用户名: 密码: 验证码:
栉孔扇贝抗鳗弧菌感染性状候选基因的多态性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
栉孔扇贝(Chlamys farreri)是我国北方地区主要的养殖贝类之一,曾为沿海各省带来巨大的经济效益。但自1997年以来,陆续爆发的病害问题给扇贝养殖业造成了巨大的经济损失,严重影响了该产业的健康发展。目前认为培育抗病性强的扇贝优良品种是解决病害问题的根本途径。由于传统的育种方法费时费力,无法满足对良种的迫切需求,因此有必要通过分子手段加快抗病品种的培育步伐。标记辅助育种(marker assisted selection,MAS)是成功应用于动物育种中的分子手段之一,但由于缺乏与抗病性状相关的标记,MAS目前还无法在软体动物中得到应用。因此,寻找与抗病性状相关的分子标记是在软体动物中发展MAS的关键。
     本研究利用鳗弧菌(Listonella anguillarum)对栉孔扇贝进行攻毒感染实验,初步得到敏感群体和抗病群体后采用PCR、PCR-RFLP、Bi-PASA PCR等方法研究了CfLysG、CfC1qDC和CfLITAF基因多态性及其与栉孔扇贝对鳗弧菌抗性的关系。
     研究发现,栉孔扇贝CfLysG的基因序列中共有104个单核苷酸多态性(SNP)位点和29个插入/缺失(I/D)多态性位点。有17个多态性位点位于启动子区域,选择其中的-753 I/D、-391A/G和-284I/D多态性进行检测,发现这三个位点的基因型在敏感群体和抗病群体中的分布均符合Hardy-Weinberg平衡(P>0.05)。其中-753 ID基因型和-284 ID基因在抗病群体中的频率高于在敏感群体中的频率,但两者之间无显著性差异(P>0.05)。-391 AG基因型在抗病群体中的频率显著高于敏感群体(P=0.007),表明-391 AG基因型与栉孔扇贝对鳗弧菌的抗性显著相关。为验证这一相关性,对-391位点不同基因型的扇贝进行攻毒感染实验。统计发现,具有-391 AA基因型的扇贝累计死亡率显著高于具有-391 AG基因型的扇贝(P=0.001),进一步证实了CfLysG基因-391 AG基因型与栉孔扇贝对鳗弧菌的抗性显著相关。CfLysG基因的外显子共有3处SNP,其中仅第三外显子上的+3473 A/C为非同义突变。统计分析表明,+3473位点不同基因型在敏感群体中的分布频率符合Hardy-Weinberg平衡(P>0.05),而在抗病群体中则偏离Hardy-Weinberg平衡(P<0.01)。+3473 AA基因型在抗病群体中的频率显著高于在敏感群体中的频率(P=0.022),表明+3473 AA基因型与栉孔扇贝对鳗弧菌的抗性显著相关。CfLysG基因第1内含子存在+96 I/D和+487 I/D两处大片段的I/D多态性。统计发现,这两个位点的基因型在敏感群体和抗病群体中的分布频率均符合Hardy-Weinberg平衡(P>0.05)。其中+96 DD基因型和+487 ID基因型在抗病群体中的频率均略高于在敏感群体中的频率,但两者之间无显著性差异(P>0.05)。表明这两个位点的多态性与栉孔扇贝对鳗弧菌的抗性无显著相关性。对CfLysG基因各多态性位点的统计分析表明,各位点之间存在不同程度的连锁不平衡,提示有单体型的存在。对19种频率>1%的单体型在敏感群体及抗病群体中的频率进行分析,发现-753 I/-391 G/-284 I/+96 I/+487 D/+3473 A单体型在抗病群体中的频率显著高于敏感群体(P=0.044),表明该单体型与栉孔扇贝对鳗弧菌的抗性显著相关。
     在栉孔扇贝CfC1qDC基因cDNA序列上共发现14处SNP。对+423 T/C多态性与栉孔扇贝对鳗弧菌抗性的关系进行了分析。统计发现,+423位点各基因型在敏感群体和抗病群体中的分布均符合Hardy-Weinberg平衡(P>0.05)。+423 TT基因型在抗病群体中的频率显著高于在敏感群体中的频率(P=0.005),表明+423 TT基因型与栉孔扇贝对鳗弧菌的抗性显著相关。
     在栉孔扇贝CfLITAF基因cDNA序列中共发现3处SNP及1处I/D多态性。对+145 I/D多态性进行研究,发现所有敏感个体及抗病个体中均同时存在+145位点所有等位基因,表明+145位点多态性与栉孔扇贝对鳗弧菌的抗性不相关。
     以上研究表明,栉孔扇贝CfLysG基因-391 AG基因型、+3473 AA基因型、-753 I/-391 G/-284 I/+96 I/+487 D/+3473 A单体型以及CfC1qDC基因+423 TT基因型与栉孔扇贝对鳗弧菌的抗性显著相关,提示它们可作为与栉孔扇贝抗病相关的候选分子标记应用于贝类抗病育种中,为贝类的标记辅助育种提供参考。此外,抗病相关分子标记的发现还有利于加深对扇贝发病机理的理解,并有助于发掘预防及治疗贝类疾病的新方法。
Zhikong scallop (Chlamys farreri) is one of the economic scallop species cultivated widely in North China and contributes enormously to the economic development of coastal provinces. Since the summer of 1997, frequent diseases have caused catastrophic economic losses to scallop aquaculture which resulted in the production decreasing drastically. Cultivating new strains of scallops with enhanced resistance to diseases is now considered to be one of the basic and ultimate solutions to disease control. Since the traditional breeding techniques are usually costly and time-consuming, and could not fulfill the urgent requirement for thoroughbred, it is necessary to accelerate and improve selective breeding of resistance strains in virtue of molecular methods. Marker assisted selection (MAS) is one of the molecular methods successfully applied in animal breeding. However, MAS is currently far from practice in mollusks as the lack of markers associated with quantitative traits. Identification of markers associated with resistance to pathogens is necessary for the development of MAS in mollusks.
     In this study, Zhikong scallops were classified into susceptible and resistant stocks according to the survival time after L. anguillarum challenge. The nucleotide sequence polymorphisms in CfLysG, CfC1qDC and CfLITAF genes from Zhikong scallop were investigated to explore their associations with susceptibility/resistance to L. anguillarum by PCR, PCR-RFLP and Bi-PASA PCR methods.
     One hundred and four sites of single nucleotide polymorphisms (SNPs) and twenty nine sites of insert/deletion (I/D) polymorphisms were identified in CfLysG gene. Seventeen polymorphisms located in its promoter region. Three of them, -753 I/D polymorphism, -391 A/G SNP and -284 I/D polymorphism were selected to analyze their distributions in susceptible and resistant stocks. Statistical analysis revealed that the genotypic frequencies of all alleles were in Hardy-Weinberg equilibrium (HWE) (P>0.05) at loci -753, -391 and -284 in both stocks. Among them, the -753 ID genotype and -284 ID genotype were more prevalent in resistant stock than those in susceptible stock, but there were no significant differences in the frequency distributions between these two stocks (P>0.05). In contrast, the frequency of -391 AG genotype in resistant stock was significantly higher than that in susceptible stock (P=0.007), indicating a significant association with the resistance of Zhikong scallop to L. anguillarum. To confirm the presumption, another independent challenge experiment was performed, in which the cumulative mortality of scallops with -391 AA genotype was significantly higher than those with -391 AG genotype (P=0.001), which further validate the significant association between -391 AG genotype and the resistance of Zhikong scallop to L. anguillarum. Three SNPs were found in the exons of CfLysG gene, among which +3473 A/C in exon III was a non-synonymous SNP. Statistical analysis revealed that the genotypic frequencies of alleles at locus +3473 were in HWE (P>0.05) in susceptible stock, while not in HWE (P<0.01) in resistant stock. The frequency of +3473 AA genotype in resistant stock was significantly higher than that in susceptible stock, indicating its significant association with the resistance of Zhikong scallop to L. anguillarum. Two large fragment I/D polymorphisms, +96 I/D polymorphism and +487 I/D polymorphism, were identified in intron I of CfLysG gene. The genotypic frequencies of all alleles were in HWE (P>0.05) at loci +96 and +487 in both stocks. The +96 DD genotype and +487 ID genotyp were more prevalent in resistant stock than those in susceptible stock, but there were no significant differences in the frequency distributions between these two stocks (P>0.05). The results suggested that these two polymorphisms were not significantly associated with the resistance of Zhikong scallop to L. anguillarum. Linkage disequilibrium was found between the multiple loci of CfLysG gene, indicating the existence of haplotypes. Nineteen haplotypes with frequency above 1% were identified. Among them, the frequency of -753 I/-391 G/-284 I/+96 I/+487 D/+3473 A haplotype in resistcant stock was significantly higher than that in susceptible stock (P=0.044), indicating its significant association with the resistance of Zhikong scallop to L. anguillarum.
     Fourteen SNPs were identified in CfC1qDC gene, and the association between +423 T/C SNP and the resistance of Zhikong scallop to L. anguillarum was investigated. The genotypic frequency of each allele was in HWE (P>0.05) at locus +423 in both stocks. The +423 TT genotype was significantly more prevalent in resistant stock than that in susceptible stock (P=0.005), suggesting its significant association with the resistance of Zhikong scallop to L. anguillarum.
     Three SNPs and one I/D polymorphism were found in CfLITAF gene. The association between +145 I/D polymorphism and the resistance of Zhikong scallop to L. anguillarum was investigated. All alles in locus +145 could be found in each susceptible and resistant individual, suggesting that there was no association between +145 I/D polymorphism and the resistance of Zhikong scallop to L. anguillarum.
     These results above suggested that, the -391 AG genotype, +3473 AA genotype and -753 I/-391 G/-284 I/+96 I/+487 D/+3473 A haplotype of CfLysG gene and +423 TT genotype of CfC1qDC gene were significantly associated with the resistance of Zhikong scallop to L. anguillarum, and could be potential markers applied in future selection of Zhikong scallop with enhanced disease resistance. These results would hopefully provide reference for MAS in mollusks. Furthermore, identification of markers associated with disease could also improve the understanding of pathogenesis and aid in the development of preventive and therapeutic measures.
引文
[1] Guo XM, Ford SE, Zhang GF. Molluscan aquaculture in China. J Shellfish Res 1999;18:19–31.
    [2]赵厚钧,刘树金. 2006年山东省水产养殖病害测报分析.齐鲁渔业2007;24:32-34.
    [3] Axford RFE, Bishop SC, Nicholas FW, Owen JB. Breeding for Disease Resistance in Farm Animals ,2nd Edition. CABI Pub , 2000.
    [4] Maillard JC, Berthier D, Chantal I, Thevenon S, SidibéI, Stachurski F , et al. Selection assisted by a BoLA-DR/DQ haplotype against susceptibility to bovine dermatophilosis. Genet Sel Evol 2003;35 Suppl 1:S193-200.
    [5] Masoudi AA, Uchida K, Yokouchi K, Miyadera K, Ogawa H, Sugimoto Y , et al. Marker-assisted selection for forelimb-girdle muscular anomaly of Japanese Black cattle. Animal Science Journal 2007; 78:672-675.
    [6]张立岭,钱宏光,荣威恒,巴图,李蕴华.家畜抗病性遗传机制与研究方法.畜牧与饲料科学2004:40-42.
    [7]亓小红,张丽香,李明,周锺信.家畜抗病机理和抗病育种.天津农学院学报2004;11:42-47.
    [8] Adams LG, Templeton JW. Genetic resistance to bacterial diseases of animals. Rev Sci Tech 1998;17:200-219.
    [9]李琴,王金勇.免疫系统在家畜抗病育种上的研究进展.上海畜牧兽医通讯2007:10-11.
    [10] Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA. Phylogenetic perspectives in innate immunity. Science 1999;284:1313-1318.
    [11] Ladel CH, Blum C, Dreher A, Reifenberg K, Kaufmann SH. Protective role of gamma/delta T cells and alpha/beta T cells in tuberculosis. Eur J Immunol 1995;25:2877-2881.
    [12]祁茂彬.浅析牛的几个质量性状.吉林畜牧兽医2006;27:24-25.
    [13]袁树楷,王金勇,谢和芳,李琴,白小青.猪抗病育种候选基因研究进展.中国畜牧杂志2007;43:50-52.
    [14] Hasan L, Vogeli P, Neuenschwander S, Stoll P, Meijerink E, Stricker C , et al. The L-gulono-gamma-lactone oxidase gene (GULO) which is a candidate for vitamin C deficiency in pigs maps to chromosome 14. Anim Genet 1999;30:309-312.
    [15] Nissen PH, Shukri NM, Agerholm JS, Fredholm M, Bendixen C. Genetic mapping of spinal dysmyelination in cross-bred American Brown Swiss cattle to bovine Chromosome 11. Mamm Genome 2001;12:180-182.
    [16] Ohba Y, Kitagawa H, Kitoh K, Sasaki Y, Takami M, Shinkai Y , et al. A deletion of the paracellin-1 gene is responsible for renal tubular dysplasia in cattle. Genomics 2000;68:229-236.
    [17]施启顺.畜禽某些疾病的遗传控制与抗病育种.中国畜牧杂志2004;40 36-39.
    [18]刘祖洞(1990)见:遗传学, pp. 253-292 (刘祖洞, Ed.)高等教育出版社,北京.
    [19]王文君,黄路生.畜禽抗病育种的研究进展.畜禽业2000;6:21.
    [20] Heyen DW, Weller JI, Ron M, Band M, Beever JE, Feldmesser E , et al. A genome scan for QTL influencing milk production and health traits in dairy cattle. Physiol Genomics 1999;1:165-175.
    [21] Weller JI, Saran A, Zeliger Y. Genetic and environmental relationships among somatic cell count, bacterial infection, and clinical mastitis. J Dairy Sci 1992;75:2532-2540.
    [22] Pryce JE, Esslemont RJ, Thompson R, Veerkamp RF, Kossaibati MA, Simm. G. Estimation of genetic parameters using health, fertility and production data from a management recording system for dairy cattle. Animal Science Journal 1998;66:577-584.
    [23] Morris CA, Towers NR, Smith BL, Southey BR. Progeny Testing Bulls for Susceptibility to Facial Eczema. New Zeal J Agr Res 1991;34: 413-417.
    [24] Morris CA, Cullen NG, Geertsema HG (1997), Vol. 57, pp. 19-21 New Zealand Society Of Animal Prod Publ.
    [25] Gasbarre LC, Miller JE (2000) in: Breeding for Disease Resistance in Farm Animals, pp. 129-152 (Axford RFE, Bishop SC,Nicholas FW, Eds.) CABI Publishers, wallingford.
    [26] Morris CA, Towers NR, Wheeler M, Wesselink C. Selection for or against facial eczema susceptibility in Romney sheep, as monitored by serum concentrations of a liver enzyme. New Zeal J Agr Res 1995;38:211-219.
    [27]刘将军,袁峥嵘,何俊.抗病育种在畜禽育种中的应用.中国畜牧兽医2008;35:62-64.
    [28] Rothschild MF, Chen HL, Christian LL, Lie WR, Venier L, Cooper M , et al. Breed and swine lymphocyte antigen haplotype differences in agglutination titers following vaccination with B. bronchiseptica. J Anim Sci 1984;59:643-649.
    [29] Tissot RG, Beattie CW, Amoss MS, Jr. The swine leucocyte antigen (SLA) complex and Sinclair swine cutaneous malignant melanoma. Anim Genet 1989;20:51-57.
    [30] Lunney JK, Murrell KD. Immunogenetic analysis of Trichinella spiralis infections in swine. Vet Parasitol 1988;29:179-193.
    [31] Amorena B, Stone WH. Serologically defined (SD) locus in cattle. Science 1978;201:159-160.
    [32] Letesson JJ, Coppe P, Lostrie-Trussart N, Depelchin A. A bovine 'Ia-like' antigen detected by a xenogeneic monoclonal antibody. Anim Blood Groups Biochem Genet 1983;14:239-250.
    [33] Zanotti M, Poli G, Ponti W, Polli M, Rocchi M, Bolzani E , et al. Association of BoLA class II haplotypes with subclinical progression of bovine leukaemia virus infection in Holstein-Friesian cattle. Anim Genet 1996;27:337-341.
    [34] Alizadeh Z, Karrow N, Mallard BA. Biological effect of varying peptidebinding affinity to the BoLA-DRB3*2703 allele. Genet Sel Evol 2003;35 Suppl 1:S51-65.
    [35] Park YH, Joo YS, Park JY, Moon JS, Kim SH, Kwon NH , et al. Characterization of lymphocyte subpopulations and major histocompatibility complex haplotypes of mastitis-resistant and susceptible cows. J Vet Sci 2004;5:29-39.
    [36] Bloom SE, Bacon LD. Linkage of the major histocompatibility (B) complex and the nucleolar organizer in the chicken. Assignment to a microchromosome. J Hered 1985;76:146-154.
    [37] Briles WE, Briles RW, McGibbon WH, Stone HA (1980) in: Resistance and Immunity to Marek's Disease, pp. 395~413 (Biggs PB, Ed.) Luxembourg: Commission of the European Communities, Directorate-General Scientific and Technical Information.
    [38] Collins WM, Briles WE, Zsigray RM, Dunlop WR, Corbett AC, Clark KK , et al. The B locus (MHC) in the chicken: Association with the fate of RSV-induced tumors. Immunogenetics 1977;5:333-343.
    [39] Isaacs A, Lindenmann J. Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci 1957;147:258-267.
    [40] Samuel CE. Antiviral actions of interferons. Clin Microbiol Rev 2001;14:778-809, table of contents.
    [41] Domeika K (2003), pp. 1-53 Doctoral thesis Swedish University of Agricultural Sciences Uppsala.
    [42] Young HA, Komschlies KL, Ciccarone V, Beckwith M, Rosenberg M, Jenkins NA , et al. Expression of human IFN-gamma genomic DNA in transgenic mice. J Immunol 1989;143:2389-2394.
    [43] Charley B, McCullough K, Martinod S. Antiviral and antigenic properties of recombinant porcine interferon gamma. Vet Immunol Immunopathol 1988;19:95-103.
    [44] Esparza I, Gonzalez JC, Vinuela E. Effect of interferon-alpha, interferon-gamma and tumour necrosis factor on African swine fever virus replication in porcine monocytes and macrophages. J Gen Virol 1988;69 ( Pt 12):2973-2980.
    [45] Chinsangaram J, Piccone ME, Grubman MJ. Ability of foot-and-mouth disease virus to form plaques in cell culture is associated with suppression of alpha/beta interferon. J Virol 1999;73:9891-9898.
    [46] Rowland RR, Robinson B, Stefanick J, Kim TS, Guanghua L, Lawson SR , et al. Inhibition of porcine reproductive and respiratory syndrome virus by interferon-gamma and recovery of virus replication with 2-aminopurine. Arch Virol 2001;146:539-555.
    [47]曹瑞兵,包晶晶,周海霞.猪β-干扰素的原核表达及其对猪流行性腹泻病毒的抑制作用研究.中国病毒学2004;19:364-368.
    [48] Belouchi A, Cellier M, Kwan T, Saini HS, Leroux G, Gros P. The macrophage-specific membrane protein Nramp controlling natural resistance to infections in mice has homologues expressed in the root system of plants. Plant Mol Biol 1995;29:1181-1196.
    [49] Vidal SM, Pinner E, Lepage P, Gauthier S, Gros P. Natural resistance to intracellular infections: Nramp1 encodes a membrane phosphoglycoprotein absent in macrophages from susceptible (Nramp1 D169) mouse strains. J Immunol 1996;157:3559-3568.
    [50] Blackwell JM. Structure and function of the natural-resistance-associated macrophage protein (Nramp1), a candidate protein for infectious and autoimmune disease susceptibility. Mol Med Today 1996;2:205-211.
    [51] Supek F, Supekova L, Nelson H, Nelson N. A yeast manganese transporter related to the macrophage protein involved in conferring resistance to mycobacteria. Proc Natl Acad Sci U S A 1996;93:5105-5110.
    [52] Vidal S, Tremblay ML, Govoni G, Gauthier S, Sebastiani G, Malo D , et al.The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene. J Exp Med 1995;182:655-666.
    [53] Sun HS, Wang L, Rothschild MF, Tuggle CK. Mapping of the natural resistance-associated macrophage protein 1 (NRAMP1) gene to pig chromosome 15. Anim Genet 1998;29:138-140.
    [54] Hu J, Bumstead N, Barrow P, Sebastiani G, Olien L, Morgan K , et al. Resistance to salmonellosis in the chicken is linked to NRAMP1 and TNC. Genome Res 1997;7:693-704.
    [55] Liu W, Kaiser MG, Lamont SJ. Natural resistance-associated macrophage protein 1 gene polymorphisms and response to vaccine against or challenge with Salmonella enteritidis in young chicks. Poult Sci 2003;82:259-266.
    [56]李晓丽,何万领,邓昌彦,熊远著.主要抗病候选基因在猪抗病育种中的研究进展.河南畜牧兽2007;28 11-13.
    [57] Morozumi T, Sumantri C, Nakajima E, Kobayashi E, Asano A, Oishi T , et al. Three types of polymorphisms in exon 14 in porcine Mx1 gene. Biochem Genet 2001;39:251-260.
    [58] Zhang X, Shin J, Molitor TW, Schook LB, Rutherford MS. Molecular responses of macrophages to porcine reproductive and respiratory syndrome virus infection. Virology 1999;262:152-162.
    [59]尹春光,杜立新.禽类抗病毒蛋白质-MX蛋白.生命的化学2007;27:508-510.
    [60]张世栋,金维江.动物抗病育种研究进展.中国畜牧杂志1999;35:55-57.
    [61]严燕,殷宗俊.猪遗传抗性与抗病育种研究进展.猪业科学2007;58-61.
    [62]施启顺.畜禽的抗病性与抗病育种.国外畜牧学.猪与禽2006;26:32-36.
    [63]袁峥嵘.动物抗病育种研究进展.畜牧与兽医2007;39:68-70.
    [64]汪嘉燮,刘晓光.猪抗病力的选择.国外畜牧学:猪与禽2000:30-32,34,35.
    [65] Okada I, Yamamoto Y. Immunocompetences and Marek's disease resistance inthree pairs of chicken lines selected for different immunological characters. Poult Sci 1987;66:769-773.
    [66] Biozzi G, Mouton D, Heumann AM, Bouthillier Y, Stiffel C, Mevel JC. Genetic analysis of antibody responsiveness to sheep erythrocytes in crosses between lines of mice selected for high or low antibody synthesis. Immunology 1979;36:427-438.
    [67] Meeker DL, Rothschild MF, Christian LL, Warner CM, Hill HT. Genetic control of immune response to pseudorabies and atrophic rhinitis vaccines: II. Comparison of additive direct and maternal genetic effects. J Anim Sci 1987;64:414-419.
    [68] Magnusson U, Wilkie B, Mallard B, Rosendal S, Kennedy B. Mycoplasma hyorhinis infection of pigs selectively bred for high and low immune response. Vet Immunol Immunopathol 1998;61:83-96.
    [69]徐海平,张细权.转基因技术在鸡的抗病育种中的研究应用进展.养禽与禽病防治2005:4-7.
    [70] Lande R, Thompson R. Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 1990;124:743-756.
    [71]袁峥嵘.分子标记辅助选择及其在畜禽抗病育种中的应用.广东畜牧兽医科技2007;32:6-9.
    [72]季海峰.分子育种研究手段之标记辅助选择.动物科学与动物医学2005:17-18.
    [73] Meijerink E, Fries R, Vogeli P, Masabanda J, Wigger G, Stricker C , et al. Two alpha(1,2) fucosyltransferase genes on porcine chromosome 6q11 are closely linked to the blood group inhibitor (S) and Escherichia coli F18 receptor (ECF18R) loci. Mamm Genome 1997;8:736-741.
    [74]刘博,黄炎坤,杜垒.家禽的抗病育种研究.畜牧与兽医2005;37:47-49.
    [75] Shi QS, Huang SQ, Liu XC, He CQ, Jiang J. Polymorphism of E. coli F18 receptor gene in different pig breeds. Yi Chuan Xue Bao 2003;30:221-224.
    [76] Vogeli P, Meijerink E, Fries R, Neuenschwander S, Vorlander N, Stranzinger G , et al. [A molecular test for the detection of E. coli F18 receptors: a breakthrough in the struggle against edema disease and post-weaning diarrhea in swine]. Schweiz Arch Tierheilkd 1997;139:479-484.
    [77]姜勋平,刘永刚,熊远著.猪FUT1基因对肉质和胴体性状的影响.遗传2005;27:566-570.
    [78] Ohba Y, Kitagawa H, Okura Y, Kitoh K, Sasaki Y. Clinical features of renal tubular dysplasia, a new hereditary disease in Japanese Black cattle. Vet Rec 2001;149:115-118.
    [79] Sasaki Y, Kitagawa H, Kitoh K, Okura Y, Suzuki K, Mizukoshi M , et al. Pathological changes of renal tubular dysplasia in Japanese black cattle. Vet Rec 2002;150:628-632.
    [80] Ohba Y, Kitagawa H, Kitoh K, Asahina S, Nishimori K, Yoneda K , et al. Homozygosity mapping of the locus responsible for renal tubular dysplasia of cattle on bovine chromosome 1. Mamm Genome 2000;11:316-319.
    [81]周国利,曹阳,金海国.抗病育种相关基因的研究进展.安徽农业科学2008;36:11774-11776.
    [82] Hirano T, Kobayashi N, Itoh T, Takasuga A, Nakamaru T, Hirotsune S , et al. Null mutation of PCLN-1/Claudin-16 results in bovine chronic interstitial nephritis. Genome Res 2000;10:659-663.
    [83] Takami M, Yoneda K, Kobayashi Y, Moritomo Y, Kata SR, Womack JE , et al. The bovine fibroblast growth factor receptor 3 (FGFR3) gene is not the locus responsible for bovine chondrodysplastic dwarfism in Japanese brown cattle. Anim Genet 2002;33:351-355.
    [84] Takeda H, Takami M, Oguni T, Tsuji T, Yoneda K, Sato H , et al. Positional cloning of the gene LIMBIN responsible for bovine chondrodysplastic dwarfism. Proc Natl Acad Sci U S A 2002;99:10549-10554.
    [85] Elleder D, Stepanets V, Melder DC, Senigl F, Geryk J, Pajer P , et al. Thereceptor for the subgroup C avian sarcoma and leukosis viruses, Tvc, is related to mammalian butyrophilins, members of the immunoglobulin superfamily. J Virol 2005;79:10408-10419.
    [86] Zekarias B, Ter Huurne AA, Landman WJ, Rebel JM, Pol JM, Gruys E. Immunological basis of differences in disease resistance in the chicken. Vet Res 2002;33:109-125.
    [87] Kramer J, Malek M, Lamont SJ. Association of twelve candidate gene polymorphisms and response to challenge with Salmonella enteritidis in poultry. Anim Genet 2003;34:339-348.
    [88] Salter DW, Crittenden LB. Artificial insertion of a dominant gene for resistance to avian leukosis virus into the germline of chickens. Theor Appl Genet 1989;77:457-461.
    [89]魏笑笑,王宝维,荆丽珍.家禽抗病育种研究进展.家禽科学2006:43-46.
    [90]陈松林.海水养殖鱼类抗病分子育种研究进展及前景展望.科技导报2004:10-13.
    [91] Wiegertjes GF, Bongers AB, Voorthuis P, Zandieh Doulabi B, Groeneveld A, Van Muiswinkel WB , et al. Characterization of isogenic carp (Cyprinus carpio L.) lines with a genetically determined high or low antibody production. Anim Genet 1996;27:313-319.
    [92] Grimholt U, Larsen S, Nordmo R, Midtlyng P, Kjoeglum S, Storset A , et al. MHC polymorphism and disease resistance in Atlantic salmon (Salmo salar); facing pathogens with single expressed major histocompatibility class I and class II loci. Immunogenetics 2003;55:210-219.
    [93] Wynne JW, Cook MT, Nowak BF, Elliott NG. Major histocompatibility polymorphism associated with resistance towards amoebic gill disease in Atlantic salmon (Salmo salar L.). Fish Shellfish Immunol 2007;22:707-717.
    [94] Kj?glum S, Larsen S, Bakke HG, Grimholt U. The effect of specific MHC class I and class II combinations on resistance to furunculosis in Atlanticsalmon (Salmo salar). Scand J Immunol 2008;67:160-168.
    [95] Ozaki A, Sakamoto T, Khoo S, Nakamura K, Coimbra MR, Akutsu T , et al. Quantitative trait loci (QTLs) associated with resistance/susceptibility to infectious pancreatic necrosis virus (IPNV) in rainbow trout (Oncorhynchus mykiss). Mol Genet Genomics 2001;265:23-31.
    [96] Dunham RA, Warr GW, Nichols A, Duncan PL, Argue B, Middleton D , et al. Enhanced bacterial disease resistance of transgenic channel catfish Ictalurus punctatus possessing cecropin genes. Mar Biotechnol (NY) 2002;4:338-344.
    [97] Sarmasik A, Warr G, Chen TT. Production of transgenic medaka with increased resistance to bacterial pathogens. Mar Biotechnol (NY) 2002;4:310-322.
    [98] Pan D, He N, Yang Z, Liu H, Xu X. Differential gene expression profile in hepatopancreas of WSSV-resistant shrimp (Penaeus japonicus) by suppression subtractive hybridization. Dev Comp Immunol 2005;29:103-112.
    [99] Dong S, Kong J, Meng X, Zhang Q, Zhang T, Wang R. Microsatellite DNA markers associated with resistance to WSSV in Penaeus (Fenneropenaeus) chinensis. Aquaculture 2008;282:138-141.
    [100]李素红,张天时,孟宪红,孔杰.中国对虾杂交优势对自然感染白斑综合征病毒的抗病力分析.水产学报2007;31:68-75.
    [101]田燚 ,孔杰,王伟继.中国对虾遗传连锁图谱的构建.科学通报2008;53:544 -555.
    [102]张福绥,何义朝,亓玲欣,孙鲁宁.海湾扇贝引种复状的研究.海洋与湖沼1997;28:146-152.
    [103] Tanguy A, Guo X, Ford SE. Discovery of genes expressed in response to Perkinsus marinus challenge in Eastern (Crassostrea virginica) and Pacific (C. gigas) oysters. Gene 2004;338:121-131.
    [104] Gutierrez A, Pointier JP, Fraga J, Jobet E, Modat S, Perez RT , et al. Fasciola hepatica: identification of molecular markers for resistant and susceptiblePseudosuccinea columella snail hosts. Exp Parasitol 2003;105:211-218.
    [105] Yu Z, Guo X. Genetic linkage map of the eastern oyster Crassostrea virginica Gmelin. Biol Bull 2003;204:327-338.
    [106] Yu Z, Guo X. Identification and mapping of disease-resistance QTLs in the eastern oyster, Crassostrea virginica Gmelin Aquaculture 2006;254:160-170.
    [107] Zhao J, Song L, Li C, Zou H, Ni D, Wang W , et al. Molecular cloning of an invertebrate goose-type lysozyme gene from Chlamys farreri, and lytic activity of the recombinant protein. Mol Immunol 2007;44:1198–1208.
    [108] Yu Y, Qiu L, Song L, Zhao J, Ni D, Zhang Y , et al. Molecular cloning and characterization of a putative lipopolysaccharide-induced TNF-alpha factor (LITAF) gene homologue from Zhikong scallop Chlamys farreri. Fish Shellfish Immunol 2007;23:419-429.
    [109] Qiu L, Song L, Xu W, Ni D, Yu Y. Molecular cloning and expression of a Toll receptor gene homologue from Zhikong Scallop, Chlamys farreri. Fish Shellfish Immunol 2007;22:451-466.
    [110] Qiu L, Song L, Yu Y, Xu W, Ni D, Zhang Q. Identification and characterization of a myeloid differentiation factor 88 (MyD88) cDNA from Zhikong scallop Chlamys farreri. Fish Shellfish Immunol 2007;23:614-623.
    [111] Su J, Ni D, Song L, Zhao J, Qiu L. Molecular cloning and characterization of a short type peptidoglycan recognition protein (CfPGRP-S1) cDNA from Zhikong scallop Chlamys farreri. Fish Shellfish Immunol 2007;23:646-656.
    [112] Zhang H, Song L, Li C, Zhao J, Wang H, Qiu L , et al. A novel C1q-domain-containing protein from Zhikong scallop Chlamys farreri with lipopolysaccharide binding activity. Fish Shellfish Immunol 2008;25:281-289.
    [113] Jackson AN, McLure CA, Dawkins RL, Keating PJ. Mannose binding lectin (MBL) copy number polymorphism in Zebrafish (D. rerio) and identification of haplotypes resistant to L. anguillarum. Immunogenetics 2007;59:861-872.
    [114] Lazzaro BP, Sackton TB, Clark AG. Genetic variation in Drosophilamelanogaster resistance to infection: A Comparison Across Bacteria. Genetics 2006;174:1539-1554.
    [115] Lazzaro BP, Sceurman BK, Clark AG. Genetic basis of natural variation in D. melanogaster antibacterial immunity. Science 2004;303:1873-1876.
    [116] Wang X, Xu S, Gao X, Ren H, Chen J. Genetic Polymorphism of TLR4 Gene and Correlation with Mastitis in Cattle. J Genet Genomics 2007;34:406-412.
    [117] Li C, Ni D, Song L, Zhao J, Zhang H, Li L. Molecular cloning and characterization of a catalase gene from Zhikong scallop Chlamys farreri. Fish Shellfish Immunol 2008;24:26-34.
    [118] Wang H, Song L, Li C, Zhao J, Zhang H, Ni D , et al. Cloning and characterization of a novel C-type lectin from Zhikong scallop Chlamys farreri. Mol Immunol 2007;44:722-731.
    [119] Calienes AF, Fraga J, Pointier JP, Yong M, Sanchez J, Coustau C , et al. Detection and genetic distance of resistant populations of Pseudosuccinea columella (Mollusca: Lymnaeidae) to Fasciola hepatica (Trematoda: Digenea) using RAPD markers. Acta Trop 2004;92:83-87.
    [120] Labadie OW, Picman J, Hincke MT. Avian antimicrobial proteins: structure,distribution and activity. World Poultry Sci J 2007;63:421-438.
    [121] Biggar WD, Sturgess JM. Role of lysozyme in the microbicidal activity of rat alveolar macrophages. Infect Immun 1977;16:974-982.
    [122] Cheng TC, Rodrick GE. Lysosomal and other enzymes in the hemolympb of Crassosrrea uirginica and Mercenaria mercenaria. Comp Biochem Physiol B 1975;52:443-447.
    [123] Chalk R, Townson H, Natori S, Desmond H, Ham PJ. Purification of an insect defensin from the mosquito, Aedes aegypti. Insect Biochem Mol Biol 1994;24:403-410.
    [124] Patrzykat A, Zhang L, Mendoza V, Iwama GK, Hancock RE. Synergy of histone-derived peptides of coho salmon with lysozyme and flounderpleurocidin. Antimicrob Agents Chemother 2001;45:1337-1342.
    [125] Düring K, Porsch P, Mahn A, Brinkmann O, Gieffers W. The nonenzymatic microbicidal activity of lysozymes. FEBS Lett 1999;449:93-100.
    [126] Mine Y, Ma F, Lauriau S. Antimicrobial peptides released by enzymatic hydrolysis of hen egg white lysozyme. J Agric Food Chem 2004;52:1088-1094.
    [127] Ibrahim HR, Matsuzaki T, Aoki T. Genetic evidence that antimicrobial activity of lysozyme is independent of its catalytic function. FEBS Lett 2001;506:27-32.
    [128] Masschalck B, Michiels CW. Antimicrobial properties of lysozyme in relation to foodborne vegetative bacteria. Critical. Rev. Microbiol 2003;29:191-214.
    [129] Sotelo-Mundo R. cDNA cloning of the lysozyme of the white shrimp Penaeus vannamei. Fish Shellfish Immunol 2003;15:325-330.
    [130] Hikima J, Hirono II, Aoki T. Molecular cloning and novel repeated sequences of a c-type lysozyme gene in Japanese flounder (Paralichthys olivaceus). Mar Biotechnol 2000;2:241-247.
    [131] Hikima S, Hikima J, Rojtinnakorn J, Hirono I, Aoki T. Characterization and function of kuruma shrimp lysozyme possessing lytic activity against Vibrio species. Gene 2003;316:187-195.
    [132] Nilsen IW, ?verb? K, Sandsdalen E, Sandaker E, Sletten K, Myrnes B. Protein purification and gene isolation of chlamysin, a cold-active lysozyme-like enzyme with antimicrobial activity. FEBS Lett 1999;464:153-158.
    [133] Xue QG, Schey KL, Volety AK, Chu FLE, Peyre JFL. Purification and characterization of lysozyme from plasma of the eastern oyster (Crassostrea virginica). Comp Biochem Physiol B 2004;139:11-25.
    [134] Yin ZX, He JG, Deng WX, Chan SM. Molecular cloning, expression of orange-spotted grouper goose-type lysozyme cDNA, and lytic activity of its recombinant protein. Dis Aquat Org 2003;55:117-123.
    [135] Hikima J, Minagawa S, Hirono I, Aoki T. Molecular cloning, expression and evolution of the Japanese founder goose-type lysozyme gene, and the lytic activity of its recombinant protein. Biochim Biophys Acta 2001;1520:35-44.
    [136] Zheng W, Tian C, Chen X. Molecular characterization of goose-type lysozyme homologue of large yellow croaker and its involvement in immune response induced by trivalent bacterial vaccine as an acute-phase protein. Immunol Lett 2007;113: 107-116.
    [137] Hong XT, Xiang LX, Shao JZ. The immunostimulating effect of bacterial genomic DNA on the innate immune responses of bivalve mussel, Hyriopsis cumingii Lea. Fish Shellfish Immunol 2006;21:357-364.
    [138] Vega Ed-lR, Galaz AG, Cinco MED, Mundo RRS. White shrimp(Litopenaeus vannamei) recombinant lysozyme has antibacerial activity against Gram negative bacteria: Vibrio alginolyticus, Vibrio parahemolyticus and Vibrio cholerae. Fish Shellfish Immunol 2006;20:405-408.
    [139] Bourgeois LB, Bosworth BG, Peterson BC. Differences in mortality, growth, lysozyme, and Toll-like receptor gene expression among genetic groups of catfish exposed to virulent Edwardsiella ictaluri. Fish Shellfish Immunol 2008;24:82-89.
    [140] Reddacliff LA, Beh K, McGregor H, Whittington RJ. A preliminary study of possible genetic influences on the susceptibility of sheep to Johne's disease. Aust Vet J 2005;83:435-441.
    [141] Olsaker I, Mejdell CM, S?rensen A, Lie O. High lysozyme activity in a Norwegian bovine family co-segregates with a restriction fragment length polymorphism. Anim Genet 1993;24:421-425.
    [142] Sigurdardóttir S, Lundén A, Andersson L. Restriction fragment length polymorphism of bovine lysozyme genes. Anim Genet 1990;21:259-265.
    [143] Weikard R, Henke M, Kühn C, Barendse W, Seyfert HM. A polymorphic microsatellite within the immunorelevant bovine lysozyme-encoding gene.Anim Genet 1996;27:125.
    [144] Yazaki M, Farrell SA, Benson MD. A novel lysozyme mutation Phe57Ile associated with hereditary renal amyloidosis. Kidney Int 2003;63:1652-1657.
    [145] Shi YY, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res 2005;15:97-98.
    [146] Li GQ, Lu LZ, Wang DQ, Shen JD, Tao ZR, Zhao AZ , et al. Advance in association studies of major histocompatibility complex (MHC) gene polymorphisms with traits of resistance against infectious disease in chickens. Yi Chuan 2006;28:893-898.
    [147] Lundén A, Sigurdardóttir S, Lilja IE, Danell B, Rendel J, Andersson L. The relationship between bovine major histocompatibility complex class II polymorphism and disease studied by use of bull breeding values. Anim Genet 1990;21:221-232.
    [148] Nagaoka Y, Kabeya H, Onuma M, Kasai N, Okada K, Aida Y. Ovine MHC class II DRB1 alleles associated with resistance or susceptibility to development of bovine leukemia virus-induced ovine lymphoma. Cancer Res 1999;59:975-981.
    [149] Sander P, Hamann H, Pfeiffer I, Wemheuer W, Brenig B, Groschup MH , et al. Analysis of sequence variability of the bovine prion protein gene ( PRNP) in German cattle breeds. Neurogenetics 2004;5:19-25.
    [150] Zhang YX, Chen SL, Liu YG, Sha ZX, Liu ZJ. Major histocompatibility complex class IIB allele polymorphism and its association with resistance/susceptibility to Vibrio anguillarum in Japanese flounder (Paralichthys olivaceus). Mar Biotechnol 2006;8:600-610.
    [151] Lohm J, Grahn M, Langefors ?, Andersen ?, Storset A, Schantz Tv. Experimental evidence for major histocompatibility complex-allele-specific resistance to a bacterial infection. Proc Biol Sci 2002;269:2029-2033.
    [152] Miller KM, Winton JR, Schulze AD, Purcell MK, Ming TJ. Major histocompatibility complex loci are associated with susceptibility of Atlantic salmon to infectious hematopoietic necrosis virus. Environ Biol Fishes 2004; 69:307-316.
    [153] Dideberg V, Kristjansdotti G, Milani L, Libioulle C, Sigurdsson S, Louis E , et al. An insertion-deletion polymorphism in the Interferon Regulatory Factor 5 (IRF5) gene confers risk of inflammatory bowel diseases. Hum Mol Genet 2007;16:3008-3016.
    [154] Sibley K, Rollinson S, Allan JM, Smith AG, Law GR, Roddam PL , et al. Functional FAS promoter polymorphisms are associated with increased risk of acute myeloid leukemia. Cancer Res 2003;63:4327-4330.
    [155] Sun T, Gao Y, Tan W, Ma SF, Shi YK, Yao JR , et al. A six-nucleotide insertion-deletion polymorphism in the CASP8 promoter is associated with susceptibility to multiple cancers. Nat Genet 2007;39:605-613.
    [156] Bond GL, Hu WW, Bond EE, Robins H, Lutzker SG, Arva NC , et al. A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 2004;119:591-602.
    [157] Oka K, Ishimura-Oka K, Chu M, Chan L. Transcription of the human hepatic lipase gene is modulated by multiple negative elements in HepG2 cells. Gene 1996;180:69-80.
    [158] Su Z, Zhang S, Hou Y, Zhang L, Huang D, Liao L , et al. Relationship between a novel polymorphism of hepatic lipase gene and coronary artery disease. Acta Biochim Biophys Sin 2002;34:780-785.
    [159] Su Z, Zhang S-Z, Zhang L, Tong Y, Xiao C-Y, Hou Y-P , et al. A novel polymorphism A+884→G in the hepatic lipase gene and its association with coronary artery disease. Sinica 2003;35:606-610.
    [160] Catano G, Kulkarni H, He W, Marconi VC, Agan BK, Landrum M , et al.HIV-1 disease-influencing effects associated with ZNRD1, HCP5 and HLA-C alleles are attributable mainly to either HLA-A10 or HLA-B*57 alleles. PLoS ONE 2008;3:e3636.
    [161] Pepys MB, Hawkins PN, Booth DR, Vigushin DM, Tennent GA, Soutar AK , et al. Human lysozyme gene mutations cause hereditary systemic amyloidosis. Nature 1993;362:553-557.
    [162] Valleix S, Drunat S, Philit JB, Adoue D, Piette JC, Droz D , et al. Hereditary renal amyloidosis caused by a new variant lysozyme W64R in a French family. Kidney Int 2002;61:907-912.
    [163]陈光明,沈飞霞. Graves眼病与CTLA-4基因第1外显子A49G多态性及临床特点的相关性研究.实用医学杂志2007;23:642-644.
    [164] Ogus AC, Yoldas B, Ozdemir T, Uguz A, Olcen S, Keser I , et al. The Arg753GLn polymorphism of the human toll-like receptor 2 gene in tuberculosis disease. Eur Respir J 2004;23:219-223.
    [165]张玉喜,陈松林.牙鲆MHC classⅡB基因多态性及其与鱼体抗病力关系的分析.水产学报2006;30:633-639.
    [166] Kouki T, Sawai Y, Gardine CA, Fisfalen ME, Alegre ML, DeGroot LJ. CTLA-4 gene polymorphism at position 49 in exon 1 reduces the inhibitory function of CTLA-4 and contributes to the pathogenesis of Graves' disease. J Immunol 2000;165:6606-6611.
    [167] Kubo M, Hata J, Ninomiya T, Matsuda K, Yonemoto K, Nakano T , et al. A nonsynonymous SNP in PRKCH (protein kinase C eta) increases the risk of cerebral infarction. Nat Genet 2007;39:212-217.
    [168]丁红梅,邵根宝,徐银学.内含子与基因表达调控.畜牧与兽医2006;38:50-53.
    [169]顾其华,陈琼,胡成平,李叶青,杨红忠. p53基因第7内含子多态性与非小细胞肺癌及其组织p53基因突变的关系.中华医学遗传学杂志2007;24:319-321.
    [170] Takagi Y, Masamune A, Kume K, Satoh A, Kikuta K, Watanabe T , et al. Microsatellite polymorphism in intron 2 of human Toll-like receptor 2 gene is associated with susceptibility to acute pancreatitis in Japan. Hum Immunol 2009;70:200-204.
    [171] Yeh CC, Santella RM, Hsieh LL, Sung FC, Tang R. An intron 4 VNTR polymorphism of the endothelial nitric oxide synthase gene is associated with early-onset colorectal cancer. Int J Cancer 2009;124:1565-1571.
    [172]王晓斌,刘国仰.有关内含子功能研究的新进展.中华医学遗传学杂志2000;17:211-212.
    [173] Billiau A, Heremans H, Vermeire K, Matthys P. Immunomodulatory properties of interferon-gamma. An update. Ann N Y Acad Sci 1998;856:22-32.
    [174] Pravica V, Asderakis A, Perrey C, Hajeer A, Sinnott PJ, Hutchinson IV. In vitro production of IFN-gamma correlates with CA repeat polymorphism in the human IFN-gamma gene. Eur J Immunogenet 1999;26:1-3.
    [175] Yu H, Zhu QR, Gu SQ, Fei LE. Relationship between IFN-gamma gene polymorphism and susceptibility to intrauterine HBV infection. World J Gastroenterol 2006;12:2928-2931.
    [176]阎胜利,胡建霞. Cav1.1基因26内含子67位点A/G多态性与甲状腺功能亢进性周期性瘫痪的相关性研究.中华神经科杂志2006;39:396-398.
    [177] Klannemark M, Orho M, Langin D, Laurell H, Holm C, Reynisdottir S , et al. The putative role of the hormone-sensitive lipase gene in the pathogenesis of Type II diabetes mellitus and abdominal obesity. Diabetologia 1998;41:1516-1522.
    [178] Panguluri RC, Long LO, Chen W, Wang S, Coulibaly A, Ukoli F , et al. COX-2 gene promoter haplotypes and prostate cancer risk. Carcinogenesis 2004;25:961-966.
    [179] Maillard JC, Chantal I, Berthier D, Thevenon S, Sidibe I, Razafindraibe H. Molecular immunogenetics in susceptibility to bovine dermatophilosis: acandidate gene approach and a concrete field application. Ann N Y Acad Sci 2002;969:92-96.
    [180]刘艳,金玮,姜正文,张奎星,盛海辉,金璘 ,等.血管紧张素原基因的六种单核苷酸多态与原发性高血压的相关性.中华医学遗传学杂志2004;21:116-119.
    [181]季雪莲,贾龙飞,贾建平. PLAU基因单体型与晚发性阿尔茨海默病的相关性研究.中风与神经疾病杂志2008;25.
    [182] Li X, Bokman AM, Llinas M, Smith RA, Dobson CM. Solution structure of the kringle domain from urokinase-type plasminogen activator. J Mol Biol 1994;235:1548-1559.
    [183] Yoshimoto M, Ushiyama Y, Sakai M, Tamaki S, Hara H, Takahashi K , et al. Characterization of single chain urokinase-type plasminogen activator with a novel amino-acid substitution in the kringle structure. Biochim Biophys Acta 1996;1293:83-89.
    [184] Tom Tang Y, Hu T, Arterburn M, Boyle B, Bright JM, Palencia S , et al. The complete complement of C1q-domain-containing proteins in Homo sapiens. Genomics 2005;86:100-111.
    [185] Kishore U, Reid KB. C1q: structure, function, and receptors. Immunopharmacology 2000;49:159-170.
    [186] Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 1995;270:26746-26749.
    [187] Reid KB, Colomb M, Petry F, Loos M. Complement component C1 and the collectins--first-line defense molecules in innate and acquired immunity. Trends Immunol 2002;23:115-117.
    [188] Botto M, Walport MJ. C1q, autoimmunity and apoptosis. Immunobiology 2002;205:395-406.
    [189] Kondo N, Kondo J. Identification of novel blood proteins specific formammalian hibernation. J Biol Chem 1992;267:473-478.
    [190] Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem 1996;271:10697-10703.
    [191] Urade Y, Oberdick J, Molinar-Rode R, Morgan JI. Precerebellin is a cerebellum-specific protein with similarity to the globular domain of complement C1q B chain. Proc Natl Acad Sci U S A 1991;88:1069-1073.
    [192] Bobak DA, Frank MM, Tenner AJ. C1q acts synergistically with phorbol dibutyrate to activate CR1-mediated phagocytosis by human mononuclear phagocytes. Eur J Immunol 1988;18:2001-2007.
    [193] Volanakis JE, Frank MM (1998), pp. 9-32 (Volanakis JE, Ed.) Marcel Deiierk Inc, New York.
    [194] Bohlson SS, Fraser DA, Tenner AJ. Complement proteins C1q and MBL are pattern recognition molecules that signal immediate and long-term protective immune functions. Mol Immunol 2007;44:33-43.
    [195] Medzhitov R, Janeway CA, Jr. Decoding the patterns of self and nonself by the innate immune system. Science 2002;296:298-300.
    [196] Myokai F, Takashiba S, Lebo R, Amar S. A novel lipopolysaccharide-induced transcription factor regulating tumor necrosis factor alpha gene expression: molecular cloning, sequencing, characterization, and chromosomal assignment. Proc Natl Acad Sci U S A 1999;96:4518-4523.
    [197] Tang X, Fenton MJ, Amar S. Identification and functional characterization of a novel binding site on TNF-alpha promoter. Proc Natl Acad Sci U S A 2003;100:4096-4101.
    [198] Tang X, Marciano DL, Leeman SE, Amar S. LPS induces the interaction of a transcription factor, LPS-induced TNF-alpha factor, and STAT6(B) with effects on multiple cytokines. Proc Natl Acad Sci U S A 2005;102:5132-5137.
    [199]魏颖丽,何兰杰,霍正浩,赵巍.脂联素基因+45位T/G多态性与2型糖尿病遗传易感性的相关性.基础医学与临床2008;28:940-943.
    [200] Martens HA, Zuurman MW, de Lange AH, Nolte IM, van der Steege G, Navis GJ , et al. Analysis of C1q polymorphisms suggests association with SLE, serum C1q and CH50 levels and disease severity. Ann Rheum Dis 2009;68:715-720.
    [201] Miura-Shimura Y, Nakamura K, Ohtsuji M, Tomita H, Jiang Y, Abe M , et al. C1q regulatory region polymorphism down-regulating murine c1q protein levels with linkage to lupus nephritis. J Immunol 2002;169:1334-1339.
    [202] Latour P, Gonnaud PM, Ollagnon E, Chan V, Perelman S, Stojkovic T , et al. SIMPLE mutation analysis in dominant demyelinating Charcot-Marie-Tooth disease: three novel mutations. J Peripher Nerv Syst 2006;11:148-155.
    [203] Matsumura Y, Matsumura Y, Nishigori C, Horio T, Miyachi Y. PIG7/LITAF gene mutation and overexpression of its gene product in extramammary Paget's disease. Int J Cancer 2004;111:218-223.
    [204] Barroso E, Fernandez LP, Milne RL, Pita G, Sendagorta E, Floristan U , et al. Genetic analysis of the vitamin D receptor gene in two epithelial cancers: melanoma and breast cancer case-control studies. BMC Cancer 2008;8:385.
    [205] Conroy J, Cochrane L, Anney RJ, Sutcliffe JS, Carthy P, Dunlop A , et al. Fine mapping and association studies in a candidate region for autism on chromosome 2q31-q32. Am J Med Genet B Neuropsychiatr Genet 2008; 150B:535-544.
    [206] Liou YJ, Wang YC, Chen JY, Chen ML, Chen TT, Bai YM , et al. The coding-synonymous polymorphism rs1045280 (Ser280Ser) in beta-arrestin 2 (ARRB2) gene is associated with tardive dyskinesia in Chinese patients with schizophrenia. Eur J Neurol 2008;15:1406-1408.
    [207]薛丽,白玉杰.关注“静寂SNP”:被忽识的多态性分子标志.中华医学研究杂志2008;8:511-513.
    [208] Lavner Y, Kotlar D. Codon bias as a factor in regulating expression via translation rate in the human genome. Gene 2005;345:127-138.
    [209] Chamary JV, Hurst LD. Evidence for selection on synonymous mutations affecting stability of mRNA secondary structure in mammals. Genome Biol 2005;6:R75.
    [210] Duan J, Antezana MA. Mammalian mutation pressure, synonymous codon choice, and mRNA degradation. J Mol Evol 2003;57:694-701.
    [211] Duan J, Wainwright MS, Comeron JM, Saitou N, Sanders AR, Gelernter J , et al. Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Hum Mol Genet 2003;12:205-216.
    [212] Eskesen ST, Eskesen FN, Ruvinsky A. Natural selection affects frequencies of AG and GT dinucleotides at the 5' and 3' ends of exons. Genetics 2004;167:543-550.
    [213] Fairbrother WG, Yeh RF, Sharp PA, Burge CB. Predictive identification of exonic splicing enhancers in human genes. Science 2002;297:1007-1013.
    [214] Wang Z, Rolish ME, Yeo G, Tung V, Mawson M, Burge CB. Systematic identification and analysis of exonic splicing silencers. Cell 2004;119:831-845.
    [215] Mizuguchi T, Collod-Beroud G, Akiyama T, Abifadel M, Harada N, Morisaki T , et al. Heterozygous TGFBR2 mutations in Marfan syndrome. Nat Genet 2004;36:855-860.
    [216]刘家卓,王建祥. PIG7基因与疾病.基础医学与临床2008;28:642-645.
    [217] Shirk AJ, Anderson SK, Hashemi SH, Chance PF, Bennett CL. SIMPLE interacts with NEDD4 and TSG101: evidence for a role in lysosomal sorting and implications for Charcot-Marie-Tooth disease. J Neurosci Res 2005;82:43-50.
    [218] Stucchi A, Reed K, O'Brien M, Cerda S, Andrews C, Gower A , et al. A new transcription factor that regulates TNF-alpha gene expression, LITAF, is increased in intestinal tissues from patients with CD and UC. Inflamm BowelDis 2006;12:581-587.
    [219] Abba MC, Drake JA, Hawkins KA, Hu Y, Sun H, Notcovich C , et al. Transcriptomic changes in human breast cancer progression as determined by serial analysis of gene expression. Breast Cancer Res 2004;6:R499-513.
    [220] Street VA, Bennett CL, Goldy JD, Shirk AJ, Kleopa KA, Tempel BL , et al. Mutation of a putative protein degradation gene LITAF/SIMPLE in Charcot-Marie-Tooth disease 1C. Neurology 2003;60:22-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700