用户名: 密码: 验证码:
鸡白介素18成熟蛋白突变体在毕赤酵母中的高效表达及其生物活性检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鸡白介素18(Chicken interleukin-18, ChIL-18)是新发现的一种细胞因子,它具有广泛的生物活性,除能够促进γ-干扰素(IFN-γ)的产生,刺激淋巴细胞转化,增强NK细胞的杀伤活性,还在介导细胞免疫、抵抗微生物感染方面具有重要的作用。毕赤酵母表达系统是目前最为成功的外源蛋白表达系统之一,该系统操控简单、经济,表达量高,具有翻译后修饰的能力。目前已有多种外源蛋白在毕赤酵母表达系统中得到成功表达。因此可用毕赤酵母表达获得高产量且具有生物活性的鸡白介素18成熟蛋白(mature Chicken interleukin-18, mChIL-18)。本试验首先通过引物设计来定点突变鸡白介素18基因,构建成功能分泌表达鸡白介素18成熟蛋白的重组表达质粒pPIC9K-mChIL-18,然后将其导入毕赤酵母GS115中。筛选多拷贝阳性子,表达mChIL-18蛋白,测定其生物活性,为mChIL-18进一步的研究与开发打下基础。本研究的主要结果如下:
     为了得到高表达量的mChIL-18蛋白,根据毕赤酵母密码子偏嗜性,通过引物设计来定点突变鸡白介素18基因。同时构建了重组质粒pPIC9K-mChIL-18。经PCR和酶切鉴定、DNA测序得知:mChIL-18基因表达片段定向插入到表达载体启动子下并形成正确的开放阅读框(ORF)。
     用Sal I酶切重组质粒pPIC9K-mChIL-18,采用电转仪将其电转到毕赤酵母GS115中,经G418筛选出多拷贝阳性子。在提取染色体DNA之后,用特异性引物和通用引物对转化菌株进行PCR鉴定,结果显示扩增出了特异条带,表明外源基因整合进了宿主细胞染色体中。将筛选的多拷贝重组菌用甲醇诱导表达蛋白。经优化表达条件,证明在诱导温度为28℃,培养液pH值为6.5,甲醇的诱导浓度为2%,诱导时间为120 h时表达量最高,表达量约为480 mg/L。
     用MTT法和微量细胞病变抑制法检测mChIL-18蛋白的生物活性。表达的mChIL-18蛋白能够刺激SPF鸡淋巴细胞大量增殖,用400 ng/mL的mChIL-18诱导淋巴细胞产生γ-干扰素(IFN-γ),其生物活性最高可达1.7×104 U/mL,且能有效抑制水泡性口炎病毒(VSV)在鸡胚成纤维细胞(CEF)上的生长。
     由试验结果得知:通过定点突变基因、优化表达条件等方法,用毕赤酵母能够高效表达具有生物活性的鸡白介素18,因此有望作为免疫佐剂运用到工业化生产和兽医临床中。
Chicken interleukin-18(ChIL-18) has multiple biological activities including induction of IFN-γfrom NK cells and antigen- or mitogen-stimulated Th1 cells, upregulation of IL-2R on T cells, enhancement of Fas ligand-mediated cytotoxicity of T-helper cells and augmentation of NK cell cytotoxicity. The Pichia pastoris is one of the most successful freign protein expression systems until now. It offers economy, ease of manipulation, the aility to perform complex post-translational modifications, and high expression levels. So it is important to direct the expression of a bioactive mature chicken interleukin-18 (mChIL-18) in P.pastoris. The mChIL-18 gen was reconstructed by using the technique of site-specific mutagenesis based on the P.pastoris-preferred codons, and the recombinant plasmid pPIC9K-mChIL-18 was constructed. The objective of this research was to transform the cloned mChIL-18 gen into P.pastoris, and then cultured the P.pastoris, expressed the mChIL-18 and determined the bioactivity, which provides a good foundation for the research and development of mChIL-18. Main results of this research are as followed:
     To get a high expression and activity of recombinant mature chicken interleukin-18 (mChIL-18), the mChIL-18 gen was reconstructed by using the technique of site-specific mutagenesis based on the P.pastoris-preferred codons. The pPIC9K-mChIL-18 of expression vector was constructed by inserting mChIL-18 fragment. Sequencing results of plasmid pPIC9K-mChIL-18 indicated that structural mChIL-18 gene was integrated into the correct reading frame.
     Sal I-linearized recombinant plasmid pPIC9K-mChIL-18 was transformed into GS115 by electroperation. Multi-copy recombinant strains were screened by G418. Specific Pichia clony PCR products showed that foreign mChIL-18 gene was integrated into the host cell. The expression of mChIL-18 protein was induced by methanol. SDS-PAGE and Western-blot were used to analyze the expressed products. The bioactivity of mChIL-18 was measured by methyl thiazolyl tetrazolium(MTT)assays and chicken embryo fibroblasts-vesicular stomatitis virus(CEF-VSV)system. The results showed that the protein of mChIL-18 could be secreted by GS115. The optimum expression conditions, a rate of 480 mg/L, were obtained as follows: temperature 28℃, pH 6.5, methanol concentration 2% and expression time 120 h.
     The obtained mChIL-18 protein could stimulate T lymphocytes proliferation. IFN-γinduced by mChIL-18 could directly inhibit the growth of VSV in CEF, and its antiviral activity was about 1.7×104 U/mL which was produced by 400 ng/mL of mChIL-18.
     By using the technique of site-specific mutagenesis and optimizing expression conditions, the high expression of bioactive recombinant mature chicken interleukin-18(mChIL-18) in Pichia pastoris had been achieved, which could be produced in large-scale fermentation.
引文
[1]丁镌,宋跃芬,袁野,等.巴斯德毕赤酵母高效表达外源蛋白的策略毕赤酵母表达外源基因存在的问题与对策[J].畜牧与兽医, 2007, 39(2): 57-59.
    [2]董清华,沈元月.酵母表达系统研究进展与展望[J].北京农学院学报, 2008, 23(2): 72-75.
    [3]红云平,文心田.细胞因子及其在兽医上的应用[J].预防兽医学进展, 2000, 2(2): 4-6.
    [4]侯亚琴,刘桂林.细胞因子的研究进展及其应用[J].动物科学与动物医学, 2004, 21(10): 10-12.
    [5]胡敬东,崔治中,赵宏坤.鸡IL-18 cDNA的克隆及在大肠杆菌中的高效表达[J].畜牧兽医学报, 2005, 36(3): 264-268.
    [6]胡敬东,赵宏坤,崔治中.鸡白细胞介素18成熟蛋白基因真核表达质粒的构建及其在鸡胚成纤维细胞中的表达[J].畜牧兽医学报, 2006, 37(1): 91-94.
    [7]金伯泉主编.细胞和分子免疫学.北京世界图书出版公司, 1995: 56-62.
    [8]李宏梅,胡敬东,马凤龙,等.鸡白细胞介素-18(ChIL-18)重组蛋白的生物学活性检测[J].农业生物技术学报, 2007, 15(1): 5-10.
    [9]李洪钊,李亮助,孙强明,等.巴斯德毕赤酵母表达系统优化策略[J].微生物学报, 2003, 43(2): 288-292.
    [10]李庆章,刘忠贵. MTT比色分析法检测鸡T淋巴细胞体外增殖反应的研究[J].中国兽医杂志, 1994, 9: 18-20.
    [11]李祥瑞,金红,王秀丽,等.以MTT比色法检测鸡脾淋巴细胞转化效果[J].畜牧与兽医, 1996, 28(1): 3-5.
    [12]李祥瑞,徐立新,赵星灿,等.重组白细胞介素-2提高PRRS抗体阳性猪的猪瘟疫苗免疫效果试验[J].畜牧与兽医, 2002, 34(5): 9-13.
    [13]李欣,郭树华.影响外源基因在毕赤酵母中表达的因素[J].生物技术通讯, 2000, 11(2): 132-134.
    [14]李招发,于学玲,黄金路,等.重组巴曲酶在毕赤酵母中的高效表达[J].生物工程学报, 2007, 23(3): 483-486.
    [15]刘胜旺,潘蔚绮,孔宪刚,等.鸡白细胞介素-18基因的原核表达及多克隆抗血清的制备[J].中国兽医学报, 2003, 23(5): 427-430.
    [16]刘文强.牛羊白细胞介素-18基因的克隆和表达.山东农业大学博士论文, 2005, pp43-44.
    [17]刘一尘,张春杰,程安春,等.鸡IL-18成熟蛋白基因变构体毕赤酵母表达载体的构建及表达[J].中国兽医学报, 2009, 29(4): 502-506.
    [18]潘蔚绮,刘胜旺,孔宪刚,等.编码鸡IL-18成熟蛋白基因的分子克隆与序列测定[J].中国预防兽医学报, 2003, 25(2): 114-117.
    [19]温纳相,黄青云,陈金顶,等.鸡IL-18基因克隆与序列测定[J].动物医学进展, 2003, 24(2): 64-66.
    [20]殷震,刘景华.动物病毒学(第二版).科学技术出版社, 1999, 736-747.
    [21]赵翔,霍克克,李育阳.毕赤酵母的密码子用法分析[J].生物工程学报, 2000, 16(3): 308-311.
    [22] Aizawa Y, Akita K, Taniai M, et al. C loning and expression of interleukin-18 binding protein[J]. FEBS, 1999, Feb 26, 445(2-3): 338-342.
    [23] Akita K, Ohtsuki T, Nukada Y, et al. Involvement of caspase-1 and caspase-3 in the production and processing of mature human interleukin 18 in monocytic THP 1 cells[J]. J Biol Chem, 1997, 272(42): 595-603.
    [24] Ann Westerholm-Parvinen, Emilia Selinheimo, Harry Boer, et al. Expression of the Trichoderma reesei tyrosinase 2 in Pichia pastoris: Isotopic labeling and physicochemical characterization [J]. Protein Expression and Purification, 2007, 55: 147–158.
    [25] Atkins G J, Haynes DR, Geary S M, et al. Coordinated cytokine expression by stromal and hematopoietic cells during human osteoclast formation[J]. Bone, 2000, 26(2): 653-661.
    [26] Austin AJ, Jones CE, Heeke GV. Production of human tissue factor using the Pichia pastoris expression system[J]. Protein Expr Purif, 1998, 13(1): 136-142.
    [27] Barreios A P, Schumacher P, Laufenberg Feldmann R, et al. The early immune reponse in the liver of BALB/C mice infected with S.Typhimurium [J]. Stand J Immunol, 2000, 51(5): 472-478.
    [28] Berrin JG, Williamson G, Puigserver A, et al. High level production of recombinant fungal endo-β-1, 4-xylanase in the methylotrophic yeast Pichia pastoris[J]. Protein Engineer and Purification, 2000, 19: 179-187.
    [29] Bohn E, Sing A, Zumbihl R, et al. IL-18 (IFN-gamma-inducing factor) regulates early cytokine production in, and promotes resolution of, bacterial infection in mice[J]. J Immunol, 1998, 160(1): 299-307.
    [30] Cai G, KasteleinR. Interleukin-18 (IL-18) enhances innate IL-12-mediated resist ance to Toxoplasma gondii. Infect Immun, 2000, 68(12): 6932-6938.
    [31] Campbell E,Kunkel SL,Strieter RM. Differential roles of IL-18 in allergic airway disease: Induction of eotaxin by resident cell populations exacerbates eosinophil accumulation[J]. J Immunol, 2000, 164(2): 1096-1102.
    [32] Cao R, Farnebo J, Kurimoto M, et al. Interleukin 18 acts as angiogenesis and tumor suppressor [J]. FASEB, 1999, 13: 2195-2202.
    [33] Chapnik N, Sherman H, Froy O. A one-tube site-directed mutagenesis method using PCR and primer extension [J]. Anal Biochem, 2008, 372(2): 255-257.
    [34] Chen CC, Wu PH, Huang CT, et al. A Pichia pastoris fermentation strategy for enhancing the heterologous expression of an Escherichia coli phytase [J]. Enz Microbial Technol, 2004, 35(4): 315-320.
    [35] Clare JJ, Romanos MA, Rayment FB, et al. Production of mouse epidermal growth factor in yeast: high-level secretion using Pichia pastoris Strains containing multiple gene copies[J]. Gene, 1991, 105(2): 205-212.
    [36] Conti B, Jahny JW, Tinti C, et al. Induction of interferon-gamma inducing factor in the adrenal cortex[J]. J Biol Chem, 1997, 272: 2035-2037.
    [37] Cregg JM, Cereghino JL, Shi J, et al. Recombinant protein expression in Pichia pastoris[J]. Mol Biotechnol, 2000, 16(1): 23-52.
    [38] Cregg JM, Vedvick TS, Raschke WC. Recent advances in the expression of foreign genes in Pichia pastoris [J]. Biotechnology, 1993, 11(8): 905-910.
    [39] Daly R, Hearn MT. Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production[J]. J Mol Recognit, 2005, 18(2): 119–138.
    [40] Degen WG, van Zuilekom HI, Scholtes NC.Potentiation of humoral immune responses to vaccine antigens by recombinant chicken IL-18 (rChIL-18) [J]. Vaccine, 2005, 23(33): 4212-4218.
    [41] Dinarello CA. IL-18: a Th1-inducing proinflammatory cytokine and new member of the IL-1 family[J]. J Allergy Clin Immunol, 1999, 103: 11-24.
    [42] Dinarello CA. Interleukin-1 beta, interleukin-18, and the interleukin-1 beta converting enzyme[J]. Ann N Y Acad Sci, 1998, 856: 1-11.
    [43] Dupre L, Kre mer L, Wolowczuk I, et al. Immunostimulatory effect of IL-18- encoding plasmid in DNA vaccination against murine Schistosoma mansoni infection[J]. Vaccine, 2001, Jan 8, 19 (11-12): 1373-1380.
    [44] E.Richard. Stiehm, Robert L. Roberts, Bonnie J. Ank, et al. Comparison of Cytotoxic Properties of Neonatal and Adult Neutrophils and Monocytes and Enhancement by Cytokines. Clinical and Diagnostic Laboratory Immunology. 1994, p. 342-347.
    [45] Fantuzzi G,Puren AJ,Harding MW,et al. Interleukin-18 regulation of interferon gamma production and cell proliferation as shown in interleukin-1beta-converting enzyme (caspase-1)-deficient mice[J]. Blood, 1998, 91(6): 2118-2125.
    [46] Felderhoff-Mueser U, Schmidt OI, Oberholzer A. IL-18: a key player in neuroinflammation and neurodegeneration. Trends Neurosci, 2005, 28(9): 487-493.
    [47] Ferrari M, Fornasicro MC, Isetta AM. MTT colorimetric assay for testing macrophage cytotoxic activity in vitro[J]. J Immune Methods, 1990, 131: 165.
    [48] Fournout S, Dozois CM, Yerle M, et al. Cloning, chromosomal location, and tissue expression of the gene for pig interleukin-18[J]. Immunogenetics, 2000, 51(4-5): 358-365.
    [49] Fournout S,Dozois CM,Yerle M,et al. Cloning, chromosomal location, and tissue expression of the gene for pig interleukin-18[J]. Immunogenetics, 2000, 51(4-5): 358-365.
    [50] Fujioka N, Akazawa R, Ohashi K, et al. Interleukin-18 protects mice against acute herpes simplex virus type 1 infection[J]. J virol, 1999, 73: 2401-2409.
    [51] Fujioka N, Akazawa R, Ohashi K, et al. Interleukin-18 protects mice against acute herpes simplex virus type 1 infection[J]. Jvirol, 1999, 73: 2401-2409.
    [52] Ghayur T, Banerjee S, Hugnin M, et al. Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production[J]. Nature, 1997, 386: 619-623.
    [53] Gobel TW, Schneider K, Schaerer B. IL-18 Stimulates the Proliferation and Release IFN-γof CD4+ T Cells in the Chicken: Conservation of a Th1-Like System in a Nonmammalian Species[J]. The Journal of Immunology, 2003, 171: 1809-1815.
    [54] Gu Y, Kuida K, Tsutsui H, et al. Activation of interferon-gamma inducing factor mediated by interleukin-1 beta converting enzyme[J]. Science, 1997, 275: 206-209.
    [55] Han Y, Lei XG. Role of glycosylation in the functional expression of an Aspergillus niger phytase (phyA) in Pichia pastoris[J]. Arch Biochem Biophysics, 1999, 364 (1): 83-90.
    [56] Han Y, Lei XG. Role of glycosylation in the functional expression of an Aspergillus niger phytase (phyA) in Pichia pastoris[J]. Arch Biochem Biophysics, 1999, 364 (1): 83-90.
    [57] Hashimoto W, Osaki T, Okamura H, et al. Differential antitumor effects of administration of recombinant IL-18 or recombinant IL-12 aremediated primarily by Fas-Fas ligand-and perforin\induced tumor apoptosis,respectively[J]. J Immunol, 1999, 163: 583-589.
    [58] Helmby H, Grencis R K, et al. IL-18 regulates intestinal mastocytosis and Th2 cytokine production independently of IFN-gamma during Trichinella spiralis infection [J]. J Immunol, 2002, 169(5): 2553-2560.
    [59] Hoshino K, Kashiwamura S, Kuribayashi K, et al. The absence of interleukin 1 receptor-related T1:ST2 does not affect T helper cell type 2 development and its effector function[J]. J Exp Med, 1999, 190: 1541-1547.
    [60] Hoshino T, Wiltrout RH, Young HA. IL-18 is a potent coinducer of IL-13 in NK and T cells: a new potential role for IL-18 in modulating the immune response[J]. J Immunol, 1999, 162: 5070-5077.
    [61] Ishikawa Y, Yoshimoto T, Nakanishi K. Contribution of IL-18-induced innate T cell activation to airway inflammation with mucus hypersecretion and airway hyperresponsiveness. Int Immunol,2006,18(6): 847-855.
    [62] Kaiser P. Turkey and chicken interleukin-18 (IL18) share high sequence identity, but have different polyadenylation sites in their 3’UTR. Dev Comp Imm, 2002, 26: 681-687.
    [63] Kalina U, Ballas K, Koyama N, et al. Genomic organization and regulation of the human interleukin-18 gene. Scand J Immunol, 2000, 52(6): 525-530.
    [64] Kanda T, Tanaka T, Sekiguchi K, et al. Effect of interleukin-18 on viral myocarditis: enhancement of interferon- gamma and natural killer cell activity[J]. J Mol Cell Cardiol, 2000, 32(12): 2163-2171.
    [65] Kanda T, Tanaka T, Sekiguchi K, et al. Effect of interleukin-18 on viral myocarditis: enhancement of interferon- gamma and natural killer cell activity. J Mol Cell Cardiol, 2000, 32(12): 2163-2171.
    [66] Karel A, Zheng X. Specific and non-specific immune responses to Marek's disease virus [J]. Developmental and Comparative Immunology, 2000, 24: 201~221.
    [67] Karuppiah N, Sharma A, et al. Cyclodextrins as protein folding aids. Biochem Biophys Res Commun,1995,211(1):60-66.
    [68] Kikuchi T, Akasaki Y, Joki T, et al. Anti tumor activity of the interleukin-18 on mous glioma cells[J]. J immunotharapy, 2000, 23: 184-189.
    [69] Kikuchi T, Akasaki Y, Joki T, et al. Anti tumor activity of the interleukin-18 on mous glioma cells. J immunotharapy, 2000, 23: 184-189
    [70] Kim JJ, Yang JS, Dang K. Engineering enhancement of immune responses to DNA-based vaccines in a prostate cancer model in rhesus macaques through the use of cytokine gene adjuvants[J]. Clin Cancer Res, 2001, Mar, 7(3 Suppl): 882-889.
    [71] Kim SH. Cho D, Kim TS, et al. Induction of in vivo resistance to Mycobacterium avium infection by intramuscular injection with DNA encoding interleukin-18[J]. Immunology, 2001, 102(2): 234-241.
    [72] Kim YM, Im JY, Han SH, et al. IFN-gamma up-regulates IL-18 gene expression via IFN consensus sequence-binding protein and activator protein-1 elements in macrophages[J]. J Immunol, 2000, 165(6): 3198-3205.
    [73] Kim YM, Kang HS, Paik SG, et al. Roles of IFN consensus sequence binding protein and PU.1 in regulating IL-18 gene expression[J]. J Immunol, 1999, 163: 2000-2007.
    [74] Kim YM, Talanian RV, Li J, et al. Nitric oxide prevents IL-1 beta and IFN-gamma-inducing factor(IL-18) release from macrophages by inhibiting Caspase-1(IL-1beta-converting enzyme) [J]. J Immunol, 1998, 161(8): 4122-4128.
    [75] Kohno K, Kataoka J, Ohtsuki T, et al. IFN-gamma-inducing factor (IGIF) is a co stimulatory factor on the activation of Th1 but not Th2 cells and exerts its effect independently of IL-12 [J]. J Immunol, 1997, 158: 1541–1550.
    [76] Kohno K, Kurimoto M. Interleukin-18, a cytokine which resembles IL-1 structurally and IL-12 functionally but exerts its effect independently of both[J]. Clin Immunol Immunopath, 1998, 86(1): 11-15.
    [77] Li P, Anumanthan A, Gao XG, et al. Expression of Recombinant Proteins in Pichia Pastoris[J]. Appl Biochem Biotechnol, 2007, 142(2): 105-124.
    [78] Micallef MJ, Tanimoto T, Kohno K, et al. Interleukin 18 induces the sequential activation of natural killer cells and cytotoxic T lymphocytes to protect syngeneic mice from transplantation with Meth A sarcoma[J]. Cancer Res, 1997, 57: 4557-4563.
    [79] MunetaY, Shimoji Y,Yokomizo Y,et al. Production of monoclonal antibodies to porcine interleukin-18 and their use for immunoaffinity purification of recombinant porcine interleukin-18[J]. J Immunol Methods, 2000, 236(1-2): 99-104.
    [80] Nakanichi K, Yoshimoto T, Tsutsui H, et al. Interleukin-18 regulates both Th1 and Th2 responses[J]. Annu Rev Immunol, 2001, 19: 423-474.
    [81] Ohkusu K, Yoshimoto T, Takeda K, et al. Potentiality of interleukin-18 as a useful reagent for treatment and prevention of Leishmania major infection[J]. Infect Immun, 2000, 68(5): 2449-2456.
    [82] Okamura H, Nagata K, Komatsu T, et al. A novel costimulatory factor for gamma interferon found in the lives of mice causes endotoxic shock Infect[J]. J Immunol, 1995, 63: 3966-3972.
    [83] Okamura H, Tsutsui H, Komatsu T, et al. Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature, 1995, 378: 88-91.
    [84] Peng YC, Acheson NH. Production of active polyomavirus large T antigen in yeast Pichia pastoris[J]. Virus Res, 1997, 49(1): 41–47.
    [85] Puren AJ, Fantuzzi G, Dinarello CA. Gene expession, synthesis, and secretion of interleukin 18 and interleukin 1b are differentially regulated in human blood mononuclear cells and mouse spleen cells[J]. Proc Natl Acad Sci USA, 1999, 96: 2256-2261.
    [86] Rodriguez E, Mullaney EJ, Lei XG. Expression of the Aspergillus fumigatus phytase gene in Pichia pastoris and characterization of the recombinant enzyme[J]. Biochem Biophys Res Commun, 2000, 268(2): 373-378.
    [87] Rodriguez E, Mullaney EJ, Lei XG. Expression of the Aspergillus fumigatus phytase gene in Pichia pastoris and characterization of the recombinant enzyme[J]. Biochem Biophys Res Commun, 2000, 268(2): 373-378.
    [88] Rodriguez E, Wood ZA, Karplus PA, et al. Site-directed mutagenesis improves catalytic efficiency and thermostability of Escherichia coli pH 2.5 acid phosphatase/phytase expressed in Pichia pastoris[J]. Arch Biochem Biophys, 2000, 382(1): 105-112.
    [89] Sareneva T, Matikainen S, Kurimoto M, et al. Influenza A virus-induced IFN- alpha/beta and IL-18 synergistically enhance IFN-gamma gene expression in human T cells[J]. J Immunol, 1998, 160(12): 6032-308.
    [90] Schneider K, Puehler F, Baeubrle D, et al. cDNA cloning of biologically active chicken interleukin-18[J]. J Interferon Cytokine Res, 2000, 20: 879-883.
    [91] Scorer CA, Clare JJ, McCombie WR, et al. Rapid selection using G418 of high copy number transformants of Pichia pastoris for high-level foreign gene expression[J]. Biotechnology, 1994, 12(2): 181-184.
    [92] Takeda K, Tsutsui H, Yoshimoto T, et al. Defective NK cell activity and Thl response in IL-18 deficient mice[J]. Immunity, 1998, 8: 383-390.
    [93] Taniguchi M, Nagaoka K, Kunikata T, et al.Characterization of anti-human interleukin-18(IL-18)/interferon-γ-inducing factor (IGIF) monoclonal anti- bodies and their application in the measurement of human IL-18 by ELISA[J]. Immunol Methods, 1997, 162: 5041-5044.
    [94] Tsutsui H, Matsui K, Okamura H, et al. Pathophysiological roles of interleukin-18 in inflammatory liver diseases[J]. Immunol Rev, 2000, 174(1): 192-209.
    [95] Udagawa N, Horwood NJ, Elliott J, et al. Interleikin-18 (interferon- gamma- inducingfactor) is produced by osteoblasts and acts via granulocyte/macrophage colony-stimulating factor[J]. J Exp Med, 1997, 185: 1005-1012.
    [96] Ushio S, Namba M, Okura T, et al. cDNA cloning of the cDNA for human IFN-gamma-inducing factor, expression in Escherichia coli and studies on the biologic activities of the protein[J]. J Immunol, 1996, 156: 4274-4279.
    [97] Wood MJ, Komives EA. Production of large quantities of isotopically labeled protein in Pichia pastoris by fermentation[J]. J Biomol NMR, 1999, 13(2): 149-159.
    [98] Xing Z, Zganiacz A. Wang J, et al. IL-12-independent Thl-type immune response to respiratory vital infection: requirement of IL-18 for IFN-gamma release in the lung but not for the differentiation of viral-reactive Thl-type lymphocytes[J]. J Lmnunnology, 2000, 164(5): 2575-2584.
    [99] Yamanaka K, Hara I, Nagai H, et al. Synergistic antitumor effects of interleukin-12 gene transfer and systemic administration of interleukin-18 in a mouse bladder cancer model[J]. Cancer Immunol Immunother, 1999, 48(6): 297-302.
    [100] Yao B, Zhang CY, Wang JH, et al. Recombinant Pichia pastoris over-expressing bioactive phytase [J]. Sci China, 1998, 41(3): 330-336.
    [101] Yoshimoto T, Mizutani H, Tsutsui H, et al. IL-18 induction of IgE: dependence on CD4-T cells, IL-4 and STAT6[J]. Nat Immunol, 2000, 1: 132-137.
    [102] Yoshimoto T, Okamura H, Tagawa YI, et al. Interleukin 18 together with interleukin 12 inhibits IgE production by induction of interferon-γproduction from activated B cells[J]. Acad Sci Proc Natl USA, 1997, 94: 3948-3953.
    [103] Yoshimoto T, Takeda K, Tanaka T, et al. IL-12 up-regulates IL-18 receptor expression on T cells, Th1 cells, B cells: synergism with IL-18 for IFN-γproduction[J]. J Immunol, 1998, 161: 3400-3407.
    [104] Zhang T, Kawakami K, Qureshi MH, et al. Interleukin-12 (IL-12) and IL-18 synergistically induce the fungicidal activity of murine peritoneal exudate cells against Cryptococcus neoformans through production of gamma interferon by natural killer cells[J]. 1997, 65 (9): 3594-3599.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700