用户名: 密码: 验证码:
纳米结构Pt、Pd催化剂的设计、制备与电催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文中,为了获得高效的直接甲醇燃料电池催化剂,我们对通过机械合金化或快速凝固技术得到的Al基含Pt前驱体合金,进行两步去合金化处理(分别采用NaOH和HN03溶液),制备了高效的纳米多孔二元和三元Pt基催化剂。另一方面,利用阳极氧化和循环伏安还原相结合的方法对金属Pd片进行处理,获得了具有高催化性能的纳米结构Pd催化剂。
     在机械合金化制备Al2(Cu95Pt5)和Al74Ni25Pt1三元前驱体合金中,对前驱体合金进行两步去合金化处理,通过X射线衍射、扫描/透射电镜等分析发现获得了具有双连续结构的三维纳米多孔二元Pt3Cu和PtNi合金。电化学测试表明,纳米多孔Pt3Cu具有比商用PtC催化剂更好的甲醇催化和氧还原性能。DFT计算纳米多孔Pt3Cu合金d带中心及CO/O2吸附能的结果表明,与Cu合金化可以优化Pt的电子结构,提高催化性能。同时,三维的多孔结构及相互联通的韧带结构为物质和电子传输提供了更好的通道,加速了反应的动力学。类似的,通过机械合金化和两步去合金化法制备的纳米多孔PtNi合金同样具有优异的甲醇催化性能。
     通过快速凝固技术与两步去合金化相结合的方法,制备了具有三维双连续超细多孔结构的二元PtM(M=Co, Cu, Ni)催化剂。电化学测试表明PtM二元催化剂的甲醇催化性能和氧还原性能均优于商用PtC催化剂,同时不同过渡元素Co,Cu和Ni的添加对催化性能的影响不同。我们认为,不同合金元素的添加对于合金电子结构改变不同,合金中电子结构的改变对于催化性能有着重要的影响作用,因此提高了PtM催化剂的电催化性能。
     通过机械合金化法制备AlCuPtPd四元前驱体合金,然后对前驱体合金采用不同的去合金化处理工艺(采用不同的腐蚀溶液),获得了具有不同成分配比的三元PtPdCu系列合金(T1-T6合金)。通过X射线衍射、扫描/透射电镜等分析发现均获得了具有双连续结构的纳米多孔PtPdCu合金。电化学分析表明,不同合金(T1-T6合金)的甲醇催化性能和氧还原性能存在很大的差别,这与不同去合金化工艺形成合金的不同成分有关。最终我们确定在现有条件下具有最优的甲醇催化性能和氧还原性能的工艺参数,参数为在2M NaOH和1M HNO3溶液中依次去合金化(T3合金)。
     通过机械合金化法制备AlCuPtRu/AlNiPtRu四元前驱体合金,然后对前驱体合金采用两步去合金化处理,获得了纳米多孔结构和单质结构共存的三元PtRuCu和PtRuNi合金。电化学分析结果表明,三元纳米多孔PtRuCu合金具有优于商用PtC和PtRuC催化剂的甲醇催化性能,虽然其抗CO中毒能力要稍逊于商用PtRuC催化剂。三元纳米多孔PtRuNi催化剂对于甲醇没有催化效果,但是对甲酸存在一定的催化效果。
     通过在硫酸溶液中对金属Pd进行阳极氧化和循环伏安还原相结合的方法处理,可以自发形成Pd纳米颗粒。与平板Pd电极相比,阳极氧化Pd电极在硫酸溶液中表现出了不同的循环伏安曲线特征,包括分离的氢吸附/脱附峰以及相对较大的还原峰面积,较大的还原峰面积对应于更大的电化学活性面积(ECS A),因此阳极氧化Pd电极表现出更好的甲醇、乙醇和甲酸催化性能。同时,阳极氧化采用的硫酸浓度、施加电位和氧化时间对ECSA均有很大的影响,我们通过试验得到了最佳ECSA的条件为在1.0M H2SO4溶液中施加2.0V(vs. MSE)处理90min,最好的ECSA可以达到其几何面积的890倍。这个方法也提供了一种有前景的制备具有超高ECSA纳米结构Pd催化剂的途径。
In this paper, in order to fabricate high-performance catalysts for direct methanol fuel cells (DMFCs), the Al-based precursor alloys containing Pt were fabricated by mechanical alloying or rapid solidification process, and then the precursor alloys were dealloyed in NaOH and HNO3solutions. Finally, the nanoporous Pt-based binary or ternary alloys can be obtained with high performance for methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) in DMFCs. On the other hand, Pd nanoparticles with superior electro-catalytic properties were spontaneously formed through the combination of anodization and cyclic voltammogram (CV) reduction processes.
     Through mechanical alloying and subsequent two-step dealloying method, ultrafine nanoporous Pt3Cu (np-Pt3Cu) and PtNi (np-PtNi) alloys have been successfully fabricated from Al2(Cu95Pts) and Al74Ni25Pt1precursor alloys, respectively, which were characterized by the X-ray diffraction (XRD) and electron microscopic characterization analysis. Electrochemical tests indicate that the obtained np-Pt3Cu alloy exhibits superior electro-catalytic activity and stability towards MOR, as well as enhanced ORR activities in acidic circumstance compared to the commercial PtC catalyst. Density functional theory (DFT) calculations reveal that the electronic structure of Pt has been modified with the shift of Pt d-band center due to alloying with Cu, which can decrease CO poisoning and enhance the MOR and ORR activities. Moreover, the nanoporous structure and connecting ligaments of the np-Pt3Cu alloy are much favorable for the mass and electron transport in three-dimension, which greatly accelerates the reaction kinetics on the nanoporous alloy modified electrode surfaces. Similarly, the np-PtNi alloy fabricated by mechanical alloying and two-step dealloying method also exhibits enhanced MOR activity compared to the commercial PtC catalyst.
     Through rapid solidification and subsequent two-step dealloying method, nanoporous PtM (M=Co, Cu, Ni)(np-PtM) alloys have been successfully fabricated. Electrochemical tests indicate that the obtained np-PtM alloys exhibit superior MOR and ORR activities and stability compared to the commercial PtC catalyst, and different elements additions have an obvious effect on the improvement degree of the electro-catalytic activities. It is thought that the electronic structure varies from that of pure Pt among these alloys, which is responsible for the improved electro-catalytic activities of np-PtM alloys.
     By mechanical alloying and subsequent different dealloying processes, nanoporous PtPdCu (np-PtPdCu) ternary alloys with different compositions (T1-T6alloys) have been obtained from the AlCuPtPd precursor, which was characterized by the XRD and electron microscopic characterization analysis. Electrochemical tests suggest that there are obvious difference of electro-catalytic MOR and ORR activities among these alloys (T1-T6alloys), which is mainly caused by the different compositions due to the different dealloying conditions. Finally, the as-dealloyed T3alloy (dealloying in2M NaOH and1M HNO3solutions) exhibits the best electro-catalytic activities for MOR and ORR.
     By mechanical alloying and subsequent dealloying process, nanoporous PtRuCu and PtRuNi ternary alloys have been fabricated from the AlCuPtRu and AlNiPtRu precursors, respectively. Electrochemical tests demonstrate that nanoporous PtRuCu exhibits better electro-catalytic activities for MOR than the commercial PtC and PtRuC catalysts, while its CO poisoning resistance ability is a little poor than the commercial PtRuC catalyst. Meanwhile, the nanoporous PtRuNi alloy shows no electro-catalytic activity for MOR and certain electro-catalytic activity for electro-oxidation towards formic acid.
     The anodization and subsequent CV reduction processes result in the formation of Pd nanostructures on the electrode surface. Compared to the bulk Pd, the anodization of Pd in H2SO4solutions leads to different CV behaviors including well separated adsorption/desorption peaks in the hydrogen region and relatively larger reduction peak areas. The improvement of electrochemically active surface areas (ECSAs) corresponding to the larger reduction peak areas of the anodized Pd samples results in better electro-catalytic activities towards methanol, ethanol and formic acid compared to the bulk Pd. Meanwhile, the electrolyte concentration, the applied potential and polarization time have a significant influence on the anodization process of Pd. The ECSAs of the anodized Pd obtained under the optimum polarization conditions (1.0M H2SO4,2.0V vs. MSE,90min) can reach as large as890times compared to its geometric area. The present findings provide a promising route to fabricate nanostructured Pd electrocatalysts with ultrahigh ECSAs.
引文
[1]K. Sopian, A.H. Shamsuddin, T.N. Veziroglu. Solar Hydrogen Energy Option for Malaysia Proceeding of the International Conference on Advances in Stratic Technology. UKM, Bangi. 1995,209-220
    [2]K.V. Kordesch, GR. Simader. Environmental Impact of Fuel Cell Technology. Chemical Reviews,1995,95 (1),191-207
    [3]Q.G. Yan, H. Toghiani, H. Causey. Steady State and Dynamic Performance of Proton Exchange Membrane Fuel Cells (PEMFCs) under Various Operating Conditions and Load Changes. Journal of Power Sources,2006,161 (1),492-502
    [4]B. Smitha, S. Sridhar, A.A. Khan. Solid Polymer Electrolyte Membranes for Fuel Cell Applications—a Review. Journal of Membrane Science,2005,259 (1),10-26
    [5]M. Faraday. Experimental Researches in Electricity. Bernard Quaritch,1839
    [6]W.R. Grove. XXIV. On Voltaic Series and the Combination of Gases by Platinum. Philosophical Magazine and Journal of Science,1839,14 (86),127-130
    [7]W.R. Grove. LXXII. On a Gaseous Voltaic Battery. Philosophical Magazine and Journal of Science,1842,21 (140),417-420
    [8]F.W. Ostwald. Handbook and Manual for Physicochemical Measurements.1893
    [9]Http://en.wikipedia.org/wiki/Fuel_cell#cite_note-3
    [10]王晓红,黄宏等.燃料电池基础.北京,电子工业出版社,2007
    [11]M.S. Wilson, S. Gottesfeld. High Performance Catalyzed Membranes of Ultra-Low Pt Loadings for Polymer Electrolyte Fuel Cells. Journal of The Electrochemical Society,1992, 139 (2), L28-L30
    [12]D.H. Jung, S.Y. Cho, D.H. Peck, D.R. Shin, J.S. Kim. Preparation and Performance of a Nafion/Montmorillonite Nanocomposite Membrane for Direct Methanol Fuel Cell. Journal of Power Sources,2003,118(1),205-211
    [13]L. Carrette, K.A. Friedrich, U. Stimming. Fuel Cells-Fundamentals and Applications. Fuel Cells,2001,1(1),5-39
    [14]S.C. Yao, X.D. Tang, C.C. Hsieh, Y. Alyousef, M. Vladimer, G.K. Fedder, C.H. Amon. Micro-Electro-Mechanical Systems (MEMS)-based Micro-scale Direct Methanol Fuel Cell Development. Energy,2006,31 (5),636-649
    [15]E.W. Jungner. Hydrophobieren Von Potassium Hydroxidele Mit Paraffin. German Patent DRP, 1919,348,293
    [16]A. Schmid. Die Diffusionsgaselektrode. Helvetica Chimica Acta,1924,7(1),370-373
    [17]D.R. Lowde, J.O. Williams, P.A. Attwood, R.J. Bird, B.D. McNicol, R.T. Short. Characterization of Electro-oxidation Catalysts Prepared by Ion-exchange of Platinum Salts with Surface Oxide Groups on Carbon. Journal of the Chemical Society, Faraday Transactions, 1,1979,75,2312-2324
    [18]S.D. Knights, K.M. Colbow, J. St-Pierre, D.P. Wilkinson. Aging Mechanisms and Lifetime of PEFC and DMFC. Journal of Power Sources,2004,127 (1),127-134
    [19]M. Neurock, M. Janik, A. Wieckowski. A First Principles Comparison of the Mechanism and Site Requirements for the Electro-catalytic Oxidation of Methanol and Formic Acid over Pt. Faraday Discussions,2009,140,363-378
    [20]H.A. Gasteiger, N.M. Markovic, P.N. Ross Jr. H2 and CO Electrooxidation on Well-characterized Pt, Ru, and Pt-Ru.1. Rotating Disk Electrode Studies of the Pure Gases Including Temperature Effects. The Journal of Physical Chemistry,1995,99 (20),8290-8301
    [21]H. Zhang, M.S. Jin, Y.N. Xia. Enhancing the Catalytic and Electro-catalytic Properties of Pt-Based Catalysts by Forming Bimetallic Nanocrystals with Pd. Chemical Society Reviews, 2012,41 (24),8035-8049
    [22]H.A. Gasteiger, N.M. Markovic, P.N. Ross Jr. Electrooxidation of CO and H2/CO Mixtures on a Well-Characterized Pt3Sn Electrode Surface. The Journal of Physical Chemistry,1995,99 (22),8945-8949
    [23]B.N. Grgur, N.M. Markovic, P.N. Ross. The Electro-oxidation of H2 and H2/CO Mixtures on Carbon-Supported PtxMoy Alloy Catalysts. Journal of The Electrochemical Society,1999,146 (5),1613-1619
    [24]M. Watanabe, S. Motoo. Electrocatalysis by Ad-atoms:Part Ⅱ. Enhancement of the Oxidation of Methanol on Platinum by Ruthenium Ad-atoms. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1975,60 (3),267-273
    [25]T. Frelink, W. Visscher, J.A.R. Van Veen. On the Role of Ru and Sn as Promotors of Methanol Electro-oxidation over Pt. Surface Science,1995,335,353-360
    [26]B. Gurau, R. Viswanathan, R.X. Liu, TJ. Lafrenz, K.L. Ley, E.S. Smotkin, E. Reddington, A. Sapienza, B.C. Chan, T.E. Mallouk. Structural and Electrochemical Characterization of Binary, Ternary, and Quaternary Platinum Alloy Catalysts for Methanol Electro-Oxidation. The Journal of Physical Chemistry B,1998,102 (49),9997-10003
    [27]S. Hadzi-Jordanov, H. Angerstein-Kozlowska, B.E. Conway. Surface Oxidation and H Deposition at Ruthenium Electrodes:Resolution of Component Processes in Potential-sweep Experiments. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1975, 60 (3),359-362
    [28]W.Z. Li, W.J. Zhou, H.Q. Li, Z.H. Zhou, B. Zhou, G.Q. Sun, Q. Xin. Nano-stuctured Pt-Fe/C as Cathode Catalyst in Direct Methanol Fuel Cell. Electrochimica Acta,2004,49 (7), 1045-1055
    [29]J.B. Xu, K.F. Hua, G.Z. Sun, C. Wang, X.Y. Lv, Y.J. Wang. Electrooxidation of Methanol on Carbon Nanotubes Supported Pt-Fe Alloy Electrode. Electrochemistry Communications,2006, 8 (6),982-986
    [30]H.J. Qiu, F.X. Zou. Nanoporous PtCo Surface Alloy Architecture with Enhanced Properties for Methanol Electrooxidation. ACS Applied Materials & Interfaces,2012,4 (3),1404-1410
    [31]C.X. Xu, J.G Hou, X.H. Pang, X.J. Li, M.L. Zhu, B.Y. Tang. Nanoporous PtCo and PtNi Alloy Ribbons for Methanol Electrooxidation. International Journal of Hydrogen Energy, 2012,37 (14),10489-10498
    [32]M. Khorasani-Motlagh, M. Noroozifar, M.S. Ekrami-Kakhki. Investigation of the Nanometals (Ni and Sn) in Platinum Binary and Ternary Electrocatalysts for Methanol Electrooxidation. International Journal of Hydrogen Energy,2011,36 (18),11554-11563
    [33]K.I. Machida, M. Enyo, G.Y. Adachi, J. Shiokawa. Methanol Oxidation Characteristics of Rare Earth Tungsten Bronze Electrodes Doped with Platinum. Journal of The Electrochemical Society,1988,135 (8),1955-1961
    [34]V. Bagotzky, Y.B. Vassilyev. Mechanism of Electro-oxidation of Methanol on the Platinum Electrode. Electrochimica Acta,1967,12 (9),1323-1343
    [35]H.A. Gasteiger, N. Markovic, P.N. Ross Jr, E.J. Cairns. Temperature-Dependent Methanol Electro-Oxidation on Well-Characterized Pt-Ru Alloys. Journal of The Electrochemical Society,1994,141 (7),1795-1803
    [36]C. Bock, B. MacDougall, Y. LePage. Dependence of CH3OH Oxidation Activity for a Wide Range of PtRu Alloys Detailed Analysis and New Views. Journal of The Electrochemical Society,2004,151 (8), A1269-A1278
    [37]J.C. Davies, J. Bonde, A. Logadottir, J.K. Norskov, I. Chorkendorff. The Ligand Effect:CO Desorption from Pt/Ru Catalysts. Fuel Cells,2005,5 (4),429-435
    [38]H.S. Wroblowa, G. Razumney. Electroreduction of Oxygen:A New Mechanistic Criterion. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1976,69 (2),195-201
    [39]M. Lefevre, E. Proietti, F. Jaouen, J.P. Dodelet. Iron-based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells. Science,2009,324 (5923),71-74
    [40]A. Morozan, B. Jousselme, S. Palacin. Low-Platinum and Platinum-free Catalysts for the Oxygen Reduction Reaction at Fuel Cell Cathodes. Energy & Environmental Science,2011,4 (4),1238-1254
    [41]H.A. Gasteiger, N.M. Markovic. Just a Dream-or Future Reality? Science,2009,324 (5923), 48-49
    [42]王荣跃.直接甲酸燃料电池催化剂的设计、制备与性能研究.博士学位论文.山东,山东大学,2012
    [43]J.K. N(?)rskov, T. Bligaard, B. Hvolb(?)k, F. Abild-Pedersen, I. Chorkendorff, C.H. Christensen. The Nature of the Active Site in Heterogeneous Metal Catalysis. Chemical Society Reviews, 2008,37 (10),2163-2171
    [44]V. Stamenkovic, B.S. Mun, K.J.J. Mayrhofer, P.N. Ross, N.M. Markovic, J. Rossmeisl, J. Greeley, J.K. N(?)rskov. Changing the Activity of Electrocatalysts for Oxygen Reduction by Tuning the Surface Electronic Structure. Angewandte Chemie,2006,118(18),2963-2967
    [45]J. Greeley, I.E.L. Stephens, A.S. Bondarenko, T.P. Johansson, H.A. Hansen, T.F. Jaramillo, J. Rossmeisl, I. Chorkendorff, J.K. N(?)skov. Alloys of Platinum and Early Transition Metals as Oxygen Reduction Electrocatalysts. Nature Chemistry,2009,1 (7),552-556
    [46]J.K. N(?)rskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jonsson. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. The Journal of Physical Chemistry B,2004,108 (46),17886-17892
    [47]C. Bock, B. MacDougall, C.L. Sun. Catalysis for Direct Methanol Fuel Cells. In:Catalysis for Alternative Energy Generation, Springer,2012,369-412
    [48]A. Heinzel, V.M. Barragan. A Review of the State-of-the-art of the Methanol Crossover in Direct Methanol Fuel Cells. Journal of Power Sources,1999,84 (1),70-74
    [49]A.J. Forty. Corrosion Micromorphology of Noble Metal Alloys and Depletion Gilding. Nature, 1979,282,597-598
    [50]R.C. Newman, S.G. Corcoran, J. Erlebacher, M.J. Aziz, K. Sieradzki. Alloy Corrosion. MRS BULLETIN-MATERIALS RESEARCH SOCIETY,1999,24,24-28
    [51]H. Lechtman. Pre-Columbian Surface Metallurgy. Scientific American,1984,250 (6), 56-63154
    [52]G. Claude. Method of Preparing Catalytic Materials. US Patent,1928
    [53]H.W. Pickering, P.R. Swann. Electron Metallography of Chemical Attack Upon Some Alloys Susceptible to Stress Corrosion Cracking. Corrosion,1963,19 (11),373t-389t
    [54]H.W. Pickering, C. Wagner. Electrolytic Dissolution of Binary Alloys Containing a Noble Metal. Journal of The Electrochemical Society,1967,114 (7),698-706
    [55]I.C. Oppenheim, D.J. Trevor, C.E.D. Chidsey, P.L. Trevor, K. Sieradzki. In Situ Scanning Tunneling Microscopy of Corrosion of Silver-Gold Alloys. Science,1991,254 (5032), 687-689
    [56]R.C. Newman, K. Sieradzki. Metallic Corrosion. Science,1994,263 (5154),1708-1709
    [57]A. Pareek, S. Borodin, A. Bashir, G.N. Ankah, P. Keil, G.A. Eckstein, M. Rohwerder, M. Stratmann, Y. Griinder, F.U. Renner. Initiation and Inhibition of Dealloying of Single Crystalline Cu3Au (111) Surfaces. Journal of the American Chemical Society,2011,133 (45), 18264-18271
    [58]J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki. Evolution of Nanoporosity in Dealloying. Nature,2001,410 (6827),450-453
    [59]F. Kertis, J. Snyder, L. Govada, S. Khurshid, N. Chayen, J. Erlebacher. Structure/Processing Relationships in the Fabrication of Nanoporous Gold. JOM,2010,62 (6),50-56
    [60]R. Vajtai. Springer Handbook of Nanomaterials. Springer,2013
    [61]J. Erlebacher. An Atomistic Description of Dealloying Porosity Evolution, the Critical Potential, and Rate-Limiting Behavior. Journal of the Electrochemical Society,2004,151 (10), C614-C626
    [62]U.S. Min, J.C.M. Li. The Microstructure and Dealloying Kinetics of a Cu-Mn Alloy. Journal of Materials Research,1994,9 (11),2878-2883
    [63]D.V. Pugh, A. Dursun, S.G. Corcoran. Formation of Nanoporous Platinum by Selective Dissolution of Cu from Cu0.75Pt0.25-Journal of Materials Research,2003,18 (1),216-221
    [64]H.B. Lu, Y. Li, F.H. Wang. Dealloying Behaviour of Cu-20Zr Alloy in Hydrochloric Acid Solution. Corrosion Science,2006,48 (8),2106-2119
    [65]J.R. Hayes, A.M. Hodge, J. Biener, A.V. Hamza, K. Sieradzki. Monolithic Nanoporous Copper by Dealloying Mn-Cu. Journal of Materials Research,2006,21 (10),2611-2616
    [66]F.U. Renner, Y. Grunder, P.F. Lyman, J. Zegenhagen. In-Situ X-Ray Diffraction Study of the Initial Dealloying of Cu3Au(001) and Cu0.83Pd0.17(001). Thin Solid Films,2007,515 (14), 5574-5580
    [67]L. Sun, C.L. Chien, P.C. Searson. Fabrication of Nanoporous Nickel by Electrochemical Dealloying. Chemistry of Materials,2004,16 (16),3125-3129
    [68]Z.H. Zhang, Y. Wang, Z. Qi, W.H. Zhang, J.Y. Qin, J. Frenzel. Generalized Fabrication of Nanoporous Metals (Au, Pd, Pt, Ag, and Cu) through Chemical Dealloying. The Journal of Physical Chemistry C,2009,113 (29),12629-12636
    [69]Q. Zhang, Z.H. Zhang. On the Electrochemical Dealloying of Al-based Alloys in a NaCl Aqueous Solution. Physical Chemistry Chemical Physics,2010,12 (7),1453-1472
    [70]C.C. Zhao, Z. Qi, X.G Wang, Z.H. Zhang. Fabrication and Characterization of Monolithic Nanoporous Copper through Chemical Dealloying of Mg-Cu Alloys. Corrosion Science,2009, 51 (9),2120-2125
    [71]H. Ji, X.G. Wang, C.C. Zhao, C. Zhang, J.L. Xu, Z.H. Zhang. Formation, Control and Functionalization of Nanoporous Silver through Changing Dealloying Media and Elemental Doping. CrystEngComm,2011,13 (7),2617-2628
    [72]J.F. Huang, I.W. Sun. Fabrication and Surface Functionalization of Nanoporous Gold by Electrochemical Alloying/Dealloying of Au-Zn in an Ionic Liquid, and the Self-Assembly of L-Cysteine Monolayers. Advanced Functional Materials,2005,15 (6),989-994
    [73]F.H. Yeh, C.C. Tai, J.F. Huang, I.W. Sun. Formation of Porous Silver by Electrochemical Alloying/Dealloying in a Water-Insensitive Zinc Chloride-l-Ethyl-3-Methyl Imidazolium Chloride Ionic Liquid. The Journal of Physical Chemistry B,2006,110 (11),5215-5222
    [74]Y.W. Lin, C.C. Tai, I.W. Sun. Electrochemical Preparation of Porous Copper Surfaces in Zinc Chloride-1-Ethy 1-3-Methyl Imidazolium Chloride Ionic Liquid. Journal of The Electrochemical Society,2007,154 (6), D316-D321
    [75]F.L. Jia, C.F. Yu, K.J. Deng, L.Z. Zhang. Nanoporous Metal (Cu, Ag, Au) Films with High Surface Area:General Fabrication and Preliminary Electrochemical Performance. The Journal of Physical Chemistry C,2007,111 (24),8424-8431
    [76]Y. Ding, YJ. Kim, J. Erlebacher. Nanoporous Gold Leaf:"Ancient Technology'YAdvanced Material. Advanced Materials,2004,16 (21),1897-1900
    [77]L.Y. Chen, T. Fujita, Y. Ding, M.W. Chen. A Three-Dimensional Gold-Decorated Nanoporous Copper Core-Shell Composite for Electrocatalysis and Nonenzymatic Biosensing. Advanced Functional Materials,2010,20 (14),2279-2285
    [78]A. Wittstock, V. Zielasek, J. Biener, C.M. Friend, M. Baumer. Nanoporous Gold Catalysts for Selective Gas-Phase Oxidative Coupling of Methanol at Low Temperature. Science,2010, 327 (5963),319-322
    [79]H.J. Jin, X.L. Wang, S. Parida, K. Wang, M. Seo, J. Weissmuller. Nanoporous Au-Pt Alloys as Large Strain Electrochemical Actuators. Nano Letters,2009,10 (1),187-194
    [80]G.S. Attard, P.N. Bartlett, N.R.B. Coleman, J.M. Elliott, J.R. Owen, J.H. Wang. Mesoporous Platinum Films from Lyotropic Liquid Crystalline Phases. Science,1997,278 (5339),838-840
    [81]Y. Yu, L. Gu, X.Y. Lang, C.B. Zhu, T. Fujita, M.W. Chen, J. Maier. Li Storage in 3D Nanoporous Au-Supported Nanocrystalline Tin. Advanced Materials,2011,23 (21), 2443-2447
    [82]J.T. Zhang, H.Y. Ma, D.J. Zhang, P.P. Liu, F. Tian, Y. Ding. Electro-catalytic Activity of Bimetallic Platinum-Gold Catalysts Fabricated Based on Nanoporous Gold. Physical Chemistry Chemical Physics,2008,10 (22),3250-3255
    [83]Y. Qiao, CM. Li. Nanostructured Catalysts in Fuel Cells. Journal of Materials Chemistry, 2011,21 (12),4027-4036
    [84]J. Jiang, A. Kucernak. Oxygen Reduction Studies of Templated Mesoporous Platinum Catalysts. Electrochemical and Solid-State Letters,2000,3 (12),559-562
    [85]S. Park, Y.J. Song, J.H. Han, H. Boo, T.D. Chung. Structural and Electrochemical Features of 3D Nanoporous Platinum Electrodes. Electrochimica Acta,2010,55 (6),2029-2035
    [86]J.T. Zhang, P.P. Liu, H.Y. Ma, Y. Ding. Nanostructured Porous Gold for Methanol Electro-Oxidation. The Journal of Physical Chemistry C,2007,111 (28),10382-10388
    [87]S. Trasatti, O.A. Petrii. Real Surface Area Measurements in Electrochemistry. Pure and Applied Chemistry,1991,63 (5),711-734
    [88]C.X. Xu, Y.Q. Liu, J.P. Wang, H.R. Geng, H.J. Qiu. Nanoporous PdCu Alloy for Formic Acid Electro-oxidation. Journal of Power Sources,2012,199,124-131
    [89]S.A.G. Evans, J.M. Elliott, L.M. Andrews, P.N. Bartlett, P.J. Doyle, G. Denuault. Detection of Hydrogen Peroxide at Mesoporous Platinum Microelectrodes. Analytical Chemistry,2002,74 (6),1322-1326
    [90]J.H. Shim, K. Jang. Applications of Porous Pt-filled Micropore Electrode:Direct Amperometric Glucose Detection and Potentiometric pH Sensing. Electroanalysis,2011,23 (9),2063-2069
    [91]L.Y. Chen, X.Y. Lang, T. Fujita, M.W. Chen. Nanoporous Gold for Enzyme-Free Electrochemical Glucose Sensors. Scripta Materialia,2011,65 (1),17-20
    [92]H.J. Qiu, L. Lu, X.R. Huang, Z.H. Zhang, YB. Qu. Immobilization of Horseradish Peroxidase on Nanoporous Copper and its Potential Applications. Bioresource Technology, 2010,101 (24),9415-9420
    [93]J. Weissmuller, R.N. Viswanath, D. Kramer, P. Zimmer, R. Wurschum, H. Gleiter. Charge-Induced Reversible Strain in a Metal. Science,2003,300 (5617):312-315
    [94]D. Kramer, R.N. Viswanath, J. Weissmuller. Surface-Stress Induced Macroscopic Bending of Nanoporous Gold Cantilevers. Nano Letters,2004,4 (5),793-796
    [95]J. Biener, A. Wittstock, L.A. Zepeda-Ruiz, M.M. Biener, V. Zielasek, D. Kramer, R.N. Viswanath, J. Weissmuller, M. Baumer, A.V. Hamza. Surface-chemistry-driven Actuation in Nanoporous Gold. Nature Materials,2009,8(1),47-51
    [96]H. J. Jin, X.L. Wang, S. Parida, K. Wang, M. Seo, J. Weissmuller. Nanoporous Au-Pt Alloys as Large Strain Electrochemical Actuators. Nano Letters,2009,10 (1),187-194
    [97]A.I. Maaroof, M.B. Cortie, G.B. Smith. Optical Properties of Mesoporous Gold Films. Journal of Optics A:Pure and Applied Optics,2005,7 (7),303-309
    [98]A.H. Whitehead, J.M. Elliott, J.R. Owen. Nanostructured Tin for Use as a Negative Electrode Material in Li-ion Batteries. Journal of Power Sources,1999,81,33-38
    [99]W.H. Haffield, H. Green. Pat275781, UK,1927
    [100]李鑫庆,陈迪勤,余静琴.化学转化膜技术与应用.机械工业出版社,2005
    [101]姚仲达.铝阳极氧化中的电流恢复现象及其利用.电镀与精饰,1984,6(4),14-20
    [102]J.P. O'sullivan, G.C. Wood. The Morphology and Mechanism of Formation of Porous Anodic Films on Aluminium. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences,1970,511-543
    [103]H. Tsuchiya, J.M. Macak, I. Sieber, P. Schmuki. Self-Organized High-Aspect-Ratio Nanoporous Zirconium Oxides Prepared by Electrochemical Anodization. Small,2005,1 (7), 722-725
    [104]V. Zwilling, M. Aucouturier, E. Darque-Ceretti. Anodic Oxidation of Titanium and TA6V Alloy in Chromic Media. An Electrochemical Approach. Electrochimica Acta,1999,45 (6), 921-929
    [105]J.M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, P. Schmuki. Smooth Anodic TiO2 Nanotubes. Angewandte Chemie International Edition,2005,44 (45),7463-7465
    [106]H. Tsuchiya, P. Schmuki. Self-Organized High Aspect Ratio Porous Hafnium Oxide Prepared by Electrochemical Anodization. Electrochemistry communications,2005,7 (1), 49-52
    [107]H. Tsuchiya, J.M. Macak, I. Sieber, L. Taveira, A. Ghicov, K. Sirotna, P. Schmuki. Self-Organized Porous WO3 Formed in NaF Electrolytes. Electrochemistry Communications, 2005,7 (3),295-298
    [108]I. Sieber, B. Kannan, P. Schmuki. Self-Assembled Porous Tantalum Oxide Prepared in H2SO4/HF Electrolytes. Electrochemical and Solid-State Letters,2005,8 (3), J10-J12
    [109]I. Sieber, H. Hildebrand, A. Friedrich, P. Schmuki. Formation of Self-organized Niobium Porous Oxide on Niobium. Electrochemistry communications,2005,7(1),97-100
    [110]F. Keller, M.S. Hunter, D.L. Robinson. Structural Features of Oxide Coatings on Aluminum. Journal of the Electrochemical Society,1953,100 (9),411-419
    [111]G.E. Thompson, R.C. Furneaux, G.C. Wood, J.A. Richardson, J.S. Goode. Nucleation and Growth of Porous Anodic Films on Aluminium. Nature,1978,272 (5652),433-435
    [112]H. Masuda, K. Fukuda. Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina. Science,1995,268 (5216),1466-1468
    [113]K. Nishio, H. Masuda. Anodization of Gold in Oxalate Solution to Form a Nanoporous Black Film. Angewandte Chemie,2011,123 (7),1641-1645
    [1]J.T. Zhang, H.Y. Ma, D.J. Zhang, P.P. Liu, F. Tian, Y. Ding. Electro-catalytic Activity of Bimetallic Platinum-Gold Catalysts Fabricated Based on Nanoporous Gold. Physical Chemistry Chemical Physics,2008,10 (22),3250-3255
    [2]J.B. Xu, K.F. Hua, G.Z. Sun, C. Wang, X.Y. Lv, Y.J. Wang. Electrooxidation of Methanol on Carbon Nanotubes Supported Pt-Fe Alloy Electrode. Electrochemistry Communications,2006, 8 (6),982-986
    [3]W.Z. Li, W.J. Zhou, H.Q. Li, Z.H. Zhou, B. Zhou, G.Q. Sun, Q. Xin. Nano-stuctured Pt-Fe/C as Cathode Catalyst in Direct Methanol Fuel Cell. Electrochimica Acta,2004,49 (7), 1045-1055
    [4]H.J. Qiu, F.X. Zou. Nanoporous PtCo Surface Alloy Architecture with Enhanced Properties for Methanol Electrooxidation. ACS Applied Materials & Interfaces,2012,4 (3),1404-1410
    [5]C.X. Xu, J.G Hou, X.H. Pang, X.J. Li, M.L. Zhu, B.Y. Tang. Nanoporous PtCo and PtNi Alloy Ribbons for Methanol Electrooxidation. International Journal of Hydrogen Energy,2012,37 (14),10489-10498
    [6]M. Khorasani-Motlagh, M. Noroozifar, M.S. Ekrami-Kakhki. Investigation of the Nanometals (Ni and Sn) in Platinum Binary and Ternary Electrocatalysts for Methanol Electrooxidation. International Journal of Hydrogen Energy,2011,36 (18),11554-11563
    [7]Z.M. Peng, H. Yang. Synthesis and Oxygen Reduction Electro-catalytic Property of Pt-on-Pd Bimetallic Heteronanostructures. Journal of the American Chemical Society,2009,131 (22), 7542-7543
    [8]H.R. Colon-Mercado, B.N. Popov. Stability of Platinum Based Alloy Cathode Catalysts in PEM Fuel Cells. Journal of Power Sources,2006,155 (2),253-263
    [9]J. Zhang, Y. Mo, M.B. Vukmirovic, R. Klie, K. Sasaki, R.R. Adzic. Platinum Monolayer Electrocatalysts for O2 Reduction:Pt Monolayer on Pd(111) and on Carbon-supported Pd Nanoparticles. The Journal of Physical Chemistry B,2004,108 (30),10955-10964
    [10]J.L. Zhang, M.B. Vukmirovic, K. Sasaki, A.U. Nilekar, M. Mavrikakis, R.R. Adzic. Mixed-Metal Pt Monolayer Electrocatalysts for Enhanced Oxygen Reduction Kinetics. Journal of the American Chemical Society,2005,127 (36),12480-12481
    [11]L. Xiong, A. Manthiram. Effect of Atomic Ordering on the Catalytic Activity of Carbon Supported PtM (M= Fe, Co, Ni, and Cu) Alloys for Oxygen Reduction in PEMFCs. Journal of The Electrochemical Society,2005,152 (4), A697-A703
    [12]L. Vegard. Die Konstitution Der Mischkristalle Und Die Raumfullung Der Atome. Zeitschrift fur Physik,1921,5 (1),17-26
    [13]J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki. Evolution of Nanoporosity in Dealloying. Nature,2001,410 (6827),450-453
    [14]A.J. Forty. Corrosion Micromorphology of Noble Metal Alloys and Depletion Gilding. Nature, 1979,282 (5739),597-598
    [15]H.J. Jin, D. Kramer, Y. Ivanisenko, J. Weissmuller. Macroscopically Strong Nanoporous Pt Prepared by Dealloying. Advanced Engineering Materials,2007,9(10),849-854
    [16]Z.H. Zhang, Y. Wang, Z. Qi, C. Somsen, X.G. Wang, C.C. Zhao. Fabrication and Characterization of Nanoporous Gold Composites through Chemical Dealloying of Two Phase Al-Au Alloys. Journal of Materials Chemistry,2009,19 (33),6042-6050
    [17]Z. Qi, C.C. Zhao, X.G. Wang, J.K. Lin, W. Shao, Z.H. Zhang, X. Bian. Formation and Characterization of Monolithic Nanoporous Copper by Chemical Dealloying of Al-Cu Alloys. The Journal of Physical Chemistry C,2009,113 (16),6694-6698
    [18]J. Snyder, P. Asanithi, A.B. Dalton, J. Erlebacher. Stabilized Nanoporous Metals by Dealloying Ternary Alloy Precursors. Advanced Materials,2008,20 (24),4883-4886
    [19]S.J. Gregg. A Simple Method for Comparing the Shapes of Closely Related Adsorption Isotherms. Journal of the Chemical Society, Chemical Communications,1975, (16),699-700
    [20]Z.W. Chen, M. Waje, W.Z. Li, Y.S. Yan. Supportless Pt and PtPd Nanotubes as Electrocatalysts for Oxygen-Reduction Reactions. Angewandte Chemie International Edition, 2007,46 (22),4060-4063
    [21]J. Zhang, K. Sasaki, E. Sutter, R.R. Adzic. Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters. Science,2007,315 (5809),220-222
    [22]N.M. Markovic, P.N. Ross Jr. Surface Science Studies of Model Fuel Cell Electrocatalysts. Surface Science Reports,2002,45 (4-6),117-229
    [23]H.A. Gasteiger, N. Markovic, P.N. Ross, E.J. Cairns. Temperature-Dependent Methanol Electro-Oxidation on Well-Characterized Pt-Ru Alloys. Journal of The Electrochemical Society, 1994,141 (7),1795-1803
    [24]S. Sriramulu, T.D. Jarvi, E.M. Stuve. A Kinetic Analysis of Distinct Reaction Pathways in Methanol Electrocatalysis on Pt(111). Electrochimica Acta,1998,44 (6-7),1127-1134
    [25]V. Stamenkovic, B.S. Mun, K.J.J. Mayrhofer, P.N. Ross, N.M. Markovic, J. Rossmeisl, J. Greeley, J.K. N(?)rskov. Changing the Activity of Electrocatalysts for Oxygen Reduction by Tuning the Surface Electronic Structure. Angewandte Chemie,2006,118(18),2963-2967
    [26]P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C.F. Yu, Z.C. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M.F. Toney, A. Nilsson. Lattice-Strain Control of the Activity in Dealloyed Core-Shell Fuel Cell Catalysts. Nature Chemistry,2010,2 (6),454-460
    [27]X. Zhao, M. Yin, L. Ma, L. Liang, C.P. Liu, J.H. Liao, T.H. Lu, W. Xing. Recent Advances in Catalysts for Direct Methanol Fuel Cells. Energy & Environmental Science,2011,4 (8), 2736-2753
    [28]X.X. Li, X.P. Qiu, H.P. Yuan, L.Q. Chen, W.T. Zhu. Size-Effect on the Activity of Anodic Catalysts in Alcohol and CO Electrooxidation. Journal of Power Sources,2008,184 (2), 353-360
    [29]L.H. Jiang, G.Q. Sun, X.S. Zhao, Z.H. Zhou, S.Y. Yan, S.H. Tang, G.X. Wang, B. Zhou, Q. Xin. Preparation of Supported PtRu/C Electrocatalyst for Direct Methanol Fuel Cells. Electrochimica Acta,2005,50 (12),2371-2376
    [30]J. Prabhuram, T.S. Zhao, Z.K. Tang, R. Chen, Z.X. Liang. Multiwalled Carbon Nanotube Supported PtRu for the Anode of Direct Methanol Fuel Cells. The Journal of Physical Chemistry B,2006,110(11),5245-5252
    [31]A. Kabbabi, R. Faure, R. Durand, B. Beden, F. Hahn, J.M. Leger, C. Lamy. In Situ FTIRS Study of the Electro-catalytic Oxidation of Carbon Monoxide and Methanol at Platinum-Ruthenium Bulk Alloy Electrodes. Journal of Electroanalytical Chemistry,1998,444 (1),41-53
    [32]I. Dutta, M.K. Carpenter, M.P. Balogh, J.M. Ziegelbauer, T.E. Moylan, M.H. Atwan, N.P. Irish. Electrochemical and Structural Study of a Chemically Dealloyed PtCu Oxygen Reduction Catalyst. The Journal of Physical Chemistry C,2010,114 (39),16309-16320
    [33]A. Damjanovic, M.A. Genshaw, J.O.M. Bockris. The Role of Hydrogen Peroxide in the Reduction of Oxygen at Platinum Electrodes. The Journal of Physical Chemistry,1966,70 (11), 3761-3762
    [34]M.A. Genshaw, A. Damjanovic, J.O.M. Bockris. Role of Hydrogen Peroxide in Oxygen Reduction at Rhodium Electrodes. The Journal of Physical Chemistry,1967,71(12),3722-3731
    [35]A. Damjanovic, M. Genshaw, J.M. Bockris. The Role of Hydrogen Peroxide in Oxygen Reduction at Platinum in H2SO4 Solution. Journal of The Electrochemical Society,1967,114 (5),466-472
    [36]J.L. Reyes-Rodriguez, F. Godinez-Salomon, M.A. Leyva, O. Solorza-Feria. RRDE Study on Co@Pt/C-Core Shell Nanocatalysts for the Oxygen Reduction Reaction. International Journal of Hydrogen Energy,2013,38 (28),12634-12639
    [37]O. Antoine, R. Durand. RRDE Study of Oxygen Reduction on Pt Nanoparticles inside Nation:H2O2 Production in PEMFC Cathode Conditions. Journal of Applied Electrochemistry, 2000,30 (7),839-844
    [38]B. Lim, M.J. Jiang, P.H.C. Camargo, E.C. Cho, J. Tao, X.M. Lu, Y.M. Zhu, Y.N. Xia. Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction. Science,2009,324 (5932), 1302-1305
    [39]M. Oezaslan, P. Strasser. Activity of Dealloyed PtCo3 and PtCu3 Nanoparticle Electrocatalyst for Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cell. Journal of Power Sources,2011,196 (12),5240-5249
    [40]D. Sanchez-Portal, P. Ordejon, E. Artacho, J.M. Soler. Density-Functional Method for Very Large Systems with Lcao Basis Sets. International Journal of Quantum Chemistry,1997,65 (5), 453-461
    [41]T. Toda, H. Igarashi, M. Watanabe. Role of Electronic Property of Pt and Pt Alloys on Electrocatalytic Reduction of Oxygen. Journal of The Electrochemical Society,1998,145 (12), 4185-4188
    [42]E. Yeager, M. Razaq, D. Gervasio, A. Razaq, D. Tryk. In Structural Effects in Electrocatalysis and Oxygen Electrochemistry. The Electrochemical Society Proceedings, Perinington, NJ,1992
    [43]J. Greeley, I.E.L. Stephens, A.S. Bondarenko, T.P. Johansson, H.A. Hansen, T.F. Jaramillo, J. Rossmeisl, I. Chorkendorff, J.K. N(?)rskov. Alloys of Platinum and Early Transition Metals as Oxygen Reduction Electrocatalysts. Nature Chemistry,2009,1 (7),552-556
    [44]J.K. N(?)rskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jonsson. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. The Journal of Physical Chemistry B,2004,108 (46),17886-17892
    [45]J. Rossmeisl, GS. Karlberg, T. Jaramillo, J.K. N(?)rskov. Steady State Oxygen Reduction and Cyclic Voltammetry. Faraday discussions,2009,140,337-346
    [46]R.Y. Wang, C.X. Xu, X.X. Bi, Y. Ding. Nanoporous Surface Alloys as Highly Active and Durable Oxygen Reduction Reaction Electrocatalysts. Energy & Environmental Science,2012, 5 (1),5281-5286
    [1]E.V. Spinace, A.O. Neto, M. Linardi. Electro-Oxidation of Methanol and Ethanol Using PtRu/C Electrocatalysts Prepared by Spontaneous Deposition of Platinum on Carbon-Supported Ruthenium Nanoparticles. Journal of Power Sources,2004,129 (2),121-126
    [2]J.Y. Liu, J.Y. Cao, Q.H. Huang, X.W. Li, Z.Q. Zou, H. Yang. Methanol Oxidation on Carbon-Supported Pt-Ru-Ni Ternary Nanoparticle Electrocatalysts. Journal of Power Sources, 2008,175 (1),159-165
    [3]S.K. Kamarudin, F. Achmad, W.R.W. Daud. Overview on the Application of Direct Methanol Fuel Cell (DMFC) for Portable Electronic Devices. International Journal of Hydrogen Energy, 2009,34 (16),6902-6916
    [4]A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk. Nanostructured Materials for Advanced Energy Conversion and Storage Devices. Nature Materials,2005,4 (5),366-377
    [5]M.Y. Lo, I. Liao, C.C. Huang. Key Issues in the Preparation of DMFC Electrocatalysts. International Journal of Hydrogen Energy,2007,32 (6),731-735
    [6]Z.H. Wang, L.L. Zhang, K.Y. Qiu. Electro-catalytic Oxidation of Methanol by Platinum Nanoparticles on Nickel-Chromium Alloys. Journal of Power Sources,2006,161 (1),133-137
    [7]C. Coutanceau, S. Brimaud, C. Lamy, J.M. Leger, L. Dubau, S. Rousseau, F. Vigier. Review of Different Methods for Developing Nanoelectrocatalysts for the Oxidation of Organic Compounds. Electrochimica Acta,2008,53 (23),6865-6880
    [8]L. Dubau, C. Coutanceau, E. Garnier, J.M. Leger, C. Lamy. Electrooxidation of Methanol at Platinum-Ruthenium Catalysts Prepared from Colloidal Precursors:Atomic Composition and Temperature Effects. Journal of Applied Electrochemistry,2003,33 (5),419-429
    [9]R.F. Wang, H. Li, H.Q. Feng, H. Wang, Z.Q. Lei. Preparation of Carbon-supported Core@Shell PdCu@PtRu Nanoparticles for Methanol Oxidation. Journal of Power Sources, 2010,195(4),1099-1102
    [10]M. Watanabe, S. Motoo. Electrocatalysis by Ad-atoms:Part I. Enhancement of the Oxidation of Methanol on Platinum and Palladium by Gold Ad-atoms. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1975,60 (3),259-266
    [11]M. Enyo. Anodic Formaldehyde Oxidation on Pt, Pd, Au and Pd-Au Alloy Electrodes in NaOH and Na2CO3 Solutions. Journal of Applied Electrochemistry,1985,15 (6),907-911
    [12]F. Kadirgan, A.M. Kannan, T. Atilan, S. Beyhan, S.S. Ozenler, S. Suzer, A. Yorur. Carbon Supported Nano-sized Pt-Pd and Pt-Co Electrocatalysts for Proton Exchange Membrane Fuel Cells. International Journal of Hydrogen Energy,2009,34 (23),9450-9460
    [13]F. Kadirgan, B. Beden, J.M. Leger, C. Lamy. Synergistic Effect in the Electro-catalytic Oxidation of Methanol on Platinum+Palladium Alloy Electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1981,125 (1),89-103
    [14]D.M. Han, Z.P. Guo, R. Zeng, C.J. Kim, Y.Z. Meng, H.K. Liu. Multiwalled Carbon Nanotube-Supported Pt/Sn and Pt/Sn/PMo12 Electrocatalysts for Methanol Electro-Oxidation. International Journal of Hydrogen Energy,2009,34 (5),2426-2434
    [15]A. Aramata, I. Toyoshima, M. Enyo. Study of Methanol Electrooxidation on Rh Sn Oxide, Pt Sn Oxide, and Ir Sn Oxide in Comparison with That on the Pt Metals. Electrochimica Acta, 1992,37(8),1317-1320
    [16]R.K. Raman, A.K. Shukla, A. Gayen, M.S. Hegde, K.R. Priolkar, P.R. Sarode, S. Emura. Tailoring a Pt-Ru Catalyst for Enhanced Methanol Electro-Oxidation. Journal of Power Sources, 2006,157 (1),45-55
    [17]H.A. Gasteiger, N. Markovic, P.N. Ross Jr, E.J. Cairns. Methanol Electrooxidation on Well-Characterized Platinum-Ruthenium Bulk Alloys. The Journal of Physical Chemistry,1993, 97 (46),12020-12029
    [18]D.F.A. Koch, D.A.J. Rand, R. Woods. Binary Electrocatalysts for Organic Oxidations. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1976,70 (1),73-86
    [19]M. Watanabe, S. Motoo. Electrocatalysis by Ad-atoms:Part II. Enhancement of the Oxidation of Methanol on Platinum by Ruthenium Ad-atoms. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1975,60 (3),267-273
    [20]T. Frelink, W. Visscher, J.A.R. Van Veen. On the Role of Ru and Sn as Promotors of Methanol Electro-Oxidation over Pt. Surface Science,1995,335,353-360
    [21]O. Yepez, B.R. Scharifker. Oxidation of CO on Hydrogen-loaded Palladium. Journal of Applied Electrochemistry,1999,29 (10),1185-1190
    [22]GQ. Lu, A. Crown, A. Wieckowski. Formic Acid Decomposition on Polycrystalline Platinum and Palladized Platinum Electrodes. The Journal of Physical Chemistry B,1999,103 (44), 9700-9711
    [23]N.R. Elezovic, B.M. Babic, V.R. Radmilovic, S.L. Gojkovic, N.V. Krstajic, L.M. Vracar. Pt/C Doped by MoOx as the Electrocatalyst for Oxygen Reduction and Methanol Oxidation. Journal of Power Sources,2008,175 (1),250-255
    [24]J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki. Evolution of Nanoporosity in Dealloying. Nature,2001,410 (6827),450-453
    [25]A.J. Forty. Corrosion Micromorphology of Noble Metal Alloys and Depletion Gilding. Nature, 1979,282,597-598
    [26]R.Y. Wang, C.X. Xu, X.X. Bi, Y. Ding. Nanoporous Surface Alloys as Highly Active and Durable Oxygen Reduction Reaction Electrocatalysts. Energy & Environmental Science,2012, 5 (1),5281-5286
    [27]N.M. Markovic, P.N. Ross Jr. Surface Science Studies of Model Fuel Cell Electrocatalysts. Surface Science Reports,2002,45 (4-6),117-229
    [28]H.A. Gasteiger, N. Markovic, P.N. Ross, E.J. Cairns. Temperature-Dependent Methanol Electro-Oxidation on Well-Characterized Pt-Ru Alloys. Journal of the Electrochemical Society, 1994,141 (7),1795-1803
    [29]S. Sriramulu, T.D. Jarvi, E.M. Stuve. A Kinetic Analysis of Distinct Reaction Pathways in Methanol Electrocatalysis on Pt(111). Electrochimica Acta,1998,44 (6-7),1127-1134
    [30]V. Stamenkovic, B.S. Mun, K.J.J. Mayrhofer, P.N. Ross, N.M. Markovic, J. Rossmeisl, J. Greeley, J.K. Norskov. Changing the Activity of Electrocatalysts for Oxygen Reduction by Tuning the Surface Electronic Structure. Angewandte Chemie,2006,118(18),2963-2967
    [31]P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C.F. Yu, Z.C. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M.F. Toney, A. Nilsson. Lattice-Strain Control of the Activity in Dealloyed Core-Shell Fuel Cell Catalysts. Nature Chemistry,2010,2 (6),454-460
    [1]J.S. Yu, Y. Ding, C.X. Xu, A. Inoue, T. Sakurai, M.W. Chen. Nanoporous Metals by Dealloying Multicomponent Metallic Glasses. Chemistry of Materials,2008,20 (14),4548-4550
    [2]D.Y. Ding, Z. Chen, C. Lu. Hydrogen Sensing of Nanoporous Palladium Films Supported by Anodic Aluminum Oxides. Sensors and Actuators B:Chemical,2006,120 (1),182-186
    [3]M. Hakamada, H. Nakano, T. Furukawa, M. Takahashi, M. Mabuchi. Hydrogen Storage Properties of Nanoporous Palladium Fabricated by Dealloying. The Journal of Physical Chemistry C,2009,114 (2),868-873
    [4]M. Hakamada, M. Mabuchi. Fabrication of Nanoporous Palladium by Dealloying and Its Thermal Coarsening. Journal of Alloys and Compounds,2009,479 (1-2),326-329
    [5]M. Hakamada, K. Tajima, K. Yoshimura, Y. Chino, M. Mabuchi. Solid/electrolyte Interface Phenomena During Anodic Polarization of Pdo.2Mo.g(M= Fe, Co, Ni) Alloys in H2SO4. Journal of Alloys and Compounds,2010,494 (1),309-314
    [6]F.L. Jia, K.W. Wong, R.X. Du. Direct Growth of Highly Catalytic Palladium Nanoplates Array onto Gold Substrate by a Template-Free Electrochemical Route. Electrochemistry Communications,2009,11 (3),519-521
    [7]X.G Wang, W.M. Wang, Z. Qi, C.C. Zhao, H. Ji, Z.H. Zhang. Electrochemical Catalytic Activities of Nanoporous Palladium Rods for Methanol Electro-oxidation. Journal of Power Sources,2010,195 (19),6740-6747
    [8]S. Porel, N. Hebalkar, B. Sreedhar, T.P. Radhakrishnan. Palladium Nanowire from Precursor Nanowire:Crystal-to-Crystal Transformation Via in Situ Reduction by Polymer Matrix. Advanced Functional Materials,2007,17 (14),2550-2556
    [9]G. Berhault, M. Bausach, L. Bisson, L. Becerra, C. Thomazeau, D. Uzio. Seed-Mediated Synthesis of Pd Nanocrystals:Factors Influencing a Kinetic-or Thermodynamic-Controlled Growth Regime. The Journal of Physical Chemistry C,2007,111 (16),5915-5925
    [10]A.A. Umar, M. Oyama. Synthesis of Palladium Nanobricks with Atomic-Step Defects. Crystal Growth & Design,2008,8 (6),1808-1811
    [11]C.W. Xu, H. Wang, P.K. Shen, S.P. Jiang. Highly Ordered Pd Nanowire Arrays as Effective Electrocatalysts for Ethanol Oxidation in Direct Alcohol Fuel Cells. Advanced Materials, 2007,19 (23),4256-4259
    [12]X.G. Wang, W.M. Wang, Z. Qi, C.C. Zhao, H. Ji, Z.H. Zhang. High Catalytic Activity of Ultrafine Nanoporous Palladium for Electro-Oxidation of Methanol, Ethanol, and Formic Acid. Electrochemistry Communications,2009,11(10),1896-1899
    [13]M.S. Tong, GR. Dai, Y.D. Wu, X.L. He, D.S. Gao. WO3 Thin Film Prepared by PECVD Technique and Its Gas Sensing Properties to NO2. Journal of Materials Science,2001,36 (10), 2535-2538
    [14]A.E. Aliev, H.W. Shin. Nanostructured Materials for Electrochromic Devices. Solid State Ionics,2002,154,425-431
    [15]F. Keller, M.S. Hunter, D.L. Robinson. Structural Features of Oxide Coatings on Aluminum. Journal of the Electrochemical Society,1953,100 (9),411-419
    [16]G.E. Thompson, R.C. Furneaux, G.C. Wood, J.A. Richardson, J.S. Goode. Nucleation and Growth of Porous Anodic Films on Aluminium. Nature,1978,272 (5652),433-435
    [17]H. Masuda, K. Fukuda. Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina. Science,1995,268 (5216),1466-1468
    [18]H. Tsuchiya, J.M. Macak, I. Sieber, P. Schmuki. Self-Organized High-Aspect-Ratio Nanoporous Zirconium Oxides Prepared by Electrochemical Anodization. Small,2005,1 (7), 722-725
    [19]V. Zwilling, M. Aucouturier, E. Darque-Ceretti. Anodic Oxidation of Titanium and TA6V Alloy in Chromic Media. An Electrochemical Approach. Electrochimica Acta,1999,45 (6), 921-929
    [20]J.M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, P. Schmuki. Smooth Anodic TiO2 Nanotubes. Angewandte Chemie International Edition,2005,44 (45),7463-7465
    [21]H. Tsuchiya, P. Schmuki. Self-Organized High Aspect Ratio Porous Hamium Oxide Prepared by Electrochemical Anodization. Electrochemistry Communications,2005,7(1),49-52
    [22]H. Tsuchiya, J.M. Macak, I. Sieber, L. Taveira, A. Ghicov, K. Sirotna, P. Schmuki. Self-Organized Porous WO3 Formed in NaF Electrolytes. Electrochemistry Communications, 2005,7 (3),295-298
    [23]I. Sieber, B. Kannan, P. Schmuki. Self-Assembled Porous Tantalum Oxide Prepared in H2SO4/HF Electrolytes. Electrochemical and Solid-state Letters,2005,8 (3), J10-J12
    [24]I. Sieber, H. Hildebrand, A. Friedrich, P. Schmuki. Formation of Self-Organized Niobium Porous Oxide on Niobium. Electrochemistry Communications,2005,7(1),97-100
    [25]K. Nishio, H. Masuda. Anodization of Gold in Oxalate Solution to Form a Nanoporous Black Film. Angewandte Chemie,2011,123 (7),1641-1645
    [26]J.T. Zhang, M.H. Huang, H.Y. Ma, F. Tian, W. Pan, S.H. Chen. High Catalytic Activity of Nanostructured Pd Thin Films Electrochemically Deposited on Polycrystalline Pt and Au Substrates Towards Electro-Oxidation of Methanol. Electrochemistry Communications,2007, 9 (6),1298-1304
    [27]A.N. Correia, L.H. Mascaro, S.A.S. Machado, L.A. Avaca. Active Surface Area Determination of Pd-Si Alloys by H-Adsorption. Electrochimica Acta,1997,42 (3),493-495
    [28]L.H. Dall'Antonia, G Tremiliosi-Filho, G. Jerkiewicz. Influence of Temperature on the Growth of Surface Oxides on Palladium Electrodes. Journal of Electroanalytical Chemistry, 2001,502 (1-2),72-81
    [29]M. Grden, M. Lukaszewski, G Jerkiewicz, A. Czerwinski. Electrochemical Behaviour of Palladium Electrode:Oxidation, Electrodissolution and Ionic Adsorption. Electrochimica Acta, 2008,53 (26),7583-7598
    [30]S. Trasatti, O.A. Petrii. Real Surface Area Measurements in Electrochemistry. Pure and applied chemistry,1991,63 (5),711-734
    [31]R.N. Wenzel. Resistance of Solid Surfaces to Wetting by Water. Industrial & Engineering Chemistry,1936,28 (8),988-994
    [32]W. Pan, X.K. Zhang, H.Y. Ma, J.T. Zhang. Electrochemical Synthesis, Voltammetric Behavior, and Electro-catalytic Activity of Pd Nanoparticles. The Journal of Physical Chemistry C,2008, 112 (7),2456-2461
    [33]X.X. Li, X.P. Qiu, H.P. Yuan, L.Q. Chen, W.T. Zhu. Size-Effect on the Activity of Anodic Catalysts in Alcohol and CO Electrooxidation. Journal of Power Sources,2008,184 (2), 353-360
    [34]S. Park, Y. Xie, M.J. Weaver. Electro-catalytic Pathways on Carbon-Supported Platinum Nanoparticles:Comparison of Particle-Size-Dependent Rates of Methanol, Formic Acid, and Formaldehyde Electrooxidation. Langmuir,2002,18 (15),5792-5798
    [35]N. Kristian, Y. Yan, X. Wang. Highly Efficient Submonolayer Pt-Decorated Au Nano-Catalysts for Formic Acid Oxidation. Chemical Communications,2008 (3),353-355
    [36]M.A. Habib, D. Glueck. The Electrochromic Properties of Chemically Deposited Tungsten Oxide Films. Solar Energy Materials,1989,18 (3-4),127-141
    [37]T. Chierchie, C. Mayer, W.J. Lorenz. Structural Changes of Surface Oxide Layers on Palladium. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1982,135 (2),211-220
    [38]K. Juttner, W.J. Lorenz. Underpotential Metal Deposition on Single Crystal Surfaces. Zeitschrift fur Physikalische Chemie,1980,122 (2),163-185
    [39]S.Y. Qian, B.E. Conway, G. Jerkiewicz. Comparative Effects of Adsorbed S-species on H Sorption into Pd from UPD and OPD H:A Kinetic Analysis. International Journal of Hydrogen Energy,2000,25 (6),539-550
    [40]G. Jerkiewicz. Hydrogen Sorption ATIN Electrodes. Progress in Surface Science,1998,57 (2), 137-186
    [41]J.P. Hoare. The Effect of Metal Dissolution on the Rest Potential in the Palladium-Oxygen-Acid System. Journal of the Electrochemical Society,1964,111 (5), 610-615
    [42]V. Bagotzky, M.R. Tarasevich. Oxygen Adsorption on Platinum and Platinum Metals:Part I. Investigation of the Adsorption Mechanism by the Potentiodynamic Method. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1979,101 (1),1-17
    [43]M. Seo, M. Aomi. Piezoelectric Response to Surface Stress Change of a Palladium Electrode in Sulfate Aqueous Solutions. Journal of the Electrochemical Society,1992,139 (4), 1087-1090
    [44]C.C. Hu, T.C. Wen. Voltammetric Investigation of Palladium Oxides III:Effects of Hydration and Ph on the Electro-catalytic Properties of Pd (Ⅳ) Pd (Ⅱ) and the Reduction Behaviour of Palladous Oxide. Electrochimica Acta,1996,41 (9),1505-1514
    [45]M. Tian, B.E. Conway. Phenomenology of Oscillatory Electro-Oxidation of Formic Acid at Pd:Role of Surface Oxide Films Studied by Voltammetry, Impedance Spectroscopy and Nanogravimetry. Journal of Electroanalytical Chemistry,2005,581 (2),176-189
    [46]J.Z. Sun, Y.Z. Wang, C. Zhang, T.Y. Kou, Z.H. Zhang. Anodization Driven Enhancement of Catalytic Activity of Pd Towards Electro-Oxidation of Methanol, Ethanol and Formic Acid. Electrochemistry Communications,2012,21,42-45
    [47]C.L. Perdriel, E. Custidiano, A.J. Arvia. Modifications of Palladium Electrode Surfaces Produced by Periodic Potential Treatments. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1988,246 (1),165-180
    [48]A. Bolzan, M.E. Martins, A.J. Arvia. Thin-Layer Voltammetry of Palladium in Acid Electrolytes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1986, 207 (1),279-292
    [49]L. Muller, Y.U.M. Maksimov, V.I. Podlovchenko. Behaviour of a Palladium Electrode During Fast Cyclic Polarization in Acid Solution. Elektrokhimiya,1984,20 (2),271-275
    [50]C. Rice, Y. Tong, E. Oldfield, A. Wieckowski. Cyclic Voltammetry and 195Pt Nuclear Magnetic Resonance Characterization of Graphite-Supported Commercial Fuel Cell Grade Platinum Electrocatalysts. Electrochimica Acta,1998,43 (19),2825-2830
    [51]A. Arvia, R.C. Salvarezza, W.E. Triaca. The Development of Metal Overlayers with Smooth and Rough Topographies. Electrochimica Acta,1989,34 (8),1057-1071
    [52]G. Tremiliosi-Filho, G. Jerkiewicz, B.E. Conway. Characterization and Significance of the Sequence of Stages of Oxide Film Formation at Platinum Generated by Strong Anodic Polarization. Langmuir,1992,8 (2),658-667
    [53]K. Sieradzki, N. Dimitrov, D. Movrin, C. McCall, N. Vasiljevic, J. Erlebacher. The Dealloying Critical Potential. Journal of The Electrochemical Society,2002,149 (8), B370
    [54]K. Gossner, E. Mizera. The Anodic Behavior of Pd Electrodes in 1 M H2SO4. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1981,125 (2),347-358
    [55]A. Wieckowski. Interfacial Electrochemistry:Theory, Experiment, and Applications. Marcel Dekker, New York,1999
    [56]G. Jerkiewicz, J.J. Borodzinski. Studies of Formation of Very Thin Oxide Films on Polycrystalline Rhodium Electrodes:Application of the Mott-Cabrera Theory. Langmuir,1993, 9 (8),2202-2209
    [57]G. Jerkiewicz, J.J. Borodzinski. Relation between the Surface States of Oxide Films at Rh Electrodes and Kinetics of the Oxygen Evolution Reaction. Journal of the Chemical Society, Faraday Transactions,1994,90 (24),3669-3675
    [58]N. Cabrera, N.F. Mott. Theory of the Oxidation of Metals. Reports on Progress in Physics, 1949,12 (1),163

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700