.Amatucci. In situ structural and electrochemical study of Ni1-xCoxO2 metastable oxides prepared by soft chemistry[J].Journal of Solid State Chemistry.1999; 147:410-420.
    [55]J.M. Tarascon, N. Recham, M. Armand, J. N. Chotard, P. Barpanda, W. Walker, L. Dupont. Hunting for Better Li-Based Electrode Materials via Low Temperature Inorganic Synthesis[J].Chemistry of Materials.2010;22:724-739.
    [56]J. M. Tarascon, A. Percheron-Guegan. Electrode materials for performant rechargeable batteries, a scientific and industrial challenge[J].Actualite Chimique.1998; 12-14.
    [57]J.M. Tarascon, M. Morcrette, J. Saint, L. Aymard, R. Janot. On the benefits of ball milling within the field of rechargeable Li-based batteries[J].Comptes Rendus Chimie.2005;8:17-26.
    [58]J. M. Tarascon, M. Morcrette, L. Dupont, Y. Chabre, C. Payen, D. Larcher, V. Pralong. On the electrochemical reactivity mechanism of CoSb3 vs. lithium[J].Journal of the Electrochemical Society. 2003;150:A732-A741.
    [59]J.M. Tarascon, C.Delacourt, A. S. Prakash, M. Morcrette, M. S. Hegde, C.Wurm, C. Masquelier. Various strategies to tune the ionic/electronic properties of electrode materialst[J]. Dalton Transactions.2004;2988-2994.
    [60]J. M. Tarascon. Viruses electrify battery research[J].Nature Nanotechnology.2009;4:341-342.
    [61]J.M. Tarascon. Towards Sustainable and Renewable Systems for Electrochemical Energy Storage[J]. Chemsuschem.2008;1:777-779.
    [62]J. Syzdek, R. Borkowska, K. Perzyna, J. M. Tarascon, W. Wieczorek. Novel composite polymeric electrolytes with surface-modified inorganic fillers[J].Journal of Power Sources.2007;173:712-720.
    [63]F. SalverDisma, C. Lenain, B.Beaudoin, L. Aymard, J. M. Tarascon. Unique effect of mechanical milling on the lithium intercalation properties of different carbons[J].Solid State Ionics.1997;98: 145-158.
    [64]P. Rozier, M. Morcrette, O. Szajwaj,V. Bodenez, M. Dolle, C. Surcin, L. Dupont, J. M. Tarascon. Li-Driven Copper Extrusion/Re-injection in Various Cu-based Oxides and Sulfides[J]. Israel Journal of Chemistry.2008;48:235-249.
    [65]A. Rougier, C. Marcel, I. Bouessay, A. Blyr, N. Naghavi, L. Dupont, J. B. Leriche, J. M. Tarascon. Thin film route for optimization of electrode materials[J].Batteries and Supercapacitors.2003; 683-694
    [66]N. Recham, L. Dupont, M. Courty, K. Djellab, D. Larcher, M. Armand, J. M. Tarascon. Ionothermal Synthesis of Tailor-Made LiFePO4 Powders for Li-Ion Battery Applications[J].Chemistry of Materials.2009;21:1096-1107.
    [67]N. Recham, J. N. Chotard, L. Dupont, K. Djellab, M. Armand, J. M. Tarascon. Ionothermal Synthesis of Sodium-Based Fluorophosphate Cathode Materials[J].Journal of the Electrochemical Society. 2009;156:A993-A999.
    [68]N. Recham, M. Armand, L. Laffont, J.M. Tarascon. Eco-Efficient Synthesis of LiFePO4 with Different Morphologies for Li-Ion Batteries[J].Electrochemical and Solid State Letters.2009;12: A39-A44.
    [69]V. Pralong, J. B.Leriche, B.Beaudoin, E. Naudin, M. Morcrette, J. M. Tarascon. Electrochemical study of nanometer Co3O4, CO, CoSb3 and Sb thin films toward lithium[J].Solid State Ionics.2004; 166:295-305.
    [70]P. Poizot, S.Laruelle, S.Grugeon, L. Dupont, B.Beaudoin, J. M. Tarascon. Electrochemical reactivity and reversibility of cobalt oxides towards lithium[J].Comptes Rendus De L Academie Des Sciences Serie Ii Fascicule C-Chimie.2000;3:681-691.
    [71]D. Larcher, C. Masquelier, D. Bonnin, Y. Chabre, V.Masson, J. B.Leriche, J. M. Tarascon. Effect of particle size on lithium intercalation into alpha-Fe2O3[J].Journal of the Electrochemical Society.2003; 150:A133-A139.
    [72]D. Larcher, G. Sudant, J. B.Leriche, Y.Chabre, J. M. Tarascon. The electrochemical reduction of Co3O4 in a lithium cell[J].Journal of the Electrochemical Society.2002;149:A234-A241.
    [73]J. P. Sun, K. Tang, X. Q. Yu, J. Hu, H. Li, X. J. Huang. Overpotential and electrochemical impedance analysis on Cr2O3 thin film and powder electrode in rechargeable lithium batteries[J].Solid State Ionics.2008;179:2390-2395.
    [74]Y. Sharma,N. Sharma,G. V. S. Rao,B.V. R. Chowdari.Studies on Nano-CaO center dot SnO2 and Nano-CaSnO3 as Anodes for Li-Ion Batteries[J].Chemistry of Materials.2008;20:6829-6839.
    [75]N.Pereira, L. C. Klein, G. G. Amatucci.The electrochemistry of Zn3N2 and LiZnN-A lithium reaction mechanism for metal nitride electrodes[J].Journal of the Electrochemical Society.2002; 149: A262-A271.
    [76]N. Pereira, L. C. Klein, G. G. Amatucci. The electrochemistry of alternative nitride electrodes for Li-ion batteries[J].Batteries and Supercapacitors.2003;291-302
    [77]N. Pereira, M. Balasubramanian, L. Dupont, J. McBreen, L. C. Klein, G. G. Amatucci. The Electrochemistry of germanium nitride with lithium[J].Journal of the Electrochemical Society.2003; 150:A1118-A1128.
    [78]N. Pereira, M. Balasubramanian, L. Dupont, J. McBreen, L. C. Klein, G. G. Amatucci.The electrochemistry of germanium nitride versus lithium[J].Solid State Ionics-2002.2003;756:281-287
    [79]N. Pereira, L. Dupont, J. M. Tarascon, L. C.Klein, G. G. Amatucci. Electrochemistry of Cu3N with lithium-A complex system with parallel processes[J].Journal of the Electrochemical Society.2003; 150:A1273-A1280.
    [80]Z. W. Fu, W. Y. Liu,Q. Z. Qin. The fabrication and characterization of thin films for all solid state rechargeable batteries[J].Solid State Ionics:The Science and Technology of Ions in Motion.2004; 443-454
    [81]Z. W. Fu, Y. Wang, X. L. Yue, S.L. Zhao, Q. Z. Qin. Electrochemical reactions of lithium with transition metal nitride electrodes[J].Journal of Physical Chemistry B.2004;108:2236-2244.
    [82]Y. Liu, K. Horikawa, M. Fujiyosi, N.Imanishi, A. Hirano, Y. Takeda. The effect of doped elementals on the electrochemical behavior of hexagonal Li26Co0.4N[J].Journal of the Electrochemical Society. 2004;151:A1450-A1455.
    [83]J. Ma, L. Yu, Z. W. Fu. Electrochemical and theoretical investigation on the reaction of transition metals with Li3N[J].Electrochimica Acta.2006;51:4802-4814.
    [84]Q. Sun, Z. W. Fu. An anode material of CrN for lithium-ion batteries[J].Electrochemical and Solid State Letters.2007;10:A189-A193.
    [85]Q. Sun, Z. W. Fu. Vanadium nitride as a novel thin film anode material for rechargeable lithium batteries[J].Electrochimica Acta.2008;54:403-409.
    [86]Y. Wang, W.Y. Liu, Z. W. Fu. Electrochemistry of Mn4N with lithium[J].Acta Physico-Chimica Sinica.2006;22:65-70.
    [87]H. Li, P. Balaya, J. Maier. Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides[J].Journal of the Electrochemical Society.2004;151:A1878-A1885.
    [88]H. Li, G. Richter, J. Maier. Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries[J].Advanced Materials. 2003;15:736-739.
    [89]G. G. Amatucci, N. Pereira. Fluoride based electrode materials for advanced energy storage devices[J]. Journal of Fluorine Chemistry.2007; 128:243-262.
    [90]W. Tong, W. S.Yoon, N. M. Hagh, G. G. Amatucci. A Novel Silver Molybdenum Oxyfluoride Perovskite as a Cathode Material for Lithium Batteries[J].Chemistry of Materials.2009; 21: 2139-2148.
    [91]W. Tong, G. G. Amatucci. Synthesis, Structure, and Electrochemistry of Silver Niobium Oxyfluorides for Lithium Batteries[J].Electrochemical and Solid State Letters.2009;12:A219-A224.
    [92]A. Skrzypczak, F. Badway, G. G. Amatucci.Electrochemical Properties of a Copper Fluorophosphate Electrode Material Fabricated By Mechanochemical Synthesis[J].Electrochemical and Solid State Letters.2009;12:A66-A68.
    [93]I. Plitz, F. Badway, J. Al-Sharab, A. DuPasquier, F. Cosandey, G. G. Amatucci. Structure and electrochemistry of carbon-metal fluoride nanocomposites fabricated by solid-state redox conversion reaction[J].Journal of the Electrochemical Society.2005;152:A307-A315.
    [94]N. Pereira, F. Badway, M. Wartelsky, S.Gunn, G. G. Amatucci. Iron Oxyfluorides as High Capacity Cathode Materials for Lithium Batteries[J].Journal of the Electrochemical Society.2009; 156: A407-A416.
    [95]F. Cosandey, J. F. Al-Sharab, F. Badway, G. G. Amatucci, P. Stadelmann. EELS spectroscopy of iron fluorides and FeFx/C nanocomposite electrodes used in Li-ion batteries[J].Microscopy and Microanalysis.2007; 13:87-95.
    [96]F. Cosandey, J. F. Al-Sharab, F. Badway, G. G. Amatucci. HRTEM imaging and EELS spectroscopy of lithiation process in FeFx:C nanocomposites[J].Developments in Solid Oxide Fuel Cells and Lithium Ion Batteries.2005;161:111-119
    [97]M. Bervas, B.Yakshinskiy, L. C. Klein, G. G. Amatucci.Soft-chemistry synthesis and characterization of bismuth oxyfluorides and ammonium bismuth fluorides[J].Journal of the American Ceramic Society.2006; 89:645-651.
    [98]M. Bervas, A. N. Mansour, W. S.Yoon, J. F. Al-Sharab, F. Badway, F. Cosandey, L. C. Klein, G. G. Amatucci. Investigation of the lithiation and delithiation conversion mechanisms of bismuth fluoride nanocomposites[J].Journal of the Electrochemical Society.2006;153:A799-A808.
    [99]M. Bervas, L. C. Klein, G. G. Amatucci.Reversible conversion reactions with lithium in bismuth oxyfluoride nanocomposites[J].Journal of the Electrochemical Society.2006; 153:A159-A170.
    [100]F. Badway, N. Pereira, F. Cosandey, G. G. Amatucci. Carbon-metal fluoride nanocomposites-Structure and electrochemistry of FeF3:C[J].Journal of the Electrochemical Society.2003;150: A1209-A1218.
    [101]F. Badway, N. Pereira, F. Cosandey, G. G. Amatucci.Next generation positive electrode materials enabled by nanocomposites:Metal fluorides[J].Solid State Ionics-2002.2003;756:207-218
    [102]F. Badway, A.Mansour, T. Plitz, N. Pereira, L. Weinstein, W. Yourey, G. G. Amatucci.Enabling aspects of metal halide nanocomposites for reversible energy storage[J].Solid-State Ionics-2006. 2007;972:239-250
    [103]F. Badway, F. Cosandey, N. Pereira, G. G. Amatucci. Carbon metal fluoride nanocomposites High-capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries[J].Journal of the Electrochemical Society.2003;150:A1318-A1327.
    [104]F. Badway, A. N. Mansour, N. Pereira, J. F. Al-Sharab, F. Cosandey, I. Plitz, G. G. Amatucci. Structure and electrochemistry of copper fluoride nanocomposites utilizing mixed conducting matrices[J]. Chemistry of Materials.2007; 19:4129-4141.
    [105]M. Bervas, F. Badway, L. C. Klein, G. G. Amatucci.Bismuth fluoride nanocomposite as a positive electrode material for rechargeable lithium batteries[J].Electrochemical and Solid State Letters.2005; 8:A179-A183.
    [106]Y. F. Zhukovskii, P. Balaya, M. Dolle, E. A. Kotomin, J. Maier. Enhanced lithium storage and chemical diffusion in metal-LiF nanocomposites:Experimental and theoretical results[J].Physical Review B.2007;76:1-6.
    [107]R. E. Doe, K. A. Persson, Y. S. Meng, G. Ceder. First-Principles Investigation of the Li-Fe-F Phase Diagram and Equilibrium and Nonequilibrium Conversion Reactions of Iron Fluorides with Lithium[J].Chemistry of Materials.2008;20:5274-5283.
    [108]Y. Makimura, A.Rougier, J. M. Tarascon. Pulsed laser deposited iron fluoride thin films for lithium-ion batteries[J].Applied Surface Science.2006;252:4587-4592.
    [109]Y. Makimura, A. Rougier, L. Laffont, M. Womes, J. C. Jumas, J. B.Leriche, J. M. Tarascon. Electrochemical behaviour of low temperature grown iron fluoride thin films[J].Electrochemistry Communications.2006;8:1769-1774.
    [110]T. Li, L. Li, Y.L. Cao, X. P. Ai, H. X. Yang. Reversible Three-Electron Redox Behaviors of FeF3 Nanocrystals as High-Capacity Cathode-Active Materials for Li-Ion Batteries[J].Journal of Physical Chemistry C.2010; 114:3190-3195.
    [111]W. Wu,Y. Wang, X. Y. Wang, Q. Q. Chen, X. Wang, S. Y. Yang, X. M. Liu, J. Guo, Z. H. Yang. Structure and electrochemical performance of FeF3/V2O5 composite cathode material for lithium-ion battery[J].Journal of Alloys and Compounds.2009;486:93-96.
    [112]Y. N. Zhou, X. J. Wu, Z. W. Fu. Combinatorial Investigations of Co-LiF and Co-Li3N Nanocomposite as New Lithium Storage Material[J].2008 2nd Ieee International Nanoelectronics Conference, Vols 1-3.2008;69-73
    [113]Y. N. Zhou, C. L. Wu, H. Zhang, X. J. Wu, Z. W. Fu. The electrochemical properties of LiF-Ni nanocomposite thin film[J]. Acta Physico-Chimica Sinica.2006; 22:1111-1115.
    [114]Y. N. Zhou, W. Y. Liu, M. Z. Xue, L. Yu, C. L. Wu, X. J. Wu,Z. W. Fu. LiF/Co nanocomposite as a new Li storage material[J].Electrochemical and Solid State Letters.2006; 9:A147-A150.
    [115]H. Zhang, Y. N. Zhou, X. J. Wu,Z. W. Fu. Electrochemical properties of CuF2 films fabricated by pulsed laser deposition[J].Acta Physico-Chimica Sinica.2008;24:1287-1291.
    [116]D. C. S. Souza, V. Pralong, A. J. Jacobson, L. F. Nazar. A reversible solid-state crystalline transformation in a metal phosphide induced by redox chemistry[J].Science.2002;296:2012-2015.
    [117]S. Boyanov, M. Womes, L. Monconduit, D. Zitoun. Mossbauer Spectroscopy and Magnetic Measurements As Complementary Techniques for the Phase Analysis of FeP Electrodes Cycling in Li-Ion Batteries[J].Chemistry of Materials.2009; 21:3684-3692.
    [118]S. Boyanov, D. Zitoun, M. Menetrier, J. C. Jumas, M. Womes, L. Monconduit. Comparison of the Electrochemical Lithiation/Delitiation Mechanisms of FePx (x=1,2,4) Based Electrodes in Li-Ion Batteries[J].Journal of Physical Chemistry C.2009;113:21441-21452.
    [119]D. C.C. Silva, O. Crosnier, G. Ouvrard, J. Greedan, A. Safa-Sefat,L. F. Nazar. Reversible lithium uptake by FeP2[J].Electrochemical and Solid State Letters.2003;6:A162-A165.
    [120]R. Alcantara, J. L. Tirado, J. C. Jumas, L. Monconduit, J.Olivier-Fourcade. Electrochemical reaction of lithium with CoP3[J].Journal of Power Sources.2002;109:308-312.
    [121]V. Pralong, D. C. S.Souza, K. T. Leung, L. F. Nazar. Reversible lithium uptake by CoP3 at low potential:role of the anion[J].Electrochemistry Communications.2002; 4:516-520.
    [122]M. Cruz, J. Morales, L. Sanchez, J. Santos-Pena, F. Martin. Electrochemical properties of electrodeposited nicked phosphide thin films in lithium cells[J].Journal of Power Sources.2007;171: 870-878.
    [123]A. Hayashi, A. Inoue, M. Tatsumisago. Electrochemical performance of NiP2 negative electrodes in all-solid-state lithium secondary batteries[J].Journal of Power Sources.2009; 189:669-671.
    [124]M. P. Bichat, T. Politova, J. L. Pascal, F. Favier, L. Monconduit. Electrochemical reactivity of Cu3P with lithium[J].Journal of the Electrochemical Society.2004; 151:A2074-A2081.
    [125]B.Mauvernay, M. P. Bichat, F. Favier, L. Monconduit, M. Morcrette, M. L. Doublet. Progress in the lithium insertion mechanism in Cu3P[J].Ionics.2005;11:36-45.
    [126]H. Pfeiffer, F. Tancret, M. P. Bichat, L. Monconduit, F. Favier, T. Brousse. Air stable copper phosphide (Cu3P):a possible negative electrode material for lithium batteries[J].Electrochemistry Communications.2004;6:263-267.
    [127]K. Wang, J.Yang, J. Y. Xie, B.F. Wang, Z. S.Wen. Electrochemical reactions of lithium with CuP2 and Li1.75Cu1.25P2 synthesized by ballmilling[J].Electrochemistry Communications.2003;5:480-483.
    [128]C. M. Park, H. J. Sohn. Tetragonal Zinc Diphosphide and Its Nanocomposite as an Anode for Lithium Secondary Batteries[J].Chemistry of Materials.2008;20:6319-6324.
    [129]M. P. Bichat, J. L. Pascal, F. Gillot, F. Favier. Electrochemical lithium insertion in Zn3P2 zinc phosphide[J].Chemistry of Materials.2005;17:6761-6771.
    [130]M. P. Bichat, J. L. Pascal, F. Gillot, F. Favier. Electrochemical lithium insertion in Zn3P2 zinc phosphide[J].Journal of Physics and Chemistry of Solids.2006;67:1233-1237.
    [131]J. J. Wu,Z. Sun, Z. W. Fu.Electrochemical Properties of CrP Thin Film Electrode Fabricated by Pulsed Laser Deposition[J].Chinese Journal of Inorganic Chemistry.2008;24:1761-1766.
    [132]F. Gillot, M. Menetrier, E. Bekaert, L. Dupont, M. Morcrette, L. Monconduit, J. M. Tarascon. Vanadium diphosphides as negative electrodes for secondary Li-ion batteries[J].Journal of Power Sources.2007;172:877-885.
    [133]Y. U. Kim, B.W. Cho, H. J. Sohn. The reaction mechanism of lithium insertion in vanadium tetraphosphide[J].Journal of the Electrochemical Society.2005;152:A1475-A1478.
    [134]Y. Kim,H. Hwang, C. S.Yoon, M. G. Kim, J.Cho. Reversible lithium intercalation in teardrop-shaped ultrafine SnPo.94 particles:An anode material for lithium-ion batteries[J].Advanced Materials.2007;19:92-+.
    [135]Y.U. Kim, S.I. Lee, C. K. Lee, H. J. Sohn. Enhancement of capacity and cycle-life of Sn4delta P3 (0 <=delta<=1) anode for lithium secondary batteries[J].Journal of Power Sources.2005;141: 163-166.
    [136]K. A. Kovnir, Y. V. Kolen'ko, S. Ray, J. Li, T. Watanabe, M. Itoh, M. Yoshimura, A. V. Shevelkov. A facile high-yield solvothermal route to tin phosphide Sn4P3[J].Journal of Solid State Chemistry.2006; 179:3756-3762.
    [137]S.G. Woo, J. H. Jung, H. Kim, M. G. Kim, C. K. Lee, H. J. Sohn, B.W. Cho. Electrochemical characteristics of Ti-P composites prepared by mechanochemical synthesis[J].Journal of the Electrochemical Society.2006; 153:A1979-A1983.
    [138]H. Hwang, M. G. Kim, J. Cho. Li reaction behavior of GaP nanoparticles prepared by a sodium naphthalenide reduction method[J]. Journal of Physical Chemistry C.2007;111:1186-1193.
    [139]O. Crosnier, L. F. Nazar. Facile reversible displacement reaction of Cu3P with lithium at low potential[J].Electrochemical and Solid State Letters.2004; 7:A187-A189.
    [140]F. Gillot, L. Monconduit, M. L. Doublet. Electrochemical Behaviors of binary and ternary manganese phosphides[J].Chemistry of Materials.2005;17:5817-5823.
    [141]S. Boyanov, K. Annou, C. Villevieille, M. Pelosi, D. Zitoun, L. Monconduit. Nanostructured transition metal phosphide as negative electrode for lithium-ion batteries[J].Ionics.2008;14: 183-190.
    [142]S.Boyanov, F. Gillot, L. Monconduit. The electrochemical reactivity of the NiP3 skutterudite-type phase with lithium[J].Ionics.2008;14:125-130.
    [143]Y. U.Kim, C. K. Lee, H. J. Sohn, T. Kang. Reaction mechanism of tin phosphide anode by mechanochemical method for lithium secondary batteries[J].Journal of the Electrochemical Society. 2004;151:A933-A937.
    [144]B.Leon, J. I. Corredor, J. L. Tirado, C. Perez-Vicente. On the mechanism of the electrochemical reaction of tin phosphide with lithium[J].Journal of the Electrochemical Society.2006;153: A1829-A1834.
    [145]L. Huang, X. M. Zheng, Y.S. Wu, L. J. Xue, F. S. Ke, G. Z. Wei, S. G. Sun. Electrodeposition and lithium storage performance of novel three-dimensional porous Fe-Sb-P amorphous alloy electrode[J]. Electrochemistry Communications.2009;11:585-588.
    [146]Z. P. Xia, Y.Lin, Z. Q. Li. A new phase in Ni-Sn-P system and its property as an anode material for lithium-ion batteries[J].Materials Characterization.2008;59:1324-1328.
    [147]T. Doi, M. Inaba, Y. Iriyama, T. Abe, Z. Ogumi. Electrochemical STM observation of Li1+xMn2-xO4 thin films prepared by pulsed laser deposition[J].Journal of the Electrochemical Society.2008;155: A20-A23.
    [148]T. Dumont, T. Lippert, M. Dobeli, H. Grimmer, J. Ufheil, P. Novak, A. Wursig, U. Vogt, A. Wokaun. Influence of experimental parameter on the Li-content of LiMn2O4 electrodes produced by pulsed laser deposition[J].Applied Surface Science.2006;252:4902-4906.
    [149]F. Huang, Z. W. Fu, Q. Z. Qin. A novel Li2Ag0.5V2O5 composite film cathode for all-solid-state lithium batteries[J].Electrochemistry Communications.2003;5:262-266.
    [150]Y. Iriyama, H. Kurita, I. Yamada, T. Abe, Z. Ogumi. Efffects of surface modification by MgO on interfacial reactions of lithium cobalt oxide thin film electrode[J].Journal of Power Sources.2004; 137:111-116.
    [151]N. Kuwata, J. Kawamura, K. Toribami, T. Hattori, N.Sata. Thin-film lithium-ion battery with amorphous solid electrolyte fabricated by pulsed laser deposition[J].Electrochemistry Communications.2004;6:417-421.
    [152]L. Li, Y. Li, S.Y. Gao, N. Koshizaki. Ordered Co3O4 hierarchical nanorod arrays:tunable superhydrophilicity without UV irradiation and transition to superhydrophobicity[J].Journal of Materials Chemistry.2009;19:8366-8371.
    [153]C. V. Ramana, K. Zaghib, C. M. Julien. Growth and electrochemical properties of Li-Ni-Co-Al oxide films[J].Journal of Vacuum Science & Technology A.2007; 25:1208-1213.
    [154]M. C. Rao, O. M.Hussain. Growth and characterization of tetravalent doped LiCoO2 thin film cathodes[J].Indian Journal of Engineering and Materials Sciences.2009;16:335-340.
    [155]D. Singh, R. Houriet, R. Vacassy, H. Hofmann, V.Carciun, R. K. Singh. Influence of LiMn2O4 film and particle morphology on electrochemical properties of Li ion rechargeable batteries[J].Lithium Batteries, Proceedings.2000; 99:371-378
    [156]D. Singh, R. Houriet, R. Vacassy, H. Hofmann, V. Craciun, R. K. Singh. Pulsed laser deposition and characterization of LiMn2O4 thin films for applications in Li ion rechargeable battery systems[J].New Materials for Batteries and Fuel Cells.2000;575:83-89
    [157]D. Singh, W. S.Kim, V. Craciun, H. Hofmann, R. K. Singh. Microstructural and electrochemical properties of lithium manganese oxide thin films grown by pulsed laser deposition[J].Applied Surface Science.2002;197:516-521.
    [158]Y. Wang, Z. W. Fu, Q.Z. Qin. A nanocrystalline Co304 thin film electrode for Li-ion batteries[J].Thin Solid Films.2003;441:19-24.
    [159]H. Xia, L. Lu, G. Ceder. Substrate effect on the microstructure and electrochemical properties of LiCoO2 thin films grown by PLD[J].Journal of Alloys and Compounds.2006;417:304-310.
    [160]H. Xia, Y. S.Meng, L. Lu, G. Ceder. Electrochemical properties of nonstoichiometric LiNi0.5Mn1.5O4-delta thin-film electrodes prepared by pulsed laser deposition[J].Journal of the Electrochemical Society.2007;154:A737-A743.
    [161]X. Q. Yu, Y. He, J. P. Sun, K. Tang, H. Li, L. Q. Chen, X. J. Huang. Nanocrystalline MnO thin film anode for lithium ion batteries with low overpotential[J].Electrochemistry Communications.2009; 11: 791-794.
    [162]Y. N. Zhou, H. Zhang, M. Z. Xue, C. L. Wu,X. J. Wu, Z. W. Fu. The electrochemistry of nanostructured In2O3 with lithium[J].Journal of Power Sources.2006;162:1373-1378.
    [163]H. Zhang, Y. N. Zhou, Q. Sun, Z. W. Fu. Nanostructured nickel fluoride thin film as a new Li storage material[J].Solid State Sciences.2008;10:1166-1172.
    [164]N. Kuwata, N. Iwagami, J. Kawamura. ArF excimer laser deposition of wide-band gap solid electrolytes for thin film batteries[J].Solid State Ionics.2009; 180:644-648.
    [165]W. Y. Liu, Z. W. Fu, Q. Z. Qin. Studies on lithium phosphorous oxynitride electrolyte thin films and a new all-solid-state thin film lithium battery[J],Acta Chimica Sinica.2004; 62:2223-2227.
    [166]S.L. Zhao, Z. W. Fu, Q. Z. Qin. A solid-state electrolyte lithium phosphorus oxynitride film prepared by pulsed laser deposition[J].Thin Solid Films.2002;415:108-113.
    [167]T. Lippert. Molecular Design of Polymers for Laser Structuring and Thin Oxide Films by Pulsed Laser Deposition as Model System for Electrochemical Applications[J].Photon-Based Nanoscience and Nanobiotechnology.2006; 239:267-306
    [168]R. Vasanthi, I.R. Mangani, S.Selladurai, P. Manoravi.Comparison of (LiCo0.97Mg0.03O2film with bulk for the application of lithium micro-batteries[J].Solid State Ionics:Trends in the New Millennium, Proceedings.2002;163-170
    [169]余平,任雪勇,肖清泉,张晋敏.磁控溅射真空制膜技术[J].贵州大学学报(自然科学版).2007;24:68-70.
    [170]刘世宏,王当感,潘承磺.X-射线光电子能谱分析[M].北京,科学出版社,1988.111.
    [171]周玉,武高辉.材料分析测试技术[M].哈尔滨,哈尔滨工业大学出版社,1998.102.
    [172]王建祺,吴文辉.电子能谱学引论[M].北京,国防工业出版社,1992.55.
    [173]范康年.谱学导论[M].北京,高等教育出版社,2002.85.
    [174]周伟舫.电化学测量[M].上海,上海科技出版社,1985.78.
    [175]田昭武.电化学研究方法[M].北京,科学出版社,1984:
    [176]柳厚田,徐品弟.电化学测量方法[M].上海,复旦大学出版社,1992.133.
    [177]黄慰曾.电化学与电分析化学[M].北京,北京大学出版社,1981:
    [178]Z. W. Fu, C. L. Li, W. Y. Liu, J. Ma, Y.Wang, Q. Z. Qin. Electrochemical reaction of lithium with cobalt fluoride thin film electrode[J].Journal of the Electrochemical Society.2005;152:E50-E55.
    [179]Y. F. Zhukovskii, P. Balaya, M. Dolle, E. A. Kotomin, J. Maier. Enhanced lithium storage and chemical diffusion in metal-LiF nanocomposites:Experimental and theoretical results[J].Physical Review B.2007;76:11662-11662.
    [180]Y.Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka. Tin-based amorphous oxide:A high-capacity lithium-ion-storage material[J].Science.1997;276:1395-1397.
    [181]Y. N.Zhou, C. L. Wu,H. Zhang, X. J. Wu, Z. W.Fu. Electrochemical reactivity of Co-Li2S nanocomposite for lithium-ion batteries[J].Electrochimica Acta.2007;52:3130-3136.
    [182]M. Z. Xue, Z. W. Fu. Electrochemical reactivity mechanism of CuInSe2 with lithium[J],Thin Solid Films.2008;516:8386-8392.
    [183]R. A.Huggins.Lithium alloy negative electrodes[J].Journal of Power Sources.1999;82:13-19.
    [184]Y. S.Jung, K. T. Lee, J.H.Kim, J. Y.Kwon, S. M. Oh. Thermo-electrochemical Activation of an In-Cu Intermetallic Electrode for the Anode in Lithium Secondary Batteries[J].Advanced Functional Materials.2008;18:3010-3017.
    [185]I.A.Courtney, J.S.Tse, O. Mao, J.Hafner, J.R. Dahn. Ab initio calculation of the lithium-tin voltage profile[J].Phys.Rev.B.1998;58:15583-15584.
    [186]H.Gwon, D. Seo, S. Kim, J.Kim, K. Kang. Combined First-Principle Calculations and Experimental Study on Multi-Component Olivine Cathode for Lithium Rechargeable Batteries[J].Adv. Funct. Mater.2009;19:3285.
    [187]A. W. Y. Imai, J.Akimoto, T. Kumagai. Energetic evaluation of possible insertion sites of Li into La3Ni2Sn7 using a first principle calculation[J].Journal of Alloys and Compounds.2008; 462: 284-288.
    [188]Y. Kang, S.Suh, Y. Kim. First-Principle Calculation-Assisted Structural Study on the Nanoscale Phase Transition of Si for Li-Ion Secondary Batteries[J].Inorg. Chem.2009;48:11631.
    [189]S.Shi, D. Wang, S.Meng, L. Chen, X. Huang. First-principles studies of cation-doped spinel LiMn2O4 for lithium ion batteries[J].2003;67:115130.
    [190]M. Ramzan, S. Lebegue, P. Larsson, R. Ahuja. Structural, magnetic, and energetic properties of Na2FePO4F, Li2FePO4F, NaFePO4F, and LiFePO4F from ab initio calculations[J].JOURNAL OF APPLIED PHYSICS.2009; 106:043510.
    [191]L. Daheron, H.Martinez, R. Dedryve, I.Baraille. Surface Properties of LiCoO2 Investigated by XPS Analyses and Theoretical Calculations[J].J.Phys. Chem. C.2009; 113:5843-5852.
    [192]S.Ishikawa, G. Madjarova, T.Yamabe.First-Principles Study of the Lithium Interaction with Polycyclic Aromatic Hydrocarbons[J].J.Phys.Chem. B.2001;105:11986-11993.
    [193]P. Johansson.Electronic structure calculations on lithium battery electrolyte salts[J].Phys. Chem. Chem.Phys.2007;9:1493.
    [194]Y. Wang, S. Nakamura, K. Tasaki, P. B. Balbuena. Theoretical Studies To Understand Surface Chemistry on Carbon Anodes for Lithium-Ion Batteries:How Does Vinylene Carbonate Play Its Role as an Electrolyte Additive[J].J.Am. Chem.Soc.2002; 124:4408.
    [195]Y. Hana, J.Junga, S.Yub, H. Lee. Understanding the characteristics of high-voltage additives in Li-ion batteries:Solvent effects[J].Journal of Power Sources.2009;187:581.
    [196]N. G. Nair, M.Blanco, W. West, F. C.Weise, S.Greenbaum,V. P. Reddy. Fluorinated Boroxin-Based Anion Receptors for Lithium Ion Batteries:Fluoride Anion Binding, Ab Initio Calculations, and Ionic Conductivity Studies[J].J.Phys. Chem. A.2009; 113:5918.
    [197]C.Beilly, H.Haendler. The Crystal Structure of Copper(I1)Fluoride[J].J.Am. Chem. Soc.1957;79: 1049.
    [198]J.P. Perdew, K. Burke, M.Ernzerhof. Generalized Gradient Approximation Made Simple[J].Phys. Rev. Lett.1996;77:3865
    [199]M.Studio. Acceryls Co[M].4.0 ed.,2005:

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700