用户名: 密码: 验证码:
高容量锂二次电池关键材料及储锂性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池目前已成为手机、摄像机、笔记本电脑等各种便携式电子设备的标准配套电源,同时也被公认为电动汽车的理想配套电源和潜在的风能太阳能等的储能电源。目前制约锂电池进入某些大容量大功率应用场合的主要问题之一是电池的能量密度仍需进一步提高。提高电池能量密度的关键在于开发高性能的新型电极材料。单质硫和锡基材料具有理论比能量高、价格便宜、与环境友好等突出优点,被认为是下一代锂二次电池正负极材料的理想选择。但是,这两种材料体系的发展还面临一系列问题:如活性物质利用率低、循环性差等。本文以硫正极、氧化锡和硫化锡负极为研究对象,以提高电导率和稳定电极结构为主线,以改善电化学性能为目标,以低成本和无污染为原则,系统探讨了材料结构、电极结构与锂二次电池性能的关系,并对其储锂性能的改善机理进行了详细的研究与分析。主要结果如下:
     为改善硫电极在充放电过程中的结构稳定性,采用具有表面活性的丁苯橡胶/羧甲基纤维素钠(SBR/CMC)复合粘接剂体系来制备高性能的单质硫电极。与传统的聚偏氟乙烯(PVDF)相比,SBR-CMC除良好的粘结功能外,还是一种良好的分散剂,其特有的负电性使硫和碳黑高度分散并形成良好的电接触网络,一方面可以提高硫的利用率,另一方面还可以有效抑制Li2S的团聚以保证充放电过程中电极结构的稳定性。另外,SBR/CMC粘结剂对电解液的吸收率远低于PVDF体系,电极溶胀程度大大降低,这也有助于电极结构稳定。在这些协同作用下,硫电极的活性物质利用率和循环性能均得到显著改善。
     针对单质硫正极材料存在的导电性差,中间产物易在电解液中溶解这两个关键问题,设计合成了硫/多孔碳纳米管复合材料(S-PCNTs)。通过氢氧化钾活化改性,多壁碳纳米管(MWCNTs)呈现多样孔道结构,比表面积和孔隙率显著增加。这种一维多孔结构既有助于充放电过程电子和锂离子的传输,又可有效抑制多硫化锂在电解液中的溶解,稳定充放电过程中的电极结构。与简单的碳纳米管复合电极相比,S-PCNTs电极显示出优良的电化学性能,首次充放电容量为1180mAh g-1,在100周充放电循环后可逆容量仍然维持在531mAh g-1;另外,在没有任何添加剂的情况下,库伦效率稳定在90%。
     针对二氧化锡材料在充放电过程中的体积效应这一主要问题,采用一锅水热法和碳化处理工艺合成出一种纳米簇复合材料,该纳米簇由相互连接的超细二氧化锡-碳核壳(SnO2@C)纳米球组成。作为锂离子电池负极材料,这种纳米结构可以有效缓解充放电过程中二氧化锡体积变化多电极结构的冲击,同时可以为锂离子和电子的快速传输提供三维通道。结合SBR-CMC粘结剂,SnO2@C纳米簇负极获得了优异的循环稳定性和倍率性能。在电流密度为100mAg-1时,200周循环后的放电容量高达1215mA h g-1。即使在电流密度为1600mA g-1时,容量仍然可保持在520mAh g-1,当电流密度又返回到100mA g-1时,容量可恢复到1232mAhg-1。其优异的电化学性能应主要归功于其独特的核壳结构:超细Sn02核具有很高的电化学活性和较小的体积变化,而外层的碳壳可以提高电导率、抑制颗粒团聚,为电化学反应提供连续的界面和缓冲重复嵌锂过程的机械压力。
     通过溶剂热法成功合成了乙炔黑修饰的多孔硫化锡(SnS2)纳米花。其结构特点是乙炔黑均匀环绕在由无数纳米片自组装而成的多孔SnS2二次微球周围,该复合材料的比表面积为129.9m2g1,电导率为0.345S cm-1。作为锂离子电池负极材料,该复合材料呈现良好的循环性能和倍率性能:在400mA g-1的电流密度下,70周的平均可逆容量高达525mAh g-1。电化学性能的提高应归功于乙炔黑和多孔SnS2的协同作用:乙炔黑不仅可作为导电剂加速电子在复合材料中的转移,而且可充当缓冲基抑制合金化/去合金化过程的体积变化和稳定电极结构。另外SnS2多孔的结构也有助于稳定电极结构和方便锂离子的高效传输。
Now the lithium-ion batteries (LIBs) have been the dominant power source for advanced portable electronic devices and are also considered as the most competitive system to supply power for future electric vehicles (EVs). For LIBs, in order to meet the large-scale power requirements, searching for new electrode materials with higher energy density is still a challenging task. Sulfur cathode and tin-based anode, both show some outstanding advantages such as high theoretical specific capacity, low cost and environmental friendliness, which has been considered as one of the most promising cathode candidates for next-generation batteries. However, the practical application of these two kinds of electrodes suffers from low sulfur/tin utilization and poor cycle life. The problems can be ascribed to the poor electrical conductivity of sulfur and some tin-based composites, and to the large volume changes during the repeated charge-discharge cycling. This Ph.D work was aimed at developing some sulfur/tin based composites applicable for rechargeable lithium batteries. The main results are summarized as follows:
     The mixture of styrene butadiene rubber (SBR) and sodium carboxyl methylcellulose (CMC), a water-soluble binder system, have been successfully introduced to the sulfur cathode system. Compared with conventional poly (vinylidene fluoride)(PVDF) binder, the SBR-CMC binder significantly improves cycling performance of the sulfur cathode. The SBR-CMC mixture is not only a high adhesion agent but also a strong dispersion medium, which favors the uniform distribution between insulating sulfur and conductive carbon black (CB) and ensures a good electrical contact, leading to a high sulfur utilization. Furthermore, the improvement in cyclability is ascribed to structural stability of the sulfur cathode promoted by the SBR-CMC binder during charge/discharge cycles due to the combined effects of homogeneous distribution of the S and CB particles in the composite cathode, the low electrolyte uptake, and the suppressed agglomeration of L12S.
     A sulfur composite based on a porous multi-walled carbon nanotubes (PCNTs) with multiple mesopores structure was synthesized and studied as a cathode material for Li-S battery. The PCNTs was prepared via a simple activation of multi-walled carbon nanotubes (MWCNTs) by potassium hydroxide. The potassium hydroxide activation process results in a significantly enhanced specific surface area with numerous small pores. The as-obtained PCNTs are employed as the conductive matrix for sulfur in the sulfur cathode, SBR-CMC was used as binder. Compared with the composite sulfur cathode based on the original MWCNTs, the sulfur-PCNTs cathode shows a significantly improved cycle performance and columbic efficiency. The improvement in the electrochemical performance for S-PCNT is mainly attributed to the enlarged surface area and the porous structure of the unique mesopores carbon nanotube host, which cannot only facilitate transport of electrons and Li+ions, but also trap polysulfides, stabilize the electrode structure during charge/discharge process.
     A nanocluster composite assembled by interconnected ultrafine SnO2-C core-shell (SnO2@C) nanospheres is successfully synthesized via a simple one-pot hydrothermal method and subsequent carbonization. As an anode material for lithium-ion batteries, the thus-obtained nano-construction can provide a three-dimensional transport access for fast transfer of electrons and lithium ions. With the mixture of styrene butadiene rubber and sodium carboxyl methyl cellulose as a binder, the SnO2@C nanocluster anode exhibits superior cycling stability and rate capability due to a stable electrode structure. Discharge capacity reaches as high as1215mA h g-1after200cycles at a current density of100mA g-1. Even at1600mA g-1, the capacity is still520mA h g-1and can be recovered up to1232mA h g-1if the current density is turned back to100mA g-1. The superior performance can be ascribed to the unique core-shell structure. The ultrafine SnO2core gives a high reactive activity and accommodates volume change during cycling; while the thin carbon shell improves electronic conductivity, suppresses particle aggregation, supplies a continuous interface for electrochemical reaction and alleviates mechanical stress from repeated lithiation of SnO2.
     Acetylene black incorporated porous3-dimensional (3D) SnS2nanoflowers have been successfully synthesized via a simple solvothermal route. The composites are composed of acetylene black adorned SnS2secondary microspheres which are assembled from a number of nanosheets. The nanocomposites possess a large specific surface area of129.9m2g-1and a high conductivity of0.345S cm-1. As anode materials for lithium ion batteries, the nanocomposites show high cyclability and rate capability and deliver an average reversible capacity as high as525mAh g-1at a current density of400mA g-1over70cycles. The high electrochemical performance can be attributed to the synergistic effect of acetylene black and the unique microstructure of SnS2. The acetylene black serves as not only a conductive agent to accelerate the transfer of electrons in the composites, but also as a buffer matrix to restrain the volume change and stabilize the electrode structure during the alloying/dealloying process. The porous structure of SnS2also helps to stabilize the electrode structure and facilitates the transport for lithium ions.
引文
[1]Yamin H., Peled E. Electrochemistry of a nonaqueous lithium/sulfur cell. Journal of Power Sources,1983,9(3):281-287.
    [2]Manthiram A., Fu Y., Su Y.-S. Challenges and Prospects of Lithium-Sulfur Batteries. Accounts of Chemical Research,2012,10.1021/ar300179v.
    [3]Song M.-K., Cairns E. J., Zhang Y. Lithium/sulfur batteries with high specific energy:old challenges and new opportunities. Nanoscale,2013,5:2186-2204.
    [4]Cheon S.-E., Choi S.-S., Han J.-S., et al. Capacity Fading Mechanisms on Cycling a High-Capacity Secondary Sulfur Cathode. Journal of The Electrochemical Society,2004,151(12):A2067-A2073.
    [5]He X., Ren J., Wang L., et al. Expansion and shrinkage of the sulfur composite electrode in rechargeable lithium batteries. Journal of Power Sources,2009, 190(1):154-156.
    [6]Seh Z. W., Li W., Cha J. J., et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nature communications,2013, doi:10.1038/ncomms2327.
    [7]Barchasz C., Lepretre J.-C., Alloin F., et al. New insights into the limiting parameters of the Li/S rechargeable cell. Journal of Power Sources,2012,199, 322-330.
    [8]Choi Y. S., Kim S., Choi S. S., et al. Effect of cathode component on the energy density of lithium-sulfur battery. Electrochimica Acta,2004,50(2-3):833-835.
    [9]Jin B., Kim J.-U., Gu H.-B. Electrochemical properties of lithium-sulfur batteries. Journal of Power Sources,2003,117(1-2):148-152.
    [10]Zhang B., Lai C., Zhou Z., et al. Preparation and electrochemical properties of sulfur-acetylene black composites as cathode materials. Electrochimica Acta, 2009,54(14):3708-3713.
    [11]Choi Y.-J., Chung Y.-D., Baek C.-Y, et al. Effects of carbon coating on the electrochemical properties of sulfur cathode for lithium/sulfur cell. Journal of Power Sources,2008,184(2):548-552.
    [12]Wang J., Yang J., Xie J., et al. Sulfur-carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte. Electrochemistry Communications,2002,4(6):499-502.
    [13]Chen J., Jia X., She Q., et al. The preparation of nano-sulfur/MWCNTs and its electrochemical performance. Electrochimica Acta,2010,55(27):8062-8066.
    [14]Ahn W., Kim K.-B., Jung K.-N., et al. Synthesis and electrochemical properties of a sulfur-multi walled carbon nanotubes composite as a cathode material for lithium sulfur batteries. Journal of Power Sources,2012,202:394-399.
    [15]Dorfler S., Hagen M., Althues H., et al. High capacity vertical aligned carbon nanotube/sulfur composite cathodes for lithium sulfur batteries. Chemical Communications,2012,48:4097-4099.
    [16]Han S.-C., Song M.-S., Lee H., et al. Effect of Multiwalled Carbon Nanotubes on Electrochemical Properties of Lithium/Sulfur Rechargeable Batteries. Journal of The Electrochemical Society,2003,150(7):A889-A893.
    [17]Yuan L., Yuan H., Qiu X., et al. Improvement of cycle property of sulfur-coated multi-walled carbon nanotubes composite cathode for lithium/sulfur batteries. Journal of Power Sources,2009,189(2):1141-1146.
    [18]Wei W., Wang J., Zhou L., et al. CNT enhanced sulfur composite cathode material for high rate lithium battery. Electrochemistry Communications,2011, 13(5):399-402.
    [19]Chen J.-j., Zhang Q., Shi Y.-n., et al. A hierarchical architecture S/MWCNT nanomicrosphere with large pores for lithium sulfur batteries. Physical Chemistry Chemical Physics,2012,14(16):5376-5382.
    [20]Guo J., Xu Y., Wang C. Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. Nano Letters,2011,11(10):4288-4294.
    [21]Xin S., Gu L., Zhao N. H., et al. Smaller sulfur molecules promise better lithium-sulfur batteries. Journal of the American Chemical Society,2012, 134(45):18510-18513.
    [22]Choi Y., Kim K., Ahn H., et al. Improvement of cycle property of sulfur electrode for lithium/sulfur battery. Journal of Alloys and Compounds,2008, 449(1-2):313-316.
    [23]Rao M., Song X., Liao H., et al. Carbon nanofiber-sulfur composite cathode materials with different binders for secondary Li/S cells. Electrochimica Acta, 2012,65:228-233.
    [24]Rao M., Song X., Cairns E. J. Nano-carbon/sulfur composite cathode materials with carbon nanofiber as electrical conductor for advanced secondary lithium/sulfur cells. Journal of Power Sources,2012,205:474-478.
    [25]Ji L., Rao M., Aloni S., et al. Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells. Energy & Environmental Science,2011, 4(12):5053-5059.
    [26]Zheng G, Yang Y, Cha J. J., et al. Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries. Nano Letters,2011,11(10):4462-4467.
    [27]Zheng G, Zhang Q., Cha J. J., et al. Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. Nano Letters,2013,13:1265-1270.
    [28]Peled E., Gorenshtein A., Segal M., et al. Rechargeable lithium-sulfur battery. Journal of Power Sources,1989,26(3):269-271.
    [29]Ji X., Lee K. T., Nazar L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nature Materials,2009,8(6):500-506.
    [30]Li X., Cao Y, Qi W., et al. Optimization of mesoporous carbon structures for lithium-sulfur battery applications. Journal of Materials Chemistry,2011,21(41): 16603-16610.
    [31]Liang C., Dudney N. J., Howe J. Y. Hierarchically Structured Sulfur/Carbon Nanocomposite Material for High-Energy Lithium Battery. Chemistry of Materials,2009,21(19):4724-4730.
    [32]He G, Ji X., Nazar L. High "C" rate Li-S cathodes:sulfur imbibed bimodal porous carbons. Energy & Environmental Science,2011,4:2878-2883.
    [33]Chen S.-R., Zhai Y.-P., Xu G-L., et al. Ordered mesoporous carbon/sulfur nanocomposite of high performances as cathode for lithium-sulfur battery. Electrochimica Acta,2011,56(26):9549-9555.
    [34]Schuster J., He G, Mandlmeier B., et al. Spherical Ordered Mesoporous Carbon Nanoparticles with High Porosity for Lithium-Sulfur Batteries. Angewandte Chemie International Edition,2012,51(15):3591-3595.
    [35]Zhang B., Qin X., Li G. R., et al. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy & Environmental Science,2010,3(10):1531-1537.
    [36]Elazari R., Salitra G., Garsuch A., et al. Sulfur-Impregnated Activated Carbon Fiber Cloth as a Binder-Free Cathode for Rechargeable Li-S Batteries. Advanced Materials,2011,23:5641-5644.
    [37]Stankovich S., Dikin D. A., Piner R. D., et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon,2007, 45(7):1558-1565.
    [38]Guo H.-L., Wang X.-F., Qian Q.-Y., et al. A green approach to the synthesis of graphene nanosheets. ACS Nano,2009,3(9):2653-2659.
    [39]Evers S., Nazar L. F. Graphene-enveloped sulfur in a one pot reaction:a cathode with good coulombic efficiency and high practical sulfur content. Chemical Communications,2012,48(9):1233-1235.
    [40]Yu G, Hu L., Liu N., et al. Enhancing the Supercapacitor Performance of Graphene/MnO2 Nanostructured Electrodes by Conductive Wrapping. Nano Letters,2011,11(10):4438-4442.
    [41]Zhuo L., Wu Y, Wang L., et al. One-step hydrothermal synthesis of SnS2/graphene composites as anode material for highly efficient rechargeable lithium ion batteries. RSC Advances,2012,2(12):5084-5087.
    [42]Zheng M., Lu H., Hu Z., et al. High-rate lithium-sulfur batteries promoted by reduced graphene oxide coating. Chemical Communications,2012,48(34): 4106-4108.
    [43]Wang J.-Z., Lu L., Choucair M., et al. Sulfur-graphene composite for rechargeable lithium batteries. Journal of Power Sources,2011,196(16): 7030-7034.
    [44]Ji L., Rao M., Zheng H., et al. Graphene Oxide as a Sulfur Immobilizer in High Performance Lithium/Sulfur Cells. Journal of the American Chemical Society, 2011,133(46):18522-18525.
    [45]Sun H., Xu G. L., Xu Y. F., et al. A composite material of uniformly dispersed sulfur on reduced graphene oxide:Aqueous one-pot synthesis, characterization and excellent performance as the cathode in rechargeable lithium-sulfur batteries. Nano Research,2012,5(10):726-738.
    [46]Wang H., Yang Y, Liang Y, et al. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Letters,2011,11(7):2644-2647.
    [47]Zhang F.-f., Zhang X.-b., Dong Y.-h., et al. Facile and effective synthesis of reduced graphene oxide encapsulated sulfur via oil/water system for high performance lithium sulfur cells. Journal of Materials Chemistry,2012,22(23): 11452-11454.
    [48]Lin T., Tang Y, Wang Y, et al. Scotch-tape-like exfoliation of graphite assisted with elemental sulfur and graphene/sulfur composites for high-performance lithium-sulfur batteries. Energy & Environmental Science,2013,6:1283-1290.
    [49]Huang J.-Q., Liu X.-F., Zhang Q., et al. Entrapment of sulfur in hierarchical porous graphene for lithium-sulfur batteries with high rate performance from-40 to 60 ℃. Nano Energy,2012,2:314-321.
    [50]Ding B., Yuan C., Shen L., et al. Chemically tailoring the nanostructure of graphene nanosheets to confine sulfur for high-performance lithium-sulfur batteries. Journal of Materials Chemistry A,2013,1(4):1096-1101.
    [51]Cao Y, Li X., Aksay I. A., et al. Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries. Physical Chemistry Chemical Physics,2011,13(17):7660-7665.
    [52]Abidian M. R., Kim D. H., Martin D. C. Conducting-Polymer Nanotubes for Controlled Drug Release. Advanced Materials,2006,18(4):405-409.
    [53]Jang J., Li X. L., Oh J. H. Facile fabrication of polymer and carbon nanocapsules using polypyrrole core/shell nanomaterials. Chemical Communications,2004, (7):794-795.
    [54]Xiao L., Cao Y., Xiao J., et al. A Soft Approach to Encapsulate Sulfur: Polyaniline Nanotubes for Lithium-Sulfur Batteries with Long Cycle Life. Advanced Materials,2012,24(9):1176-1181.
    [55]Wu F., Chen J., Chen R., et al. Sulfur/polythiophene with a core/shell structure: Synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. Journal of Physical Chemistry C,2011,115(13):6057-6063.
    [56]Wang J. L., Yang J., Xie J. Y., et al. A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries. Advanced Materials,2002,14(13-14):963-965.
    [57]Hager M. D., Greil P., Leyens C., et al. Self-Healing Materials. Advanced Materials,2010,22(47):5424-5430.
    [58]Gangopadhyay R., De A. Conducting polymer nanocomposites: a brief overview. Chemistry of Materials,2000,12(3):608-622.
    [59]Wang J., Chen J., Konstantinov K., et al. Sulphur-polypyrrole composite positive electrode materials for rechargeable lithium batteries. Electrochimica Acta,2006,51(22):4634-4638.
    [60]Sun M., Zhang S., Jiang T., et al. Nano-wire networks of sulfur-polypyrrole composite cathode materials for rechargeable lithium batteries. Electrochemistry Communications,2008,10(12):1819-1822.
    [61]Liang X., Wen Z., Liu Y, et al. Preparation and characterization of sulfur-polypyrrole composites with controlled morphology as high capacity cathode for lithium batteries. Solid State Ionics,2011,192(1):347-350.
    [62]Shao J., Li X., Zhang L., et al. Core-shell sulfur@polypyrrole composites as high-capacity materials for aqueous rechargeable batteries. Nanoscale,2013, 5(4):1460-1464.
    [63]Zhang Y, Bakenov Z., Zhao Y, et al. One-step synthesis of branched sulfur/polypyrrole nanocomposite cathode for lithium rechargeable batteries. Journal of Power Sources,2012,208:1-8.
    [64]Manthiram A., Fu Y. Core-shell structured sulfur-polypyrrole composite cathodes for lithium-sulfur batteries. RSC Advances,2012,2:5927-5929.
    [65]Fu Y., Manthiram A. Orthorhombic Bipyramidal Sulfur Coated with Polypyrrole Nanolayers As a Cathode Material for Lithium-Sulfur Batteries. Journal of Physical Chemistry C,2012,116(16):8910-8915.
    [66]Fanous J., Wegner M., Grimminger J., et al. Correlation of the Electrochemistry of Poly (acrylonitrile)-Sulfur Composite Cathodes with its Molecular Structure. Journal of Materials Chemistry,2012,22:23240-23245.
    [67]Fanous J., Wegner M., Grimminger J., et al. Structure-Related Electrochemistry of Sulfur-Poly (acrylonitrile) Composite Cathode Materials for Rechargeable Lithium Batteries. Chemistry of Materials,2011,23(22):5024-5028.
    [68]Yu X., Xie J., Li Y, et al. Stable-cycle and high-capacity conductive sulfur-containing cathode materials for rechargeable lithium batteries. Journal of Power Sources,2005,146(1):335-339.
    [69]Wang J., Yang J., Wan C., et al. Sulfur composite cathode materials for rechargeable lithium batteries. Advanced Functional Materials,2003,13(6): 487-492.
    [70]Yang Y., Yu G, Cha J. J., et al. Improving the performance of lithium-sulfur batteries by conductive polymer coating. ACS Nano,2011,5(11):9187-9193.
    [71]Yin L., Wang J., Lin F., et al. Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li-S batteries. Energy & Environmental Science,2012,5(5):6966-6972.
    [72]Liang X., Wen Z., Liu Y., et al. A composite of sulfur and polypyrrole-multi walled carbon combinatorial nanotube as cathode for Li/S battery. Journal of Power Sources,2012,206,409-413.
    [73]Ji X., Evers S., Lee K. T., et al. Agitation induced loading of sulfur into carbon CMK-3 nanotubes:efficient scavenging of noble metals from aqueous solution. Chemical Communications,2010,46(10):1658-1660.
    [74]Ji X. L., Lee K. T., Nazar L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nature Materials,2009,8(6):500-506.
    [75]Wang C., Wan W., Chen J. T., et al. Dual core-shell structured sulfur cathode composite synthesized by one-pot route for lithium sulfur battery. Journal of Materials Chemistry A,2013,1,1709-1715.
    [76]Ji X., Evers S., Black R., et al. Stabilizing lithium-sulphur cathodes using polysulphide reservoirs. Nature Communications,2011, doi: 10.1038/ncomms1293.
    [77]Song M.-S., Han S.-C., Kim H.-S., et al. Effects of nanosized adsorbing material on electrochemical properties of sulfur cathodes for Li/S secondary batteries. Journal of The Electrochemical Society,2004,151(6):A791-A795.
    [78]Choi Y, Jung B., Lee D., et al. Electrochemical properties of sulfur electrode containing nano Al2O3 for lithium/sulfur cell. Phys Scripta,2007, T129,62-65.
    [79]Evers S., Yim T., Nazar L. F. Understanding the Nature of Absorption/Adsorption in Nanoporous Polysulfide Sorbents for the Li-S Battery. The Journal of Physical Chemistry C,2012,116,19653-19658.
    [80]Lin Z., Liu Z., Fu W., et al. Phosphorous Pentasulfide as a Novel Additive for High-Performance Lithium-Sulfur Batteries. Advanced Functional Materials, 2013,23,1064-1069.
    [81]Gorkovenko A., Skotheim T. A., Xu Z.-S. Cathodes comprising electroactive sulfur materials and secondary batteries using same. US Patents:6210831B1, 2001.
    [82]Demir-Cakan R., Morcrette M., Nouar F., et al. Cathode composites for Li-S batteries via the use of oxygenated porous architectures. Journal of the American Chemical Society,2011,133(40):16154-16160.
    [83]Manthiram A., Su Y.-S. A New Approach to Improve Cycle Performance of Rechargeable Lithium-Sulfur Batteries by Inserting a Free-Standing MWCNT Interlayer. Chemical Communications,2012,48,8817-8819.
    [84]Gao J., Lowe M. A., Kiya Y, et al. Effects of Liquid Electrolytes on the Charge-Discharge Performance of Rechargeable Lithium/Sulfur Batteries: Electrochemical and in-Situ X-ray Absorption Spectroscopic Studies. Journal of Physical Chemistry C,2011,115(50):25132-25137.
    [85]Liang X., Wen Z., Liu Y., et al. Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte. Journal of Power Sources,2011, 196(22):9839-9843.
    [86]Aurbach D., Pollak E., Elazari R., et al. On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries. Journal of The Electrochemical Society,2009,156(8):A694-A702.
    [87]Beaulieu L., Eberman K., Turner R., et al. Colossal reversible volume changes in lithium alloys. Electrochemical and Solid-State Letters,2001,4(9): A137-A140.
    [88]Beaulieu L., Hatchard T., Bonakdarpour A., et al. Reaction of Li with alloy thin films studied by in situ AFM. Journal of The Electrochemical Society,2003, 150(11):A1457-A1464.
    [89]Derrien G, Hassoun J., Panero S., et al. Nanostructured Sn-C Composite as an Advanced Anode Material in High-Performance Lithium-Ion Batteries. Advanced Materials,2007,19(17):2336-2340.
    [90]Mao O., Dunlap R., Dahn J. Mechanically Alloyed Sn-Fe (-C) Powders as Anode Materials for Li-Ion Batteries:I. The Sn2Fe-C System. Journal of The Electrochemical Society,1999,146(2):405-413.
    [91]Hassoun J., Derrien G, Panero S., et al. A SnSb-C nanocomposite as high performance electrode for lithium ion batteries. Electrochimica Acta,2009, 54(19):4441.4444.
    [92]Beaulieu L., Larcher D., Dunlap R., et al. Nanocomposites in the Sn-Mn-C system produced by mechanical alloying. Journal of Alloys and Compounds, 2000,297(1):122-128.
    [93]Zhang W. M., Hu J. S., Guo Y. G, et al. Tin-Nanoparticles Encapsulated in Elastic Hollow Carbon Spheres for High-Performance Anode Material in Lithium-Ion Batteries. Advanced Materials,2008,20(6):1160-1165.
    [94]Yu Y, Gu L., Wang C., et al. Encapsulation of Sn@ carbon Nanoparticles in Bamboo-like Hollow Carbon Nanofibers as an Anode Material in Lithium-Based Batteries. Angewandte Chemie International Edition,2009, 48(35):6485-6489.
    [95]Chen J., Yang L., Fang S., et al. Ordered mesoporous Sn-C composite as an anode material for lithium ion batteries. Electrochemistry Communications, 2011,13(8):848-851.
    [96]Grigoriants I., Sominski L., Li H., et al. The use of tin-decorated mesoporous carbon as an anode material for rechargeable lithium batteries. Chemical Communications,2005, (7):921-923.
    [97]Peng Z., Shi Z., Liu M. Mesoporous Sn-TiO2 composite electrodes for lithium batteries. Chemical Communications,2000,21:2125-2126.
    [98]Yu Y, Gu L., Zhu C., et al. Tin nanoparticles encapsulated in porous multichannel carbon microtubes:preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries. Journal of the American Chemical Society,2009,131(44):15984-15985.
    [99]Idota Y, Kubota T., Matsufuji A., et al. Tin-based amorphous oxide:A high-capacity lithium-ion-storage material. Science,1997,276(5317): 1395-1397.
    [100]Bruce P. G., Scrosati B., Tarascon J. M. Nanomaterials for rechargeable lithium batteries. Angewandte Chemie International Edition,2008,47(16):2930-2946.
    [101]Kim C., Noh M., Choi M., et al. Critical size of a nano SnO2 electrode for Li-secondary battery. Chemistry of Materials,2005,17(12):3297-3301.
    [102]Wang X.-L., Feygenson M., Aronson M. C., et al. Sn/SnOx Core-Shell Nanospheres:Synthesis, Anode Performance in Li Ion Batteries, and Superconductivity. Journal of Physical Chemistry C,2010,114(35): 14697-14703.
    [103]Huang J. Y, Zhong L., Wang C. M., et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science,2010, 330(6010):1515-1520.
    [104]Park M. S., Kang Y M., Wang G X., et al. The effect of morphological modification on the electrochemical properties of SnO2 nanomaterials. Advanced Functional Materials,2008,18(3):455-461.
    [105]Wang Y., Lee J. Y, Zeng H. C. Polycrystalline SnO2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application. Chemistry of Materials,2005,17(15):3899-3903.
    [106]Wang J., Du N., Zhang H., et al. Large-scale synthesis of SnO2 nanotube arrays as high-performance anode materials of Li-ion batteries. The Journal of Physical Chemistry C,2011,115(22):11302-11305.
    [107]Wang C., Zhou Y., Ge M., et al. Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity. Journal of the American Chemical Society,2009, 132(1):46-47.
    [108]SongaChen J., FengaNg M., BinaWu H. Synthesis of phase-pure SnO2 nanosheets with different organized structures and their lithium storage properties. CrystEngComm,2012,14(16):5133-5136.
    [109]Ding S., Lou X. W. D. SnO2 nanosheet hollow spheres with improved lithium storage capabilities. Nanoscale,2011,3(9):3586-3588.
    [110]Lou X. W., Wang Y, Yuan C., et al. Template-Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity. Advanced Materials,2006, 18(17):2325-2329.
    [111]Chen J. S., Li C. M., Zhou W. W, et al. One-pot formation of SnO2 hollow nanospheres and a-Fe2O3@SnO2 nanorattles with large void space and their lithium storage properties. Nanoscale,2009,1(2):280-285.
    [112]Deng D., Lee J. Y. Hollow core-shell mesospheres of crystalline SnO2 nanoparticle aggregates for high capacity Li+ ion storage. Chemistry of Materials,2008,20(5):1841-1846.
    [113]Wang Z., Luan D., Boey F. Y. C., et al. Fast formation of SnO2 nanoboxes with enhanced lithium storage capability. Journal of the American Chemical Society, 2011,133(13):4738-4741.
    [114]Lou X. W., Chen J. S., Chen P., et al. One-pot synthesis of carbon-coated SnO2 nanocolloids with improved reversible lithium storage properties. Chemistry of Materials,2009,21(13):2868-2874.
    [115]Chen J. S., Cheah Y. L., Chen Y. T., et al. SnO2 nanoparticles with controlled carbon nanocoating as high-capacity anode materials for lithium-ion batteries. Journal of Physical Chemistry C,2009,113(47):20504-20508.
    [116]Chen Y., Huang Q., Wang J., et al. Synthesis of monodispersed SnO2@C composite hollow spheres for lithium ion battery anode applications. Journal of Materials Chemistry,2011,21(43):17448-17453.
    [117]Wu P., Du N., Zhang H., et al. Self-templating synthesis of SnO2-carbon hybrid hollow spheres for superior reversible lithium ion storage. ACS applied materials & interfaces,2011,3(6):1946-1952.
    [118]Wang X., Cao X., Bourgeois L., et al. N-Doped Graphene-SnO2 Sandwich Paper for High-Performance Lithium-ion Batteries. Advanced Functional Materials,2012,22,2682-2690.
    [119]Su L., Jing Y., Zhou Z. Li ion battery materials with core-shell nanostructures. Nanoscale,2011,3(10):3967-3983.
    [120]Candelaria S. L., Shao Y, Zhou W., et al. Nanostructured carbon for energy storage and conversion. Nano Energy,2011,1,195-220.
    [121]Chou S.-L., Wang J.-Z., Zhong C., et al. A facile route to carbon-coated SnO2 nanoparticles combined with a new binder for enhanced cyclability of Li-ion rechargeable batteries. Electrochimica Acta,2009,54(28):7519-7524.
    [122]Wang Y, Zeng H. C., Lee J. Y. Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers. Advanced Materials,2006,18(5):645-649.
    [123]Shao Q.-G., Chen W.-M., Wang Z.-H., et al. SnO2-based composite coaxial nanocables with multi-walled carbon nanotube and polypyrrole as anode materials for lithium-ion batteries. Electrochemistry Communications,2011, 13(12):1431-1434.
    [124]Wang D., Kou R., Choi D., et al. Ternary Self-Assembly of Ordered Metal Oxide-Graphene Nanocomposites for Electrochemical Energy Storage. ACS Nano,2010,4(3):1587-1595.
    [125]Zhang L.-S., Jiang L.-Y, Yan H.-J., et al. Mono dispersed SnO2 nanoparticles on both sides of single layer graphene sheets as anode materials in Li-ion batteries. Journal of Materials Chemistry,2010,20(26):5462-5467.
    [126]Ding S., Luan D., Boey F. Y. C., et al. SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties. Chemical Communications, 2011,47(25):7155-7157.
    [127]Julien C., Perez-Vicente C. Vibrational Studies of Lithium-intercalated SnS2-Solid State Ionics,1996,89(3):337-343.
    [128]Ibarz A., Ruiz E., Alvarez S. Electronic Structure of Host Lattices for Intercalation Compounds:SnS2, SnSe2, ZrS2, and TaS2. Chemistry of Materials, 1998,10(11):3422-3428.
    [129]Tarascon J., Armand M. Issues and challenges facing rechargeable lithium batteries. Nature,2001,414(6861):359-367.
    [130]Park C. M., Sohn H. J. Quasi-Intercalation and Facile Amorphization in Layered ZnSb for Li-Ion Batteries. Advanced Materials,2010,22(1):47-52.
    [131]Chiang Y.-M. Building a better battery. Science,2010,330(6010):1485-1486.
    [132]Mukaibo H., Yoshizawa A., Momma T., et al. Particle size and performance of SnS2 anodes for rechargeable lithium batteries. Journal of Power Sources,2003, 119-121,60-63.
    [133]Kim T.-J., Kim C., Son D., et al. Novel SnS2-nanosheet anodes for lithium-ion batteries. Journal of Power Sources,2007,167(2):529-535.
    [134]Domingo G, Itoga R. S., Kannewurf C. R. Fundamental Optical Absorption in SnS2 and SnSe2. Physical Review,1966,143(2):536-541.
    [135]Guo Y. G., Hu J. S., Wan L. J. Nanostructured materials for electrochemical energy conversion and storage devices. Advanced Materials,2008,20(15): 2878-2887.
    [136]Ji L., Lin Z., Alcoutlabi M., et al. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy & Environmental Science,2011,4(8):2682-2699.
    [137]Seo J.-w., Jang J.-t., Park S.-w., et al. Two-Dimensional SnS2 Nanoplates with Extraordinary High Discharge Capacity for Lithium Ion Batteries. Advanced Materials,2008,20(22):4269-4273.
    [138]Zhai C., Du N., Yang H. Z. D. Large-scale synthesis of ultrathin hexagonal tin disulfide nanosheets with highly reversible lithium storage. Chemical Communications,2011,47(4):1270-1272.
    [139]Liu S., Yin X., Hao Q., et al. Chemical bath deposition of SnS2 nanowall arrays with improved electrochemical performance for lithium ion battery. Materials Letters,2010,64(21):2350-2353.
    [140]Ma J., Lei D., Duan X., et al. Designable fabrication of flower-like SnS2 aggregates with excellent performance in lithium-ion batteries. RSC Advances, 2012,2(9):3615-3617.
    [141]Zai J., Wang K., Su Y, et al. High stability and superior rate capability of three-dimensional hierarchical SnS2 microspheres as anode material in lithium ion batteries. Journal of Power Sources,2011,196(7):3650-3654.
    [142]Arico A. S., Bruce P., Scrosati B., et al. Nanostructured materials for advanced energy conversion and storage devices. Nature Materials,2005,4(5):366-377.
    [143]Zhai C., Du N., Zhang H., et al. Multiwalled carbon nanotubes anchored with SnS2 nanosheets as high-performance anode materials of lithium-ion batteries. ACS Applied Materials & Interfaces,2011,3(10):40,67-74.
    [144]Luo B., Fang Y, Wang B., et al. Two dimensional graphene-SnS2 hybrids with superior rate capability for lithium ion storage. Energy & Environmental Science,2012,5(1):5226-5230.
    [145]Jiang Z., Wang C., Du G, et al. In situ synthesis of SnS2@ graphene nanocomposites for rechargeable lithium batteries. Journal of Materials Chemistry,2012,22,9494-9496.
    [146]Zhang M., Lei D., Yu X., et al. Graphene oxide oxidizes stannous ions to synthesize tin sulfide-graphene nanocomposites with small crystal size for high performance lithium ion batteries. Journal of Materials Chemistry,2012,22(43): 23091-23097.
    [147]Manthiram A., Fu Y. Enhanced Cyclability of Lithium-Sulfur Batteries by a Polymer Acid-Doped Polypyrrole Mixed Ionic-Electronic Conductor. Chemistry of Materials,2012,24(15):3081-3087.
    [148]Magistris A. M., Parazzoli P., Quartarone F., et al. Structure, porosity and conductivity of PVdF films for polymer electrolytes. Journal of Power Sources, 2001,97-98,657-660.
    [149]Zhang S. S., Jow T. R. Study of poly(acrylonitrile-methyl methacrylate) as binder for graphite anode and LiMn2O4 cathode of Li-ion batteries. Journal of Power Sources,2002,109,422-426.
    [150]Cai Z. P., Liang Y., Li W. S., et al. Preparation and performances of LiFePO4 cathode in aqueous solvent with polyacrylic acid as a binder. Journal of Power Sources,2009,189,547-551.
    [151]Liu W.-R., Yang M.-H., Wu H.-C., et al. Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder. Electrochemical and Solid-State Letters,2005,8(2):A100-A103.
    [152]Lestriez B., Bahri S., Sandu I., et al. On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries. Electrochemistry Communications, 2007,9(12):2801-2806.
    [153]Buqa H., Holzapfel M., Krumeich F., et al. Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries. Journal of Power Sources,2006,161(1):617-622.
    [154]Bridel J.-S., Azais T., Morcrette M., et al. Key Parameters Governing the Reversibility of Si/Carbon/CMC Electrodes for Li-Ion Batteries. Chemistry of Materials,2009,22(3):1229-1241.
    [155]杨峰,陈立宝,李雅琳,et al.水性粘结剂对纳米Sn02电化学性能的影响.电池,2008,38(2):99-102.
    [156]Kovalenko I., Zdyrko B., Magasinski A., et al. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science,2011,334(6052):75-79.
    [157]Cheon S.-E., Ko K.-S., Cho J.-H., et al. Rechargeable Lithium Sulfur Battery I. Structural Change of Sulfur Cathode During Discharge and Charge. Journal of The Electrochemical Society,2003,150(6):A796-A799.
    [158]Cheon S.-E., Cho J.-H., Ko K.-S., et al. Structural factors of sulfur cathodes with poly (ethylene oxide) binder for performance of rechargeable lithium sulfur batteries. Journal of The Electrochemical Society,2002,149(11):A1437-A1441.
    [159]Croce F., Persi L., Ronci F., et al. Nanocomposite polymer electrolytes and their impact on the lithium battery technology. Solid State Ionics,2000,135(1): 47-52.
    [160]Jung Y, Kim S. New approaches to improve cycle life characteristics of lithium-sulfur cells. Electrochemistry Communications,2007,9(2):249-254.
    [161]Kim N.-I., Lee C.-B., Seo J.-M., et al. Correlation between positive-electrode morphology and sulfur utilization in lithium-sulfur battery. Journal of Power Sources,2004,132(1):209-212.
    [162]Sun J., Huang Y, Wang W., et al. Application of gelatin as a binder for the sulfur cathode in lithium-sulfur batteries. Electrochimica Acta,2008,53(24): 7084-7088.
    [163]Sun J., Huang Y, Wang W., et al. Preparation and electrochemical characterization of the porous sulfur cathode using a gelatin binder. Electrochemistry Communications,2008,10(6):930-933.
    [164]Zhang W., Huang Y, Wang W., et al. Influence of pH of Gelatin Solution on Cycle Performance of the Sulfur Cathode. Journal of The Electrochemical Society,2010,157(4):A443-A446.
    [165]Jayaprakash N., Shen J., Moganty S. S., et al. Porous Hollow Carbon@Sulfur Composites for High-Power Lithium-Sulfur Batteries. Angewandte Chemie International Edition,2011,50,1-6.
    [166]Wu F., Wu S., Chen R., et al. Sulfur-Polythiophene Composite Cathode Materials for Rechargeable Lithium Batteries. Electrochemical and Solid-State Letters,2010,13(4):A29-A31.
    [167]Qiu L., Zhang S., Zhang L., et al. Preparation and enhanced electrochemical properties of nano-sulfur/poly(pyrrole-co-aniline) cathode material for lithium/sulfur batteries. Electrochimica Acta,2010,55(15):4632-4636.
    [168]Zheng W, Hu X. G., Zhang C. F. Electrochemical Properties of Rechargeable Lithium Batteries with Sulfur-Containing Composite Cathode Materials. Electrochemical and Solid-State Letters,2006,9(7):A364-A367.
    [169]Zhang S. S., Xu K., Jow T. R. LiBOB-based gel electrolyte Li-ion battery for high temperature operation. Journal of Power Sources,2006,154(1):276-280.
    [170]Jeong S. S., Lim Y. T., Choi Y. J., et al. Electrochemical properties of lithium sulfur cells using PEO polymer electrolytes prepared under three different mixing conditions. Journal of Power Sources,2007,174(2):745-750.
    [171]Yuan L. X., Feng J. K., Ai X. P., et al. Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte. Electrochemistry Communications,2006,8(4):610-614.
    [172]Shin J. H., Cairns E. J. Characterization of N-Methyl-N-Butylpyrrolidinium Bis(trifluoromethanesulfonyl)imide-LiTFSI-Tetra(ethylene glycol) Dimethyl Ether Mixtures as a Li Metal Cell Electrolyte. Journal of The Electrochemical Society,2008,155(5):A368-A373.
    [173]Yoshio M., Tsumura T., Dimov N. Silicon/graphite composites as an anode material for lithium ion batteries. Journal of Power Sources,2006,163(1): 215-218.
    [174]Lee J.-H., Paik U., Hackley V. A., et al. Effect of carboxymethyl cellulose on aqueous processing of natural graphite negative electrodes and their electrochemical performance for lithium batteries. Journal of The Electrochemical Society,2005,152(9):A1763-A1769.
    [175]Jeon B. H., Yeon J. H., Kim K. M., et al. Preparation and electrochemical properties of lithium-sulfur polymer batteries. Journal of Power Sources,2002, 109(1):89-97.
    [176]Choi J.-W., Cheruvally G., Kim D.-S., et al. Rechargeable lithium/sulfur battery with liquid electrolytes containing toluene as additive. Journal of Power Sources, 2008,183(1):441-445.
    [177]Yuan L., Qiu X., Chen L., et al. New insight into the discharge process of sulfur cathode by electrochemical impedance spectroscopy. Journal of Power Sources, 2009,189(1):127-132.
    [178]Cheon S.-E., Ko K.-S., Cho J.-H., et al. Rechargeable lithium sulfur battery Ⅱ. Rate capability and cycle characteristics. Journal of The Electrochemical Society, 2003,150(6):A800-A805.
    [179]Zhang S.-c., Zhang L., Wang W.-k., et al. A Novel cathode material based on polyaniline used for lithium/sulfur secondary battery. Synthetic Metals,2010, 160(17-18):2041-2044.
    [180]Zheng W., Liu Y., Hu X., et al. Novel nanosized adsorbing sulfur composite cathode materials for the advanced secondary lithium batteries. Electrochimica Acta,2006,51(7):1330-1335.
    [181]Sing K. S. The use of physisorption for the characterization of microporous carbons. Carbon,1989,27(1):5-11.
    [182]Shao C., An H., Wang X., et al. Deformation-induced linear chain-ring transition and crystallization of living polymer sulfur. Macromolecules,2007, 40(26):9475-9481.
    [183]Steijns M., Mars P. The adsorption of sulfur by microporous materials. Journal of Colloid and Interface Science,1976,57(1):175-180.
    [184]Shinkarev V., Fenelonov V., Kuvshinov G. Sulfur distribution on the surface of mesoporous nanofibrous carbon. Carbon,2003,41(2):295-302.
    [185]Dahn J., Zheng T., Liu Y., et al. Mechanisms for lithium insertion in carbonaceous materials. Science,1995,270(5236):590-593.
    [186]Yu Y, Chen C. H., Shi Y. A Tin-Based Amorphous Oxide Composite with a Porous, Spherical, Multideck-Cage Morphology as a Highly Reversible Anode Material for Lithium-Ion Batteries. Advanced Materials,2007,19(7):993-997.
    [187]Guo Z. P., Du G. D., Nuli Y, et al. Ultra-fine porous SnO2 nanopowder prepared via a molten salt process:a highly efficient anode material for lithium-ion batteries. Journal of Materials Chemistry,2009,19(20):3253-3257.
    [188]Yuan L., Guo Z., Konstantinov K., et al. Nano-structured spherical porous SnO2 anodes for lithium-ion batteries. Journal of Power Sources,2006,159(1): 345-348.
    [189]Courtney I. A., Dahn J. Electrochemical and In Situ X-Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites. Journal of The Electrochemical Society,1997,144(6):2045-2052.
    [190]Chen Z., Christensen L., Dahn J. Large-volume-change electrodes for Li-ion batteries of amorphous alloy particles held by elastomeric tethers. Electrochemistry Communications,2003,5(11):919-923.
    [191]Aifantis K., Hackney S., Dempsey J. Design criteria for nanostructured Li-ion batteries. Journal of Power Sources,2007,165(2):874-879.
    [192]Demir-Cakan R., Hu Y. S., Antonietti M., et al. Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties. Chemistry of Materials,2008,20(4):1227-1229.
    [193]Noh M., Kwon Y., Lee H., et al. Amorphous carbon-coated tin anode material for lithium secondary battery. Chemistry of Materials,2005,17(8):1926-1929.
    [194]Zhang H. X., Feng C., Zhai Y. C., et al. Cross-Stacked Carbon Nanotube Sheets Uniformly Loaded with SnO2 Nanoparticles:A Novel Binder-Free and High-Capacity Anode Material for Lithium-Ion Batteries. Advanced Materials, 2009,21(22):2299-2304.
    [195]Winter M., Besenhard J. O. Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochimica Acta,1999,45(1):31-50.
    [196]Read J., Foster D., Wolfenstine J., et al. SnO2-carbon composites for lithium-ion battery anodes. Journal of Power Sources,2001,96(2):277-281.
    [197]Zhang B., Yu X., Ge C., et al. Novel 3-D superstructures made up of SnO2@C core-shell nanochains for energy storage applications. Chemical Communications,2010,46(48):9188-9190.
    [198]Zhou J., Song H., Chen X., et al. Carbon-encapsulated metal oxide hollow nanoparticles and metal oxide hollow nanoparticles:A general synthesis strategy and its application to lithium-ion batteries. Chemistry of Materials,2009,21(13): 2935-2940.
    [199]Sun X., Li Y. Hollow carbonaceous capsules from glucose solution. Journal of Colloid and Interface Science,2005,291(1):7-12.
    [200]Sun X., Liu J., Li Y. Oxides@ C core-shell nanostructures:One-pot synthesis, rational conversion, and Li storage property. Chemistry of Materials,2006, 18(15):3486-3494.
    [201]Ahn H.-J., Choi H.-C., Park K.-W., et al. Investigation of the structural and electrochemical properties of size-controlled SnO2 nanoparticles. The Journal of Physical Chemistry B,2004,108(28):9815-9820.
    [202]Gu M., Li Y., Li X., et al. In situ TEM study of lithiation behavior of silicon nanoparticles attached to and embedded in a carbon matrix. ACS Nano,2012, 6(9):8439-8447.
    [203]Li Y., Lv X., Lu J., et al. Preparation of SnO2-Nanocrystal/Graphene-Nanosheets Composites and Their Lithium Storage Ability. Journal of Physical Chemistry C,2010,114,21770-21774.
    [204]An G, Na N., Zhang X., et al. SnO2/carbon nanotube nanocomposites synthesized in supercritical fluids:highly efficient materials for use as a chemical sensor and as the anode of a lithium-ion battery. Nanotechnology, 2007,18(43):435707.
    [205]Lou X. W., Li C. M., Archer L. A. Designed synthesis of coaxial SnO2@ carbon hollow nanospheres for highly reversible lithium storage. Advanced Materials, 2009,21(24):2536-2539.
    [206]Mohamedi M., Lee S.-J., Takahashi D., et al. Amorphous tin oxide films: preparation and characterization as an anode active material for lithium ion batteries. Electrochimica Acta,2001,46(8):1161-1168.
    [207]Li X., Meng X., Liu J., et al. Tin Oxide with Controlled Morphology and Crystallinity by Atomic Layer Deposition onto Graphene Nanosheets for Enhanced Lithium Storage. Advanced Functional Materials,2012,22(8): 1646-1646.
    [208]Park M. S., Wang G X., Kang Y. M., et al. Preparation and Electrochemical Properties of SnO2 Nanowires for Application in Lithium-Ion Batteries. Angewandte Chemie, International Edition,2007,119(5):764-767.
    [209]Aurbach D., Nimberger A., Markovsky B., et al. Nanoparticles of SnO produced by sonochemistry as anode materials for rechargeable lithium batteries. Chemistry of Materials,2002,14(10):4155-4163.
    [210]Chen Z., Zhou M., Cao Y, et al. In Situ Generation of Few-Layer Graphene Coatings on SnO2-SiC Core-Shell Nanoparticles for High-Performance Lithium-Ion Storage. Advanced Energy Materials,2011,2,95-102.
    [211]Wang Z. H., He X., Wang X., et al. Magnetic and microwave-absorption properties of SnO-coated a-Fe (Sn) nanocapsules. Journal of Physics D:Applied Physics,2010,43,495404.
    [212]Jung J. Y., Lee S. B., Lee H. Y, et al. Electrochemical Migration Characteristics of Eutectic Sn-Pb Solder Alloy in NaCl and Na2SO4 Solutions. Journal of Electronic Materials,2009,38(5):691-699.
    [213]Maranchi J. P., Hepp A. F., Kumta P. N. High Capacity, Reversible Silicon Thin-Film Anodes for Lithium-Ion Batteries. Electrochemical and Solid-State Letters,2003,6(9):A198-A201.
    [214]Fan Q., Chupas P. J., Whittingham M. S. Characterization of amorphous and crystalline tin-cobalt anodes. Electrochemical and Solid-State Letters,2007, 10(12):A274-A278.
    [215]Sides C. R., Martin C. R. Nanostructured Electrodes and the Low-Temperature Performance of Li-Ion Batteries. Advanced Materials,2005,17(1):125-128.
    [216]Zai J., Qian X., Wang K., et al.3D-hierarchical SnS2 micro/nano-structures: controlled synthesis, formation mechanism and lithium ion storage performances. CrystEngComm,2012,14(4):1364-1375.
    [217]Liu S., Yin X., Chen L., et al. Synthesis of self-assembled 3D flowerlike SnS2 nanostructures with enhanced lithium ion storage property. Solid State Sciences, 2010,12(5):712-718.
    [218]Golodnitsky D., Nathan M., Yufit V., et al. Progress in three-dimensional (3D) Li-ion microbatteries. Solid State Ionics,2006,177(26):2811-2819.
    [219]Kim H. S., Chung Y. H., Kang S. H., et al. Electrochemical behavior of carbon-coated SnS2 for use as the anode in lithium-ion batteries. Electrochimica Acta,2009,54(13):3606-3610.
    [220]Chang K., Wang Z., Huang G, et al. Few-layer SnS2/Graphene Hybrid with Exceptional Electrochemical Performance as Li-Ion Battery Anode. Journal of Power Sources,2011,201,259-266.
    [221]Zhou X., Chen S., Zhang D., et al. Microsphere organization of nanorods directed by PEG linear polymer. Langmuir,2006,22(4):1383-1387.
    [222]Xu Y., Chen D., Jiao X., et al. Nanosized Cu2O/PEG400 composite hollow spheres with mesoporous shells. The Journal of Physical Chemistry C,2007, 111(44):16284-16289.
    [223]Inata H., Matsumura S. Chain extenders for polyesters. Ⅲ. Addition-type nitrogen-containing chain extenders reactive with hydroxyl end groups of polyesters. Journal of Applied Polymer Science,1986,32(4):4581-4594.
    [224]Ma S.-B., Lee Y.-H., Ahn K.-Y, et al. Spontaneously deposited manganese oxide on acetylene black in an aqueous potassium permanganate solution. Journal of The Electrochemical Society,2006,153(1):C27-C32.
    [225]Patra C. R., Odani A., Pol V. G, et al. Microwave-assisted synthesis of tin sulfide nanoflakes and their electrochemical performance as Li-inserting materials. Journal of Solid State Electrochemistry,2007,11(2):186-194.
    [226]Chastain J., King Jr R. C. Handbook of X-ray photoelectron spectroscopy. Eden Prairire, MN:Perkin-Elemer,1992.
    [227]Zeng S., Tang K., Li T., et al. Facile route for the fabrication of porous hematite nanoflowers:its synthesis, growth mechanism, application in the lithium ion battery, and magnetic and photocatalytic properties. Journal of Physical Chemistry C,2008,112(13):4836-4843.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700