用户名: 密码: 验证码:
稠油催化降解及其沥青质化学性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稠油资源是常规原油耗尽后的替代品。但稠油粘度大,难以直接开发利用,稠油井下水热催化降粘是解决此难题很有发展前景的技术之一。
     论文以辽河稠油为研究对象,在高压反应釜中模拟注汽热采时井下改质条件,考察水热裂解的可行性,寻求稠油改质过程适宜的改质条件。通过检测反应前后样品的SARA组成,平均分子量、粘度和沥青质、胶质含量的变化来衡量稠油改质效果。并对稠油中沥青质的性质进行了研究。通过实验,主要结论如下:
     (1)无催化剂存在条件下,在反应温度为240℃、反应24h、水油质量比0.5时,50℃粘度由原来的147.30Pa·s,降到130.40Pa·s。
     (2)过渡金属离子催化降粘以及降低胶质、沥青质含量的顺序为:Fe~(2+)>Ni~(2+)>Co~(2+)>Ti~(4+)>Cr~(3+)>Mn~(2+)>Cu~(2+)>Zn~(2+)。且在260℃、反应24h条件下,Fe~(2+)最佳用量为0.20%。
     (3)由沥青质和胶质XRD数据计算出辽河稠油分离产物中的沥青质芳香层间距(dm)、脂链之间间距(dr)、芳香片的直径(La)、晶胞高度(Lc)、芳香片堆积层数(Me)为别为2.32、2.91、27.9、13.6、6.9nm。
     (4)测定以苯和甲苯为溶剂时沥青质平均分子量分别为3 167和2404。表明沥青质是由单元片层缔合成的的缔合体,溶剂的极性可使沥青质的缔合程度降低。
     (5)溶液法通过计算得到辽河油田正戊烷沥青质的偶极矩μ=7.91。
     (6)粘度法和表面张力法分别测定沥青质的沉淀起始点为41%和32%。
Heavy oil is the substitute of conventional crude oil when it is depleted. But the heavy oil is difficult to be exploited and utilizated because of it's high viscosity. Down hole catalytic aquathermolysis reaction to decreasing its viscosity is a potential technology to resolve this puzzle.
     Liaohe heavy oil was used to study the feasibility of aquathermolusis reaction and seeking for suitable conditions during the process of the heavy oil upgrading in high-pressure batch reactor by imitating upgrading conditions at down well during steam injection. Upgrading effect was evaluated by comparing the composition changes before and after the reaction, average molecular weight, viscosity and the content of asphaltenes and resins. At the same time, properties of the asphaltenes were studied. The major conclutions are as following:
     (1) After quathermolysis reaction at 240℃for 24 hours while water to oil ratio is 0.5, viscosity of the heavy oil at 50℃decreased from 147.30 Pa·s to 130.40 Pa·s.
     (2) The sequence of transitional metal ions catalytic ability of aquathermolusis reaction and its decreasing of asphaltenes and resins are as following : Fe~(2+)>Ni~(2+)>Co~(2+)>Ti~(4+)>Cr~(3+)>Mn~(2+)>Cu~(2+)>Zn~(2+). Aquathermolusis reaction at 260℃for 24 hours, the optimal concentrations of Fe~(2+) is 0.20%.
     (3) Calculating from the XRD results of asphaltenes, its dm, dr, La, Lc and Me are 2.3、2.9、27.9、3.6、6.9nm respectively.
     (4) The average mocular weights of asphaltene in toluene and in benzene are 3167 and 2404. It shows that asphaltene is associated in toluene and the palarity of the solvent could reduce the degree of association.
     (5) Dipole moments of the asphaltenes is 7.91tested by solvent method.
     (6) Precipitation point of the asphaltenes are 41% and 32% respectively when tested by viscosity method and surface tension method.
引文
[1] J GSpeight. The chemistry and technology of petroleum[J]. Marcel Dekker, 1991, 38(8): 201.
    
    [2] R Pelet. Kinetic studies of asphaltene pyrolyses and their geochemical applications [J]. Org.Geochem, 1986, 10(2): 481.
    
    [3] K J Leontaritis. Polarization creation by beam-foil interactions for peojectile fragmentsproduced in high-energy heavy-ion collisions and NMR detection of short-lived β-~(39)Ca[J].Petroleum Chem., 1988, 33 (1): 196.
    
    [4] J G. Speight. Thermal transformations of asphaltenes[J]. Petroleum Chemistry U.S.S.R, 1989,29(4): 253-261.
    
    [5] 罗敬义.辽河油田稠油集输工艺[J].石油规划设计,1992,3(1):48-51.
    
    [6]J G E Browen,G R Hass,R D Sell著,宋鹏瑞译.井底乳化:降粘增产[J].石油勘探开发情 报,1997,11(3):55-63.
    
    [7] 郭雄华,冯海船,顾永涛.PS降粘剂在胜利油区稠油开采中的应用[J].特种油气藏,1998, 5(3):44-49.
    
    [8] 李牧,杨红,唐纪云,等.化学吞吐开采稠油技术研究[J].油田化学,1997,14(4): 340-360.
    
    [9] 关德,陈建武,商利军.渤海绥中36-1油田化学吞吐降勃技术初探[J].中国海上油气(工 程),2000,12(1):40-44.
    
    [10] Boberg T C. Thermal method of oil recovery[M]. John Wiley &Sons:New York, 1988.
    
    [11]黄敏,李芳田,史足华.稠油降粘剂DJH-1[J].油田化学,2000,17(2):137-139.
    
    [12] 吴本芳,郭金波.原油乳化降粘研究进展[J].洛阳师范学院报,2002,6(5):47-52.
    
    [13]冯涛,吴迪,林森,等.原油乳化输送技术的进展[J].油气田地面工程,1999,18(3):5-7.
    
    [14] 范维玉,刘兴玉,南国枝,等.GL系列特稠油乳化降粘剂及其O/W型乳状液流变性研究[J]. 石油大学学报(自然科学版),1998,22(2):48-50.
    
    [15]吴本芳.辽河原油降粘研究[D].上海:华东理工大学硕士学位论文,2001.
    
    [16]秦兵.稠油乳化降粘剂结构与性能关系的研究[D].北京:石油化工科学研究院博士学位论 文,2001.
    
    [17]周风山,吴瑾光.稠油化学降粘技术研究进展[J].油田化学,2001,18(3):268-272.
    
    [18] 杨嘉羚,常景龙.对新型降凝剂研究的评述[J].油气储运,1997,16(5):5-8.
    
    [19]李锦听,权忠舆.原油改性机理研究中的几个问题[J].油气储运,1998,17(7):8-12.
    
    [20]张付生,王彪.几种原油降凝降薪剂作用机理的红外光谱和x射线衍射研究[J].油田化 学,1995,12(4):245-252.
    
    [21] 范洪富,刘永建,赵晓非,等.金属盐对辽河稠油水热裂解反应影响研究[J].燃料化学学 报,2001,29(5):430-433.
    
    [22]樊泽霞,赵福麟,王杰祥,等.超稠油供氢水热裂解改质降黏研究[J].燃料化学学报, 2006,34(3):315-319.
    
    [23]张春英.国外微生物采油技术水平调查[J].石油钻采工艺,1989,11(1):69-78.
    
    [24]张春英.大庆庆油田微生物提高采收率的矿场实验[J].石油学报,1995,16(1):88-94.
    
    [25] Mansoori G A. Modeling of asphaltene and other heavy organic depositions [J]. Journal ofPetroleum Science and Engineering, 1997, 17(6): 101-111.
    
    [26] Wiehe I A, Kennedy R J. The oil compatibility model and crude oil in compatibility [J] .Energy& Fuels, 2000, 14(1): 56-59.
    
    [27] Speight J G. Asphaltenes in crude oil and bitumen: structure and dispersion [A]. Adv. Chem.Ser., 251 (Suspensions: Fundamentals and Applications in the Petroleum Industry) [C], 1996,377-401.
    
    [28] Otto P Strausz, Thomas W Mojelsky, Farhad Faraji, et al. Additional structural details onAthabasca asphaltene and the irramifications [J]. Energy & Fuels, 1999, 13a : 207-227.
    
    [29] Otto P Strausz, Thomas W Mojelsky, Elizabeth M Lown. Structural features of Boscan and Duriasphaltene [J]. Energy & Fuels, 1999, 13b: 228-247.
    
    [30] Schabron J F, Speight J G. The solubility and three dimensional structure of asphaltenes [J].Petroleum Science and Technology, 1998, 16(3&4): 361-375.
    
    [31] Socrates Acevedo, Gaston Escobar, Maria A. Ranaudo, et al. Observations about the struc-tureand dispersion of petroleum asphaltenes aggregates obt-ained from dial-ysis fractionation andcharacterization [J].Energy & Fuels, 1997, 11(1): 774-778.
    
    [32] Murgich J, Abanero J A, Strausz O P. Molecular recognition in aggregates formed by asphalteneand resin molecules from the Athabasca oil sand [J]. Energy & Fuel, 1999, 13(2): 278-286.
    
    [33] J. G. Speight. Relation of petroleum resins to asphaltene [J] , Petroleum Chemistry U.S.S.R.,1989, 29(4): 253-261.
    
    [34] T F Yen. The charge-transfer nature of bitmens[J]. Fuel, 1973, 52(2): 93-97.
    
    [35] S.Eser. Relationships between chemical constitution of the feedstocks and mesophasedevelopment[J]. Carbon, 1989, 27 (6): 877-887.
    
    [36] T F Yen. Utilization and environmental environmental effects[J]. Energy Sources, 1984, 7(3):203.
    
    [37] D A Storm, J C Edwards, S J DeCanio, etal. Molecular representations of ratawi and alaskanorth slope asphaltenes based on liquid- and solid-State NMR. Energy & Fuels, 1994, 8(3):561-566.
    
    [38] M Hamaguchi,T Nishizawa. Quantitative analysis of aromatic carbon types in pitch byfused-state ~(13)C n.m.r. spectroscopy. Fuel[J]. Science Direct, 1992, 71(7): 747-750.
    
    [39]陆善祥.核磁共振谱法估计重油和沥青中芳环分布[J].华东理工大学学报,1994,20(4): 501-506.
    
    [40] N Cyr. Spectral characterization of liquefied products of Pakistani coal [J]. Fuel ProcessingTechnology, 1987,66(5): 1709-1714.
    
    [41] T F Yen. A simplified thermodynamic modeling procedure for predicting asphalteneprecipitation [J]. Fuel, 1961, 33(11): 1587-1594.
    
    [42] L B Ebert, J I Brauman, R A Huggins. Carbon monofluoride evidence for a structure containingan infinite array of cyclohexane boats[J]. Am. Chem. Soc, 1974,96(25): 7841-7842.
    
    [43] 秦匡宗,郭绍辉.石油沥青质[M].北京:石油工业出版社,2002.
    
    [44]王子军.石油沥青质的化学和物理Ⅰ:石油沥青质的定义和分离[J].石油沥青,1995, 10(1):32-40.
    
    [45]王子军.石油沥青质的化学和物理Ⅱ:沥青质的化学组成和结构[J].石油沥青,1996, 9(4):26-36.
    
    [46] Koots J A, Speiqht J G. Relation of petroleumreaidnes to asphaltenes[J]. Fuel, 1975, 54(2):179-184.
    
    [47] Sheu E Y. Aggregation and kinetics of asphaltene in organic solventsP[J]. Fuel, 1992, 71(3):??299-302.
    
    [48] 杨照,郭天民.沥青质沉淀研究进展综述[J].石油勘探与开发,1997,24(5):98-103.
    
    [49] 胡玉峰.原油正构烷烃沥青质聚沉机理研究及沉淀量测定[J].石油勘探与开发,2000(5): 110-114.
    
    [50]杨照,林雄森,马昌峰,等.沥青质沉淀点的测定与模型化计算[J].石油学报,1999(3): 78-81.
    
    [51] Van N K, Van W H A. Aspects of the constitution of mineral oils [M]. New York: Elsevierpublishing Co., 1951.
    
    [52] Thompson C J, Dooley J E, Hirsch D E, et al. Analyzing heavy ends of crude [J]. HydrocarbonProcessing, 1973, 57(9): 123-124.
    
    [53] Altgelt K H, Boduszynski M M. Composition and Analysis of Heavy Petroleum Fractions [M].New York: Marcel Dekker Inc, 1994.
    
    [54] Speight J G. Reactions of Athabasca asphaltenes and heavy oil with metal chlorides [J]. Fuel,1971,50(2): 175-186.
    
    [55] Carnahan N F, Salager J L R., Davila A. properties of resins extracted from boscan crude oil andtheir effect on the stabilty of asphsitenes in boscan and hamaca crude oils[ J ]. Energy Fuels,1999, 13 (2): 309-314.
    
    [56]梁文杰.重质油化学[M].东营:石油大学出版社,2000:242-246.
    
    [57]B A拉宾诺维奇,ε.(?).哈文著,尹承烈译.简明化学手册[M].北京:化学工业出版社, 1983:296-478.
    
    [58] Clark P D, Hyne J B, Tyrer J D. Chemistry of organo sulfur compound type occurring in heavyoil sands: 1. High temperature hudrolysis and tehermolysis of therahudro-thiophene in relationto steam stimulation processes [J]. Fuel, 1983, 62(5): 959-962.
    
    [59] Clark P D, Hyne J B, Tyrer J D. Chemistry of organo sulfur compound type occurring in heavyoil sands: 2. Influence of PH on the high temperature hydrolysis of tetrathiophene and heavy oilsands [J]. Fuel, 1984, 63(1): 125-128.
    
    [60] Clark P D, Hyne J B, Tyrer J D. Chemistry of organo sulfur compound type occurring in heavyoil sands: 3. Reaction of thiophene and tetrahydro-thiophene with vanadul and nickel salts [J].Fuel, 1984, 63(12): 1649-1654.
    
    [61] Clark P D, Hyne J B, Tyrer J D. Chemistry of organo sulfur compound type occurring in heavyoil sands: 4. The high-temperature reaction of hiophene and tetrahydro- thiophene with aqueoussolution of aluminium and first row transition-metal cations [J]. Fuels, 1987, 66(5): 1353-1357.
    
    [62] Speight J G. Reactions of Athabasca asphaltenes and heavy oil with metal chlorides [J]. Fuel,1971,50(2): 175-186.
    
    [63] Moschopedis S E, Speight J G. Influence of certain metal salts on the solubility of petroleumasphaltenes [J]. Fuel, 1974, 53(3): 222-223.
    
    [64] Moschopedis S E, Speight J G, Olah G A. Friedel-crafts and related reactions[M], New York:Interscience,1964, 22(2): 23.
    
    [65] Michael Siskin, Alan R Katritzky. A review of the reactivity of organic compounds withoxygen-containing functionality in superheated water Journal of Analytical and AppliedPyrolysis[J], Fuel, 2000,54(2): 193-214.
    
    [66] Stock L M, Duran J E, Huang C B, et al. Aspects of donor solvent coal dissolution reactions:Effects of organosulphur compounds on hydrogen transfer, decomposition of1,3-diphenylpropane and liquefaction of Illinois coals [J]. Fuel, 1985, 64(6): 754-760.
    
    [67] Benson S W. Bond energies [J]. J. Chem. Educ, 1965, 42(6): 502-518.
    
    [68] Kerr J A. Bond dissociation energies by kinetic methods [J]. Chemical Reviews, 1966, 66(5):465-500.
    
    [69] Poutsma M L. Free-radical thermolysis and hydrogenolysis of model hydrocarbons relevant toprocessing of coal [J]. Energy & Fuels, 1990, 4(2): 113-131.
    
    [70] McMillen D F, Malhotra R, Nigenda S E. The case for induced bond scission during coalpyrolysis [J]. Fuel, 1989, 68(3): 380-386.
    
    [71] Malhotra R, McMillen D F, Tse D S, et al. Relative importance of thermolysis andhydrogenolysis processes: "liquefaction" of a bibenzyl polymer [J]. Energy & Fuels, 1989, 3(1):465-468.
    
    [72] Hsiang-Hui K, Stock L M. Aspects of the chemistry of donor solvent coal dissolution:Promotion of the bond cleavage reactions of diphenylalkanes and the related ethers and amines[J]. Fuel, 1984, 63(6): 810-815.
    
    [73]魏贤勇,宗志敏,秦志宏,等.煤液化化学[M].北京:科学出版社,2002:94-119
    
    [74] Alan R K, Steven M A-Aquathermolysis: reactions of organic compounds with superheatedwater[J]. Acc Chem Res, 1996, 29(8): 399-406.
    
    [75] Y. Bouhadda , D. Bormann , E. Sheu ,et al. Characterization of algerian hassi-messaoudasphaltene structure using raman spectrometry and X-ray diffraction. Fuel[J], 2007, 86(13):1855-1864.
    
    [76] Mohammad Nahid Siddiqui, Mohammad Farhat Ali, John Shirokoff. Use of X-ray diffraction inassessing the aging pattern of asphalt fractions[J]. Fuel, 2002, 81(1): 51-58.
    
    [77] 李闽,李士伦,杜志敏.沥青沉积与地层伤害[J].新疆石油地质,2003,24(5):479-481.
    
    [78] Nellesteyn F I. The science of petroleum[ M]. Oxford Univ. Press London, 1938, 4: 2760.
    
    [79] Espinat D, Ravey J C. Colloidal structure of asphaltene solutions andheavy-oil fractions studiedby small-angle neutron and x-ray scattering[J]. SPE 25187, 1993, 365-374.
    
    [80] Storm D A , Sheu E Y. Characterization of colloidal asphaltenic particles in heavy oils [J]. Fuel,1995,74(6): 1140.
    
    [81] 田建锋,陈振林.石油沥青质的吸附、沉淀机理极其影响因素[J].海相油气地质,2005, 10(3):38.
    
    [82] 廖泽文,耿安松.油藏开发中沥青质的研究进展[J].科学通报,1999,44(19):2018-2023.
    
    [83] Lochte H L, Littann E R. Petroleum Acids and Bases[R].Chemical Publishing, N Y, 1953.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700