用户名: 密码: 验证码:
TNFα对小鼠卵泡发育的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卵巢是雌性生殖器官的一部分,动物卵巢发育是一个复杂的过程,包括从早期胚胎发育一直到卵巢衰老。而且卵巢是一个在整个生命周期中不断进行连续修复的动态系统,细胞凋亡是维持这个动态修复系统的重要机制。卵泡是卵巢的结构功能单位,卵泡的发育依次经历了原始卵泡(primordial follicle)、初级卵泡(primary follicle)、次级卵泡(secondary follicle)和成熟卵泡(mature follicle)四个阶段。卵巢卵泡的发育是一个由内分泌、自分泌和旁分泌因子所调控的一系列复杂的过程。
     肿瘤坏死因子α(TNFα)是卵巢卵泡发育中的一个重要的调节因子。它是由激活的巨噬细胞产生的17.3 kDa的蛋白。TNFα的作用十分复杂,既能提升细胞存活,又能导致细胞凋亡。TNFα的多样的作用是通过细胞表面的专门的受体所介导的,包括TNFRⅠ和TNFRⅡ。许多报道指出,TNFα的大多数生物学作用是通过TNFRⅠ来介导的。TNFα具有广泛的生物学活性,具有强大的抗肿瘤作用,是迄今发现的抗肿瘤作用最强的细胞因子,此外,TNFα也参与了一些疾病如心血管病和自身免疫性疾病的发生、发展。在哺乳动物卵巢中,已有体外实验表明,TNFα在卵泡发育、排卵、甾类生成、黄体化、生殖和闭锁等方面发挥着重要的作用,但是目前利用体内实验来研究TNFα在卵巢内的作用的报道还很少。
     本实验是首次利用TNFα敲除的小鼠模型来进一步研究其在卵泡发育和繁殖力方面的作用。并在分子水平和细胞水平上对敲除TNFα后卵泡发育和繁殖力的相关参数进行了检测。本实验将为在正常卵巢中进一步研究TNFα作用的分子机制打下基础。
     本实验结果显示:
     1. TNFα-/-小鼠的阴道开口时间与WT小鼠的阴道开口时间相似。小鼠2个月龄时,TNFα-/-与WT小鼠的发情周期长度基本没有明显变化,但是TNFα-/-的小鼠与野生型的小鼠相比,处于发情期的时间要明显延长,而处于间情期的时间要短。所以,TNFα-/-的小鼠在21天中发情周期的个数要比野生型的小鼠多。但当小鼠6个月大时,TNFα-/-的小鼠仅有50%的表现出发情周期,而在这些有发情周期的小鼠中,大部分时间也都处于间情期,很少时间处于发情期。所以,在衰老期的小鼠中,TNFα-/-的小鼠在21天中发情周期的个数要比野生型的小鼠要少。
     2.21天时,TNFα-/-的小鼠超排所得的卵明显比野生型的小鼠排的卵多。而且,在随后的孕酮检测实验中,TNFα-/-的小鼠的孕酮含量明显要比野生型的小鼠中的多。
     3.对出生后4,18,42,90天的两种类型的小鼠进行的卵泡检测实验表明,总体上来说,TNFα-/-的小鼠中的卵泡总数、各级卵泡数特别是腔前和有腔卵泡数都要比处于同一时期的野生型的小鼠中的多。
     4.对两种类型的小鼠卵巢卵泡进行的增殖与凋亡检测实验表明,在蛋白水平上来看,在小鼠90天时,TNFα-/-的小鼠卵巢的颗粒细胞、膜细胞和间质细胞中CDK4蛋白的水平要比野生型小鼠中的高很多。而TNFα-/-的小鼠卵巢卵母细胞中CASPASE 3蛋白的水平明显要比野生型小鼠的卵巢卵母细胞中的低很多。在分子水平上来看,在小鼠90天时,TNFα-/-小鼠卵巢内Cdk 4和Cyclin D2的表达水平明显要高于野生型的小鼠卵巢内的相应基因表达量。而TNFα-/-小鼠卵巢内促凋亡因子Bad和Bax的表达水平明显要低于野生型的小鼠卵巢内的基因表达量。
     5. TNFα-/-小鼠和WT小鼠的繁殖力比较是通过检测小鼠每窝的产仔数和12个月连续的产仔累积量来实现的。TNFα-/-的小鼠平均每窝产仔量要比野生型的小鼠多30%,而且TNFα-/-小鼠产仔的累积量要比野生型的小鼠多21%。
     6.当小鼠12个月龄时,TNFα敲除的小鼠卵巢内的卵泡要比野生型小鼠卵巢内的卵泡要多。
     总之,敲除TNFα后,能够通过影响与卵巢功能相关的一些因子来提高小鼠的繁殖力。
Ovary is one part of the female reproductive organs, the ovarian development of the animal is a complicate process, which from embryonic development to ovarian senescence. Furthermore, the ovary is a dynamic system which is continue to be repaired in the whole life period. The follicle is the functional unit of ovary, and follicles develop through the primordial, primary, secondary and mature stages. Follicle development in ovary is a series of complex processes governed by endocrine, autocrine and paracrine factors.
     One potential regulator of ovarian follicular development is tumor necrosis factorα(TNFα), which is a 17.3 kDa protein product of activated macrophages. The roles of TNFαare quite complex ranging from promoting cell survival to initiating cell death. The multiple activities of TNFαare mediated by specific cell surface receptors, the TNF receptorⅠ(TNFRⅠ) and TNF receptorⅡ(TNFRⅡ). Several reports have shown that the signal through TNFRⅠis necessary for many biological functions of TNFα. TNFαhas wide biologic activity, in addition, it also participate in the nosogenesis of some disease, such as angiocardiopathy and autoimmune disease. In the ovary of the mammal, several in vitro studies have indicated that TNFαplays an important role in follicular development, ovulation, steroidogenesis, luteinization, fertility and atresia, but the in vivo role of TNFαin ovary remains an enigma.
     The purpose of present study was using TNFαdeleted model for the first time to further elucidate the biological roles of this cytokine in the regulation of follicular development and female fertility, and studied the parameters of the fertility after deletion of the TNFαon molecular level and cellular level. This study may establish foundation for dentifying molecular mechanisms of TNFαin normal ovarian function.
     The results show:
     1. Vaginal opening was similar in TNFα-/- females when compared with WT females. At two months of age, cycle length was not significantly different between TNFαknockout and WT mice, but TNFα-/- mice spent more time in estrus and significantly less time in diestrus than did controls. Consequently, the number of cycles per mouse in a 21 day period was more in TNFα-/- mice than in controls. At six months of age, only 50% of TNFαnull mice exhibited estrous cycles, of those TNFαnull mice exhibiting estrous cycles, significantly more time in diestrus and relatively less time were spent in estrus. Thus, in aged animals, the number of cycles in a 21 day period was significantly reduced in TNFαnull mice compared to controls.
     2. On day of 21, TNFαknockout mice shed significantly more ova compared with WT controls of the same age. Furthermore, the greater number of ovulations by TNFаknockout mice was followed by higher serum levels of progesterone on day 21.
     3.The follicular detect experiment of the two types mice on postnatal 4,18,42,90 indicated that, the TNFα-/- ovaries contained more total follicles, more each stage follicles especially preantral and antral follicles than did wild type animals contemporaneity.
     4. The follicular proliferation and apoptosis detect experiment of the ovary of the two types of mice indicated that, on proteinum level, granulosa cells, theca cells and interstitial cells of TNFαknockout mice demonstrated higher levels of proliferation than WT ovaries did based on immunohistochemistry for CDK 4 on day 90, but TNFαknockout ovaries appeared to have lower levels of CASPASE 3 in oocytes than WT ovaries did. On molecular level, a significantly higher abundance of of Cdk 4 and Cyclin D2 transcripts was detected in TNFαdeficient ovaries compared with WT ovaries on PD 90, but a significantly lower expression of Bad and Bax (a proapoptotic factor) was detected in TNFαdeficient ovaries compared with WT ovaries.
     5. Fertility of TNFαnull mice was compared to that of controls by determining the number of pups per litter and the cumulative number of pups per female during a 12 month breeding period. The TNFα-/- females produced 30% more pups per litter than the wild type mice. Moreover, the TNFα-/- mice gave birth to 21% more pups than control mice did during a 12 month breeding period.
     6. At one year of age, the follicular reserve in TNFα-/- mice was more than that in WT mice.
     In a word, deletion of the TNFαcan improve overall reproductive capacity of the mice through affecting some factor related to the function of the ovary.
引文
[1] Vaskivuo TE, Anttonen M, Herva R, Billig H, Dorland M, te Velde ER, Stenback F, Heikinheimo M, Tapanainen JS: Survival of human ovarian follicles from fetal to adult life: apoptosis, apoptosis-related proteins, and transcription factor GATA-4. The Journal of clinical endocrinology and metabolism 2001, 86(7):3421-3429.
    [2] Kezele P, Skinner MK: Regulation of ovarian primordial follicle assembly and development by estrogen and progesterone: endocrine model of follicle assembly. Endocrinology 2003, 144(8):3329-3337.
    [3] Morita Y, Tilly JL: Oocyte apoptosis: like sand through an hourglass. Developmental biology 1999, 213(1):1-17.
    [4] Perez GI, Robles R, Knudson CM, Flaws JA, Korsmeyer SJ, Tilly JL: Prolongation of ovarian lifespan into advanced chronological age by Bax-deficiency. Nature genetics 1999, 21(2):200-203.
    [5] Johnson AL: Intracellular mechanisms regulating cell survival in ovarian follicles. Animal reproduction science 2003, 78(3-4):185-201.
    [6]杨世华,余四九.生殖激素控制卵泡细胞凋亡的研究进展[J].动物医学进展,2002, 23(2):1-5.
    [7] Chun SY, Eisenhauer KM, Minami S, Billig H, Perlas E, Hsueh AJ: Hormonal regulation of apoptosis in early antral follicles: follicle-stimulating hormone as a major survival factor. Endocrinology 1996, 137(4):1447-1456.
    [8] Tajima K, Orisaka M, Hosokawa K, Amsterdam A, Kotsuji F: Effects of ovarian theca cells on apoptosis and proliferation of granulosa cells: changes during bovine follicular maturation. Biology of reproduction 2002, 66(6):1635-1639.
    [9] Hirshfield AN: Development of follicles in the mammalian ovary. International review of cytology 1991, 124:43-101.
    [10]任春明,字向东,张重庆,杨其沅.卵泡刺激素的研究进展[J].科学前言,2006,畜禽业总第208期(10月下半月):10-13.
    [11]张云山,张凤英,高企贤. LH在卵泡发育及卵巢刺激中的作用[J].国外医学计划生育分册,2002,21(3):150-152.
    [12]卢锦,朱艳.卵泡发育及其调节因素的研究进展[J].医学综述,2008,1(4):507-509.
    [13] Britt KL, Saunders PK, McPherson SJ, Misso ML, Simpson ER, Findlay JK: Estrogen actions on follicle formation and early follicle development. Biology of reproduction 2004, 71(5):1712-1723.
    [14] Britt KL, Stanton PG, Misso M, Simpson ER, Findlay JK: The effects of estrogen on the expression of genes underlying the differentiation of somatic cells in the murine gonad. Endocrinology 2004, 145(8):3950-3960.
    [15]郭文艳,丛晶,吴效科.类固醇激素在卵泡生长发育过程中的作用[J].世界中西医结合杂志,2008,3(2):120-122.
    [16] Savage CR, Jr., Cohen S: Epidermal growth factor and a new derivative. Rapid isolation procedures and biological and chemical characterization. The Journal of biological chemistry 1972, 247(23):7609-7611.
    [17] Das K, Stout LE, Hensleigh HC, Tagatz GE, Phipps WR, Leung BS: Direct positive effect of epidermal growth factor on the cytoplasmic maturation of mouse and human oocytes. Fertility and sterility 1991, 55(5):1000-1004.
    [18] Goud PT, Goud AP, Qian C, Laverge H, Van der Elst J, De Sutter P, Dhont M: In-vitro maturation of human germinal vesicle stage oocytes: role of cumulus cells and epidermal growth factor in the culture medium. Human reproduction (Oxford, England) 1998, 13(6):1638-1644.
    [19] Murray JF, Downing JA, Evans G, Findlay JK, Scaramuzzi RJ: Epidermal growthfactor acts directly on the sheep ovary in vivo to inhibit oestradiol-17 beta and inhibin secretion and enhance progesterone secretion. The Journal of endocrinology 1993, 137(2):253-264.
    [20]吕述彦,程云英.表皮生长因子对卵泡发育的调控[J].生殖医学杂志,2000,9(4):55-59.
    [21]李芳,郑月慧,郑莉萍.生长因子对卵泡发育调节作用的研究进展[J].西医学院学报,2005,45(5):169-173.
    [22] Monget P, Bondy C: Importance of the IGF system in early folliculogenesis. Molecular and cellular endocrinology 2000, 163(1-2):89-93.
    [23] Bachelot A, Monget P, Imbert-Bollore P, Coshigano K, Kopchick JJ, Kelly PA, Binart N: Growth hormone is required for ovarian follicular growth. Endocrinology 2002, 143(10):4104-4112.
    [24] Penicka M, Bartunek J, Wijns W, De Wolf I, Heyndrickx GR, De Raedt H, Barbato E, De Bruyne B: Tissue doppler imaging predicts recovery of left ventricular function after recanalization of an occluded coronary artery. Journal of the American College of Cardiology 2004, 43(1):85-91.
    [25] Rivera GM, Fortune JE: Proteolysis of insulin-like growth factor binding proteins -4 and -5 in bovine follicular fluid: implications for ovarian follicular selection and dominance. Endocrinology 2003, 144(7):2977-2987.
    [26] Rivera GM, Fortune JE: Selection of the dominant follicle and insulin-like growth factor (IGF)-binding proteins: evidence that pregnancy-associated plasma protein A contributes to proteolysis of IGF-binding protein 5 in bovine follicular fluid. Endocrinology 2003, 144(2):437-446.
    [27]吴洪波,李柳铭.胰岛素样生长因子与卵泡发育的关系[J].医学综述,2007,13(5):328-330.
    [28]张利军,王根林. IGFs和EGF对卵泡发育的调控[J].生殖与避孕,2004,24(2):108-112.
    [29] McGrath SA, Esquela AF, Lee SJ: Oocyte-specific expression of growth/differentiation factor-9. Molecular endocrinology (Baltimore, Md 1995, 9(1):131-136.
    [30] Jaatinen R, Laitinen MP, Vuojolainen K, Aaltonen J, Louhio H, Heikinheimo K, Lehtonen E, Ritvos O: Localization of growth differentiation factor-9 (GDF-9) mRNA and protein in rat ovaries and cDNA cloning of rat GDF-9 and its novel homolog GDF-9B. Molecular and cellular endocrinology 1999, 156(1-2):189-193.
    [31] Bodensteiner KJ, Clay CM, Moeller CL, Sawyer HR: Molecular cloning of the ovine Growth/Differentiation factor-9 gene and expression of growth/differentiation factor-9 in ovine and bovine ovaries. Biology of reproduction 1999, 60(2):381-386.
    [32] Elvin JA, Yan C, Matzuk MM: Oocyte-expressed TGF-beta superfamily members in female fertility. Molecular and cellular endocrinology 2000, 159(1-2):1-5.
    [33] McNatty KP, Juengel JL, Wilson T, Galloway SM, Davis GH: Genetic mutations influencing ovulation rate in sheep. Reproduction, fertility, and development 2001, 13(7-8):549-555.
    [34] Elvin JA, Yan C, Wang P, Nishimori K, Matzuk MM: Molecular characterization of the follicle defects in the growth differentiation factor 9-deficient ovary. Molecular endocrinology (Baltimore, Md 1999, 13(6):1018-1034.
    [35] Otsuka F, Yao Z, Lee T, Yamamoto S, Erickson GF, Shimasaki S: Bone morphogenetic protein-15. Identification of target cells and biological functions. The Journal of biological chemistry 2000, 275(50):39523-39528.
    [36] Lee WS, Yoon SJ, Yoon TK, Cha KY, Lee SH, Shimasaki S, Lee S, Lee KA: Effects of bone morphogenetic protein-7 (BMP-7) on primordial follicular growth in the mouse ovary. Molecular reproduction and development 2004, 69(2):159-163.
    [37] Dunkel L, Tilly JL, Shikone T, Nishimori K, Hsueh AJ: Follicle-stimulating hormone receptor expression in the rat ovary: increases during prepubertal development and regulation by the opposing actions of transforming growth factors beta and alpha. Biology of reproduction 1994, 50(4):940-948.
    [38] Zhang ZW, Findlay JK, Carson RS, Herington AC, Burger HG: Transforming growth factor beta enhances basal and FSH-stimulated inhibin production by rat granulosa cells in vitro. Molecular and cellular endocrinology 1988, 58(2-3):161-166.
    [39] Drummond AE, Dyson M, Thean E, Groome NP, Robertson DM, Findlay JK: Temporal and hormonal regulation of inhibin protein and subunit mRNA expression by post-natal and immature rat ovaries. The Journal of endocrinology 2000, 166(2):339-354.
    [40] Fournet N, Weitsman SR, Zachow RJ, Magoffin DA: Transforming growth factor-beta inhibits ovarian 17 alpha-hydroxylase activity by a direct noncompetitive mechanism. Endocrinology 1996, 137(1):166-174.
    [41] Otsuka F, Moore RK, Shimasaki S: Biological function and cellular mechanism of bone morphogenetic protein-6 in the ovary. The Journal of biological chemistry 2001, 276(35):32889-32895.
    [42] Otsuka F, Yamamoto S, Erickson GF, Shimasaki S: Bone morphogenetic protein-15 inhibits follicle-stimulating hormone (FSH) action by suppressing FSH receptor expression. The Journal of biological chemistry 2001, 276(14):11387-11392.
    [43] Vitt UA, Hayashi M, Klein C, Hsueh AJ: Growth differentiation factor-9 stimulates proliferation but suppresses the follicle-stimulating hormone-induced differentiation of cultured granulosa cells from small antral and preovulatory rat follicles. Biology of reproduction 2000, 62(2):370-377.
    [44] Bohlen P, Baird A, Esch F, Ling N, Gospodarowicz D: Isolation and partial molecular characterization of pituitary fibroblast growth factor. Proceedings of the National Academy of Sciences of the United States of America 1984, 81(17):5364-5368.
    [45] Berisha B, Sinowatz F, Schams D: Expression and localization of fibroblast growth factor (FGF) family members during the final growth of bovine ovarian follicles. Molecular reproduction and development 2004, 67(2):162-171.
    [46] Liu K, Wahlberg P, Hagglund AC, Ny T: Expression pattern and functional studies of matrix degrading proteases and their inhibitors in the mouse corpus luteum. Molecular and cellular endocrinology 2003, 205(1-2):131-140.
    [47]李玉哲,张展,贾莉婷. bFGF与卵泡发育的研究进展[J].河南预防医学杂志,2007, 18(6):472-474.
    [48] Glister C, Groome NP, Knight PG: Bovine follicle development is associated with divergent changes in activin-A, inhibin-A and follistatin and the relative abundance of different follistatin isoforms in follicular fluid. The Journal of endocrinology 2006, 188(2):215-225.
    [49] Knight PG, Glister C: Potential local regulatory functions of inhibins, activins and follistatin in the ovary. Reproduction (Cambridge, England) 2001, 121(4):503-512.
    [50] Fortune JE, Vincent SE: Prolactin modulates steroidogenesis by rat granulosa cells: I. Effects on progesterone. Biology of reproduction 1986, 35(1):84-91.
    [51]李莹辉,汪琳仙,杨传任.催乳素对促性腺激素诱导的鸡卵泡膜细胞类固醇激素合成的抑制作用[J].中国兽医学报,1996,16(6):597-601.
    [52] Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B: An endotoxin-induced serum factor that causes necrosis of tumors. Proceedings of the National Academy of Sciences of the United States of America 1975, 72(9):3666-3670.
    [53] Hunt JS, Chen HL, Hu XL, Chen TY, Morrison DC: Tumor necrosis factor-alpha gene expression in the tissues of normal mice. Cytokine 1992, 4(5):340-346.
    [54] Yelavarthi KK, Chen HL, Yang YP, Cowley BD, Jr., Fishback JL, Hunt JS: Tumornecrosis factor-alpha mRNA and protein in rat uterine and placental cells. J Immunol 1991, 146(11):3840-3848.
    [55] Chen HL, Marcinkiewicz JL, Sancho-Tello M, Hunt JS, Terranova PF: Tumor necrosis factor-alpha gene expression in mouse oocytes and follicular cells. Biology of reproduction 1993, 48(4):707-714.
    [56] Bagavandoss P, Kunkel SL, Wiggins RC, Keyes PL: Tumor necrosis factor-a (TNF-a) production and localization of macrophages and T lymphocytes in the rabbit corpus luteum. Endocrinology 1988, 122(3):1185-1187.
    [57] Bagavandoss P, Wiggins RC, Kunkel SL, Remick DG, Keyes PL: Tumor necrosis factor production and accumulation of inflammatory cells in the corpus luteum of pseudopregnancy and pregnancy in rabbits. Biology of reproduction 1990, 42(2):367-376.
    [58] Roby KF, Terranova PF: Effects of tumor necrosis factor-alpha in vitro on steroidogenesis of healthy and atretic follicles of the rat: theca as a target. Endocrinology 1990, 126(5):2711-2718.
    [59] Marcinkiewicz JL, Krishna A, Cheung CM, Terranova PF: Oocytic tumor necrosis factor alpha: localization in the neonatal ovary and throughout follicular development in the adult rat. Biology of reproduction 1994, 50(6):1251-1260.
    [60] Naz RK, Zhu X, Menge AC: Expression of tumor necrosis factor-alpha and its receptors type I and type II in human oocytes. Molecular reproduction and development 1997, 47(2):127-133.
    [61] Terranova PF: Potential roles of tumor necrosis factor-alpha in follicular development, ovulation, and the life span of the corpus luteum. Domestic animal endocrinology 1997, 14(1):1-15.
    [62] Loetscher H, Pan YC, Lahm HW, Gentz R, Brockhaus M, Tabuchi H, Lesslauer W: Molecular cloning and expression of the human 55 kd tumor necrosis factor receptor. Cell 1990, 61(2):351-359.
    [63] Darnay BG, Aggarwal BB: Early events in TNF signaling: a story of associations and dissociations. Journal of leukocyte biology 1997, 61(5):559-566.
    [64] Tartaglia LA, Weber RF, Figari IS, Reynolds C, Palladino MA, Jr., Goeddel DV: The two different receptors for tumor necrosis factor mediate distinct cellular responses. Proceedings of the National Academy of Sciences of the United States of America 1991, 88(20):9292-9296.
    [65] Wong GH, Tartaglia LA, Lee MS, Goeddel DV: Antiviral activity of tumor necrosis factor is signaled through the 55-kDa type I TNF receptor [corrected]. J Immunol 1992, 149(10):3350-3353.
    [66] Naylor MS, Stamp GW, Foulkes WD, Eccles D, Balkwill FR: Tumor necrosis factor and its receptors in human ovarian cancer. Potential role in disease progression. The Journal of clinical investigation 1993, 91(5):2194-2206.
    [67] Gross A, McDonnell JM, Korsmeyer SJ: BCL-2 family members and the mitochondria in apoptosis. Genes & development 1999, 13(15):1899-1911.
    [68] Perez D, White E: TNF-alpha signals apoptosis through a bid-dependent conformational change in Bax that is inhibited by E1B 19K. Molecular cell 2000, 6(1):53-63.
    [69] Messmer UK, Briner VA, Pfeilschifter J: Tumor necrosis factor-alpha and lipopolysaccharide induce apoptotic cell death in bovine glomerular endothelial cells. Kidney international 1999, 55(6):2322-2337.
    [70] Luo X, Budihardjo I, Zou H, Slaughter C, Wang X: Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 1998, 94(4):481-490.
    [71] Korsmeyer SJ, Gross A, Harada H, Zha J, Wang K, Yin XM, Wei M, Zinkel S: Deathand survival signals determine active/inactive conformations of pro-apoptotic BAX, BAD, and BID molecules. Cold Spring Harbor symposia on quantitative biology 1999, 64:343-350.
    [72] Lanuza GM, Saragueta PE, Bussmann UA, Baranao JL: Paradoxical effects of tumour necrosis factor-alpha on rat granulosa cell DNA synthesis. Reproduction, fertility, and development 2002, 14(3-4):133-139.
    [73] Nakayama M, Manabe N, Inoue N, Matsui T, Miyamoto H: Changes in the expression of tumor necrosis factor (TNF) alpha, TNFalpha receptor (TNFR) 2, and TNFR-associated factor 2 in granulosa cells during atresia in pig ovaries. Biology of reproduction 2003, 68(2):530-535.
    [74] Brannstrom M, Bonello N, Wang LJ, Norman RJ: Effects of tumour necrosis factor alpha (TNF alpha) on ovulation in the rat ovary. Reproduction, fertility, and development 1995, 7(1):67-73.
    [75] Montgomery Rice V, Limback SD, Roby KF, Terranova PF: Tumor necrosis factor alpha inhibition of follicle-stimulating hormone-induced granulosa cell estradiol secretion in the human does not involve reduction of cAMP secretion but inhibition at post-cAMP site(s). Endocrine 1999, 10(1):19-23.
    [76] Ghersevich S, Isomaa V, Vihko P: Cytokine regulation of the expression of estrogenic biosynthetic enzymes in cultured rat granulosa cells. Molecular and cellular endocrinology 2001, 172(1-2):21-30.
    [77] Prange-Kiel J, Kreutzkamm C, Wehrenberg U, Rune GM: Role of tumor necrosis factor in preovulatory follicles of swine. Biology of reproduction 2001, 65(3):928-935.
    [78] Roby KF, Son DS, Terranova PF: Alterations of events related to ovarian function in tumor necrosis factor receptor type I knockout mice. Biology of reproduction 1999, 61(6):1616-1621.
    [79] Marcinkiewicz JL, Balchak SK, Morrison LJ: The involvement of tumor necrosis factor-alpha (TNF) as an intraovarian regulator of oocyte apoptosis in the neonatal rat. Front Biosci 2002, 7:d1997-2005.
    [80] Adashi EY, Resnick CE, Croft CS, Payne DW: Tumor necrosis factor alpha inhibits gonadotropin hormonal action in nontransformed ovarian granulosa cells. A modulatory noncytotoxic property. The Journal of biological chemistry 1989, 264(20):11591-11597.
    [81] Morrison LJ, Marcinkiewicz JL: Tumor necrosis factor alpha enhances oocyte/follicle apoptosis in the neonatal rat ovary. Biology of reproduction 2002, 66(2):450-457.
    [82] Spaczynski RZ, Arici A, Duleba AJ: Tumor necrosis factor-alpha stimulates proliferation of rat ovarian theca-interstitial cells. Biology of reproduction 1999, 61(4):993-998.
    [83] Rodriguez I, Araki K, Khatib K, Martinou JC, Vassalli P: Mouse vaginal opening is an apoptosis-dependent process which can be prevented by the overexpression of Bcl2. Developmental biology 1997, 184(1):115-121.
    [84] Greenfeld CR, Babus JK, Furth PA, Marion S, Hoyer PB, Flaws JA: BAX is involved in regulating follicular growth, but is dispensable for follicle atresia in adult mouse ovaries. Reproduction (Cambridge, England) 2007, 133(1):107-116.
    [85] Spanaus KS, Schlapbach R, Fontana A: TNF-alpha and IFN-gamma render microglia sensitive to Fas ligand-induced apoptosis by induction of Fas expression and down-regulation of Bcl-2 and Bcl-xL. European journal of immunology 1998, 28(12):4398-4408.
    [86] Boot LM, Muhlbock O, Thung PJ: Senile changes in the oestrous cycle and in ovarian structure in some inbred strains of mice. Acta endocrinologica 1956, 23(1):8-32.
    [87] Sicinski P, Donaher JL, Geng Y, Parker SB, Gardner H, Park MY, Robker RL, Richards JS, McGinnis LK, Biggers JD et al: Cyclin D2 is an FSH-responsive gene involved ingonadal cell proliferation and oncogenesis. Nature 1996, 384(6608):470-474.
    [88] Morita Y, Perez GI, Maravei DV, Tilly KI, Tilly JL: Targeted expression of Bcl-2 in mouse oocytes inhibits ovarian follicle atresia and prevents spontaneous and chemotherapy-induced oocyte apoptosis in vitro. Molecular endocrinology (Baltimore, Md 1999, 13(6):841-850.
    [89] Quirk SM, Porter DA, Huber SC, Cowan RG: Potentiation of Fas-mediated apoptosis of murine granulosa cells by interferon-gamma, tumor necrosis factor-alpha, and cycloheximide. Endocrinology 1998, 139(12):4860-4869.
    [90] Kaipia A, Chun SY, Eisenhauer K, Hsueh AJ: Tumor necrosis factor-alpha and its second messenger, ceramide, stimulate apoptosis in cultured ovarian follicles. Endocrinology 1996, 137(11):4864-4870.
    [91] Koshiji M, Adachi Y, Sogo S, Taketani S, Oyaizu N, Than S, Inaba M, Phawa S, Hioki K, Ikehara S: Apoptosis of colorectal adenocarcinoma (COLO 201) by tumour necrosis factor-alpha (TNF-alpha) and/or interferon-gamma (IFN-gamma), resulting from down-modulation of Bcl-2 expression. Clinical and experimental immunology 1998, 111(1):211-218.
    [92] Boldin MP, Goncharov TM, Goltsev YV, Wallach D: Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 1996, 85(6):803-815.
    [93] Medema JP, Scaffidi C, Kischkel FC, Shevchenko A, Mann M, Krammer PH, Peter ME: FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). The EMBO journal 1997, 16(10):2794-2804.
    [94] Rothe M, Sarma V, Dixit VM, Goeddel DV: TRAF2-mediated activation of NF-kappa B by TNF receptor 2 and CD40. Science (New York, NY 1995, 269(5229):1424-1427.
    [95] Rothe M, Wong SC, Henzel WJ, Goeddel DV: A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell 1994, 78(4):681-692.
    [96] Higuchi M, Aggarwal BB: Differential roles of two types of the TNF receptor in TNF-induced cytotoxicity, DNA fragmentation, and differentiation. J Immunol 1994, 152(8):4017-4025.
    [97] Tartaglia LA, Pennica D, Goeddel DV: Ligand passing: the 75-kDa tumor necrosis factor (TNF) receptor recruits TNF for signaling by the 55-kDa TNF receptor. The Journal of biological chemistry 1993, 268(25):18542-18548.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700