用户名: 密码: 验证码:
动物腔前卵泡分离培养的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.探讨了水牛和小鼠的各级腔前卵泡在卵巢中的分布规律、形态特征及超微结构特点。(1)水牛和小鼠卵巢中各级卵泡的分布具有明显的区域性,原始卵泡和初级卵泡分别位于血管稀少的皮质最外层和中层,而次级卵泡位于富含血管的皮质最内层。(2)水牛成年牛的原始卵泡的直径明显大于胎牛和青年牛(p<0.05),而三者的卵母细胞直径和颗粒细胞数没有差别;成年牛的初级卵泡的直径和卵母细胞直径显著大于胎牛和青年牛,颗粒细胞数也显著较多(p<0.05)。胎牛的次级卵泡的直径和卵母细胞直径显著小于成年牛和青年牛,颗粒细胞数也显著较少(p<0.05),次级卵泡的颗粒细胞在2—4层时分布不均,一侧较多,而另一侧较少。(3)7d、14d和28d小鼠的原始卵泡的直径、卵母细胞直径和颗粒细胞数均没有差异,赤道面颗粒细胞数约为10个。7d小鼠初级卵泡和次级卵泡直径和卵母细胞直径显著小于14d和28d小鼠,颗粒细胞也少(p<0.05)。(4)水牛和小鼠腔前卵泡的基膜由两层薄而光滑的纤维状结构组成,线粒体中有帽状结构,卵母细胞的细胞器集中于细胞核附近。
     2.探讨了不同分离方法对水牛腔前卵泡分离效果的影响。梳刮法平均每个水牛卵巢回收所得的腔前卵泡数(152.35±44.81)明显高于剪碎法(32.62±14.81)和显微分离法(8.95±3.44,p<0.05),且其平均每个卵巢的处理时间(39.05±4.27min)明显少于剪碎法(46.43±4.15min)和显微分离法(44.55±7.82min,p<0.05)。梳刮法分离所得的腔前卵泡,其中原始卵泡最多(占41.25%),其次为初级卵泡(占38.79%),而次级卵泡最少(仅占19.95%)。结果表明,梳刮法能有效地分离回收水牛卵巢的腔前卵泡。
     3.探讨了水牛胎牛、青年牛和成年牛卵巢腔前卵泡的分离效果。每个胎牛、青年牛和成年牛的卵巢分别获得943.43±143.13、249.50±40.11和128.50±19.99个腔前卵泡,胎牛卵巢获得的腔前卵泡数量明显多于青年牛和成年牛(p<0.05),表明水牛胎牛卵巢可分离得到较多的腔前卵泡。
     4.探讨了剪碎结合酶消化法的水牛卵巢腔前卵泡分离效果。水牛卵巢先用眼科手术剪刀将其剪碎,然后分别用浓度为0(对照)、0.02%、0.04%、0.08%的胶原酶消化20min回收腔前卵泡,每个卵巢分别获得33.56±6.15、40.38±6.12、47.75±6.84和52.69±6.15个腔前卵泡,酶消化组的腔前卵泡数量明显多于单纯剪碎组(p<0.05),表
    
     中文摘要
    明酶消化有助于提高剪碎法的腔前卵泡分离效率。
     5.探讨了不同分离方法对小鼠卵巢腔前卵泡的分离效果的影响。梳刮法平均每个
    小鼠卵巢回收所得的腔前卵泡数明显高于剪碎法和显微分离法(61.00士9.12vs
    26.30士506和14.1肚4.61,p<0.05),且其每个卵巢的平均处理时间明显少于剪碎法和
    显微分离法(30.80士3.glmin vs 39.10士4.olmin和38.40士3.50min,p<0.05),梳刮法分
    离所得的小鼠腔前卵泡,次级卵泡最多(占83.61%),其次为初级卵泡(占12.13%),
    而原始卵泡最少(仅占4.26%),表明梳刮法也能有效地分离回收小鼠卵巢的腔前卵泡。
     6.探讨了分离方法和水牛年龄对水牛腔前卵泡的体外发育能力的影响。用梳刮
    法、剪碎法和显微分离法获得的水牛卵巢腔前卵泡体外培养48h和72h,其存活率差
    异不显著(p>0.05)。体外培养72h,胎牛腔前卵泡存活率明显低于青年牛和成年牛
     (34.69%vs 52.67%、52.03%,P<0.05)。剪碎结合酶消化法分离得到的水牛卵巢腔前
    卵泡在体外培养72h后的存活率随着胶原酶浓度的增加而逐渐下降,浓度达到0.08%
    时下降达到显著性水平。结果表明,分离操作方法对水牛腔前卵泡的培养存活率没有
    影响,但酶消化处理则降低腔前卵泡分离后的培养存活率;水牛胎牛分离得到的腔前
    卵泡比青年牛和成年牛分离得到的腔前卵泡更难培养。
     7.探讨了卵泡培养密度对水牛腔前卵泡的体外发育能力的影响。培养到IOd,单
    独培养(每孔放1个卵泡)的卵泡存活率(30.36%)与直径增长(7 .71士2.29林m)显
    著低于群体培养A(每孔放2一3个卵泡,51.61%、10.19士3.24林m)和群体培养B(每
    孔放4一5个卵泡,52.24%、10.94士3.80林m,p<0.05),表明水牛腔前卵泡的群体培养
    效果优于单独培养效果。
     8.探讨了卵泡大小对水牛卵巢腔前卵泡的体外发育能力的影响。体外培养10d,
    起始直径为101一120和扒21林m的卵泡的存活率显著高于三60、61一80林m和
    81一10如m的卵泡的存活率,起始直径扒21林m的卵泡的直径增长显著高于且20林m的
    卵泡的直径增长(p<0.05),表明直径较大水牛腔前卵泡的体外培养效果优于直径较小
    的腔前卵泡。
     9.确定了水牛腔前卵泡体外培养胎牛血清(F Cs)的最佳浓度。体外培养10d,
    10%FCS组的卵泡存活率显著高于对照组和1%FCS组(p< 0.05),卵泡的直径增长了
    14.36士4.90林m,亦显著高于对照组和1%FCS组、5%FCS组和20%FcS组的直径增长
    (P<0.05),表明水牛腔前卵泡体外培养的适宜FsH浓度是10%一巧%。
     10.比较了不同培养方法的水牛腔前卵泡体外培养效果。培养10d,三维培养法
    的卵泡存活率显著高于微孔板培养法和二维培养法(p<0.05),且卵泡直径平均增长了
    13.03士5.37林m,亦显著高于微孔板培养法和二维培?
1. The distribution, histological and ultrastructural characterization of buffalo and mouse preantral follicles in ovaries was studied. Primordial follicles, which had one layer of squamous granulosa cells, were always located in the outer part of ovary cortex. Primary follicles, which had a single layer of cubical granulosa cells, were found in the middle cortex. Secondary follicles with two or more layers of cubical granulosa cells in symmetric distribution were located only within the inner region of the cortex with many large blood vessels. The diameter of primordial, primary and secondary follicles and their oocyte diameter in adult buffalo ovaries was larger than those in heifer and fetal ovaries. Adult buffalo primordial, primary and secondary follicles also had more ganulosa cells in comparison with heifer and fetal follicles. The diameter of primordial follicles and oocytes and granulosa cell number from 7d, 14d and 28d of mice did not differ significantly, but the diameter of primary and seconda
    ry follicles and their oocytes from 7d mice was shorter than that of 14d and 28d mice, granulosa cell number of primary and secondary follicles from 7d mice was also less than that of 14d and 28d mice (p<0.05). The basement membrane of buffalo and mice follicles was made of two layers of thin and smooth fiber-like material. Mitochondria had cap ultrastructure. Organelle of oocyte distributed near the nucleus.
    2. Methods for isolation of buffalo and mouse preantral follicles were investigated. Comb-scrape method harvested significantly more preantral follicles (152.35+44.81/ovary) than cutting (32.62+ 14.81/ovary) and micromanipulation method (8.95+3.44/ovary, p<0.05). The average manipulative time for each ovary (39.05+4.27min) was also less than cutting (46.43+4.15min) and micromanipulation method (44.55+7.82min, p<0.05). Majority of preantral follicles isolated by comb-scrape method were primordial follicles (41.25%) and primary follicles (38.79%), and very few of secondary follicles (19.95%). These results indicated that comb-scrape method was suitable for isolating buffalo preantral follicles.
    3. Fetal ovaries harvested significantly more preantral follicles (943.43+143.13/ovary) than heifer (249.50+40.11 /ovary) and adult ovaries (128.50+19.99/ovary) (p<0.01) , indicating that more preantral follicles can be isolated from buffalo fetal ovaries.
    4. Digestion of small ovary tissue pieces with 0.02% 0.04% and 0.08% collagenase harvested significantly more preantral follicles in comparison with without digestion (40.38+6.12 47.75+6.84 and 52.69+6.15 vs 33.56+6.15 per ovary, p<0.05), indicating that combination of cutting and enzymatic method can harvest more buffalo preantral follicles than cutting method alone.
    5. Comb-scrape method harvested significantly more mouse preantral follicles
    
    
    
    (61.00+9.12/ovary) than cutting (26.30+5.06/ovary) and micromanipulation method (14.10+4.16/ovary, p<0.05). The average manipulative time for each ovary (30.80+3.91min) was also less than cutting (39.10+4.01min) and micromanipulation method (38.40+3.50min, p<0.05). Majority of preantral follicles isolated by comb-scrape method were secondary follicles (83.61%) and primary follicles (12.13%), and very few of primordial follicles (4.26%). These results indicate that comb-scrape method is also suitable for isolating mouse preantral follicles.
    6. Effects of isolation methods and buffalo ages on the growth of preantral follicles in vitro culture were studied. The survival rate of preantral follicles isolated using the comb-scrape method at 48 and 72h after in vitro culture did not differ significantly from that of cutting and micromanipulation methods (p>0.05). The survival rate of buffalo fetal preantral follicles was significantly lower than that of heifer and adult preantral follicles (34.69% vs 52.67% and 52.03%, p<0.05) after in vitro culture of 72h. The survival rate of buffalo preantral follicles isolated by 0.08% collagenase treatment was significantly lower than the follicles insolated by 0, 0.02% and
引文
曹贵方,张涌,王建辰等.动物细胞凋亡与卵泡闭锁.动物医学进展,1997,18(4):5-8.
    陈大元,孙青原,李光鹏等.受精生物学,受精机制与生殖工程.北京:科学出版社.2000,P146-155.
    陈章言,王锦锋.猪腔前卵泡的分离及培养试验.动物科学与动物医学,2002,19:10-12.
    冯贵雪.水午腔前卵泡分离培养的初步研究.广西大学硕士论文,2003.
    冯怀亮.哺乳动物胚胎工程.长春:吉林科学技术出版社.1994,P25-41.
    高建明,范亚新,王燕东等.牛腔前卵泡的简易分离方法.草食家畜,1999,(4):23-24,28.
    高建明,高立云,赵耀等.牛单个腔前卵泡切片制作效果观察.草食家畜,2001,(2):22-23.
    高建明,万善霞,高立云等.二种分离液对牛腔前卵泡卵母细胞体外培养效果观察.北京农学院学报,1999,14(4):38-41.
    高建明,王燕东,范亚欣等.牛卵巢黄体状况与腔前卵泡采集数量的关系.中国兽医学报,2001,21(2):181-183.
    高建明,吴学清,胡明信等.牛卵巢黄体类型与闭锁卵泡之间关系的探讨.黑龙江畜牧兽医,2002,(5):1-2.
    高建明,吴学清,王占贺等.牛腔前卵泡的体外培养.中国兽医学报,2002,22(4):341-343.
    高建明.小鼠胚胎切割后体外培养发育影响的研究.北京农学院学报,1994,9(2):98-104.
    高立云,高建明,吴学清等.牛卵巢卵泡及卵母细胞生长发育的组织学研究.黑龙江畜牧兽医,2002,6:5-6.
    高志花,周虚,高庆华.牛腔前卵泡的简易机械分离方法.中国草食动物,2003,23(4):3-5.
    高志花,周虚,高庆华.体外培养牛腔前卵泡卵母细胞的超微结构研究.草食家畜(增刊),2003,131-136.
    郭志勤,张继慈,张沅等.家畜胚胎工程.北京:中国科学技术出版社.1998,P51-58.
    
    
    黎宗强,梁明振,文国艺.动物腔前卵泡的研究进展.广西农业生物科学,2003,22 (1):69-74.
    李朝军,王斌,范必勤等.小鼠腔前卵泡卵母细胞的体外培养、体外成熟和体外受精研究.南京大学学报(自然科学),1997,33(2):265-272.
    李海,周虚,高志花等.用台盼蓝和荧光染色法评价腔前卵泡的活力.中国兽医学报,2003,23(5):503-504.
    李荣凤,薛晓先,刘哲等.牛卵母细胞皮层颗粒荧光染色法质成熟鉴定.畜牧兽医学报,2001,31(3):203-210.
    刘海军.哺乳动物腔前卵泡和分离与培养.动物科学与动物医学,2001,18(1):30-33.
    刘瑞华,李明,焦丽红等.家畜类腔前卵泡的体外培养方法和培养体系研究进展.农业生物技术学报.2003,(3):313-317.
    柳海珍,刘以训.EGF在新生大鼠原始卵泡生长启动中的作用.中国科学C辑,2000.3.
    卢晟盛,张艳玲,石德顺,卢克焕.在成熟过程中添加牛血清和猪卵泡液对猪卵母细胞核成熟及体外受精后早期胚胎发育的影响.黑龙江畜牧兽医,2002,(8):1-3.
    蒙学莲.发情周期牦牛卵巢中卵泡系统和黄体形态的研究.甘肃农业大学,2002硕士论文.
    潘红平,冯贵雪,石德顺.水牛腔前卵泡的分离方法.动物学报,2004,50(2):291-296.
    潘红平,石德顺,冯贵雪.水牛腔前卵泡的机械分离方法.昆明:第十一届全国动物繁殖学术会议论文集,2002,P62.
    潘红平,石德顺,冯贵雪.水牛胎牛、青年牛和成年牛腔前卵泡的分离及培养.广西农业生物科学,2003,22(3):207-211.
    潘红平,石德顺,梁明振,冯贵雪.胶原酶对水牛腔前卵泡的分离及培养的影响.广西畜牧兽医,2003,19(4):147-149.
    彭南妮,钱卫平,邱耀芳等.小鼠腔前卵泡的分离与培养.中国现代医学杂志,1999,9(9):15-19.
    彭南妮,薛立群,陈可毅等.不同龄小鼠腔前卵泡的采集和体外培养.湖南农业大学学报,1999,25(2):116-119.
    彭南妮,薛立群,陈可毅等.添加物对小鼠腔前卵泡体外培养的影响.湖南农业大学学报,1999,25(3):229-232.
    芮荣,曹贵方,张涌.山羊腔前卵泡卵母细胞体外发育的超微结构研究.四川农业大学学报,1998,16(4):464-467.
    
    
    芮荣,王建辰.哺乳动物腔前卵泡的研究进展.动物医学进展,1998,19(4):19-22.
    芮荣,张涌,李裕强,周欢敏.山羊腔前卵泡的分离.四川农业大学学报,1998,16(2):210-212.
    芮荣,张涌,李裕强.山羊卵巢腔前卵泡卵母细胞的采集.中国农业科学,1997,30(4):88-90.
    芮荣,张涌.山羊腔前卵泡卵母细胞体外发育与体外成熟的研究.畜牧兽医学报,2000,31(6):481-486.
    芮荣,张涌.小鼠腔前卵泡卵母细胞的采集、体外发育和体外成熟.四川农业大学学报,1998,16(3):349-351.
    桑润滋,周虚,石德顺等.动物繁殖生物技术.北京:中国农业出版社,2002,P27-47.
    施旭东,范必勤,王公金等.FSH对人腔前卵泡体外生长的影响.南京师大学报,2001,24(1):95-100.
    施旭东,孙贝加,陈华等.人腔前卵泡体外培养研究.中国优生与遗传杂志,2001,9(2):5-7.
    施旭东,孙贝加,陈秋生等.影响小鼠腔前卵泡体外发育因素的研究.中国兽医科技,2001,31(6):10-12.
    施旭东,孙贝加,谭笑梅等.人腔前卵泡分离及培养.生物技术,2001,11(4):13-17.
    旌旭东,孙贝加,王衡等.小鼠腔前卵泡体外发育研究.中国优生与遗传杂志,2001,9(3):8-9.
    施旭东.人类卵母细胞的体外发育与存活卵泡的形态学研究.南京农业大学博士学位论文,2001.
    石德顺,卢克焕.牛卵泡液对牛卵母细胞体外成熟的影响.广西农业大学学报,1994,13 (1):1-5.
    石德顺,陆凤花,韦精卫,杨素芳.水牛成纤维细胞核移植的研究.草食家畜,2001,增刊:191-196.
    石德顺,马庆生,潘红平等.生物学大辞典.南宁:广西科技出版社.1999,P1397.
    谭景和,孙青原,杨增明等.山羊卵泡卵母细胞发育的超微结构研究.解剖学报,1992,23(1):106-110.
    王锋,钱菊汾,王建辰.卵泡生长发育成熟及其内分泌调控.国外兽医学—畜禽疾病,1994,15(1):1-8.
    许新,丛笑倩,严缘昌.原始生殖细胞和胚胎生殖细胞发育多能性.生殖与避孕,2000.20(5):259-262.
    
    
    杨素芳,石德顺,韦精卫.激活方法对水牛卵母细胞孤雌发育的影响.中国兽医学报,2002,22(4):325-327.
    袁安文,薛立群,向建洲等.小鼠腔前卵泡体外发育和体外排卵的研究.湖南农业大学学报(自然科学版)2001,27(4):312-316.
    曾长军,郑鸿培.哺乳动物腔前卵泡研究进展及其在珍稀濒危野生动物上的应用.国外畜牧科技,2000,27(6):34-37.
    曾长军.家猫腔前卵泡的分离采集和体外成熟研究.四川农业大学硕士论文 2001.
    张涌,李勇,李裕强等.小鼠腔前卵泡卵母细胞的采集和体外成熟.西北农业大学学报,1995,23(4):1-5.
    郑鸿培,曾长军,张安居等.小鼠腔前卵泡的分离采集和体外成熟研究.四川农业大学学报,2001,19(3):266-268.
    郑行.动物生殖生理学.北京:北京农业大学出版社.1994,P1-12.
    周欢敏,张涌.山羊卵巢无腔卵泡的分离及其形态特征.内蒙古农业大学学报,1998.19(4):1-6.
    周欢敏,曹贵方.山羊离体腔前卵泡的超微结构.内蒙古畜牧科学,1998,(4):1-2,6.
    周欢敏,张涌,王新庄.牛卵巢腔前卵泡的机械分离试验.西北农业大学学报,1998,26(3):52-55.
    周欢敏,张涌,哺乳动物腔前卵泡的体内和体外发育.西北农业大学学报,1998,26(4):95-100.
    周欢敏,张涌.山羊卵巢无腔卵泡卵母细胞的体外生长.中国兽医学报,1999,19(3),301-304.
    周欢敏,张涌.山羊无腔卵泡的体外发育.中国畜牧杂志,2000,36(2):12-14
    周欢敏,张涌.生长因子对山羊无腔卵泡卵母细胞体外生长的影响.畜牧兽医学报,2001,32(1):23-27.
    周虚,Robert Webb.牛腔前卵泡的体外培养.草食家畜(增刊),2001,150-153.
    周虚,Robert Webb.牛腔前卵泡在体外无血清培养中发育为有腔卵泡.中国兽医学报,2002,22(5):518-519
    Aaltonen J, Laitinen MP, Vuojolainen K., et al. Human growth differentiation factor-9 (GDF-9) and its novel homolog GDF-gB are expressed in oocytes during early folliculogenesis. J Clin Endocrinol Metab, 1999, 84: 2744-2750.
    Abbott AL, Xu Z, Kopf GS, et al. In vitro culture retards spontaneous activation of cell
    
    cycle progression and cortical granule exocytosis that normally occur in in vivo unfertilized mouse eggs. Biol Reprod, 1998, 59: 1515-1521.
    Abir R, Franks S, Mobberley MA, et al. Mechanical isolation and in vitro growth of preantral and small antral human follicles. Fertility and Sterility, 1997, 68(4): 682-688.
    Abir R, Roizman P, Fisch B, et al. Pilot study of isolated early human follicles cultured in collagen gels for 24 hours. Hum Reprod, 1999, 14: 1299-1301.
    Aboul-Ela MBE. Superovulation in the buffaloes: constraints and manipulation. Buff J, 2000, 16: 1-20.
    Ackert CL, Gittens JE, O'Brien MJ, et al. Intercellular communication via connexin 43 gap junctions is required for ovarian folliculogenesis in the mouse. Dev Biol, 2001, 233: 258-270.
    Adshi EY Independ and synergistic actions of somatomedin-c in the stimulation of protoglycan biosynthesis by cultured rat granulosa cells. Endocrinology, 1986, 118: 456-459.
    Advis JP, Ahmed CE, Ojeda SR Direct hypothalamic control of vasoactive intestinal peptide (VIP) levels in the developing rat ovary. Brain Res Bull, 1989, 22: 605-610.
    Albertini DF, Combelles CMH, Benecchi E, et al. Cellular basis for paracrine regulation of ovarian follicle development. Reproduction, 2001, 121: 647-653.
    Amorim CA, Lucci CM, Rodrigues APR., et al. Quantitative and qualitative analysis of the effectiveness of a mechanical method for the isolation of preantral follicles from ovine ovaries. Theriogenology, 2000, 53: 1251-1262.
    Andrade ER, Rodrigues APR, Amorim CA, et al. Short term maintenance of sheep preantral follicles in situ in 0. 9% saline and braun-collins solution. Small Ruminant Research, 2001, 41: 141-149.
    Antczak M Van Blerkom J. Oocyte influences on early development: the regulatory protein leptin and STAT3 are polarized mouse and human oocytes and differentially distributed within the cells of the preimplantation stage embryo. Mol Hum Repro, 1997, 3: 1067-1086.
    Armstrong DG, Baxter G, Hogg CO, et al. Insulin-like growth factor (IGF) system in the oocyte and somatic cells of bovine preantral follicles. Reproduction, 2002, 123: 789-797.
    Bagavandoss P. Differential distribution of gelatinases and tissue inhibitor of metalloproteinase-1 in the rat ovary. J Endocrinol, 1998, 158: 221-228.
    Bao S, Obatas Y, Carroll J, et al. Epigenetic modification necessary for normal development are established during oocyte growth in mice. Biol Reprod, 2000, 62: 616-621.
    Barlow DP. Gametic imprinting in mammals. Science, 1995, 270: 1610-1613.
    
    
    Bodensteiner KJ, Clay CM, Moeller CL, et al. Molecular cloning of the ovine growth/Differentiation factor-9 gene and expression of growth/differentiation factor-9 in ovine and bovine ovaries. Biol Reprod, 1999, 60: 381-386.
    Bolamba D, Borden-Russ KD and Durrant BS. In vitro maturation of domestic dog oocytes cultured in advanced preantral and early antral follicles. Theriogenology, 1998, 49: 933-942.
    Boland NI, Gosden RG. Effects of epidermal growth factor on the growth and differentiation of cultured mouse ovarian follicles. J Reprod Fertil, 1994, 101: 369-374.
    Boland NI, Humpherson PG, Leese HJ, et al. Pattern of lactate production and steroidogenesis during growth and maturation of mouse ovarian follicles in vitro. Biology Reproduction, 1993, 48: 798-806.
    Botamba. D, Borden-Russ KD, Durrant BS. In vitro maturation of domestic dog oocytes cultured in advanced preantral and early antral follicles. Theriogenology, 1998; 49: 933-942.
    Braw-Tal R, Yossefi S. Studies in vivo and in vitro on the initiation of follicular growth in the bovine ovary. J Reproduction Jertil, 1997, 109: 165-71.
    Britt JH. Impacts of early postpartum metabolism on follicular development and fertility. Bovine Prac, 1991, 24: 39-43.
    Buccione R, Schroeder AC, Epigg JJ. Interactions between somatic cells and germ cells throughout mammalian oogenesis. Biol Reprod, 1990, 43: 543-547.
    Canipari R, Epifano O, Siracusda G; et al. Mouse coocytes inhibit plasminogen activator producting by ovarian cumulus and granulose cells. Dev Biol, 1995, 167: 371-378.
    Canipari R, Palombi F, Raminucci M. Early programming of maturation competence in mouse oocyte growth. Dev Biol, 1984, 102: 519-524.
    Caooll J, Gosden RG. Transplantation of frozen-thawed mouse primordial follicles. Hum Reprod, 1993, 8: 1163-1167.
    Carabatsos M J, Sellitto C, Goodenough DA, et al. Oocyte-granulosa cell heterologous are required for the coordination of nuclear and cytoplasmic meiotic competence. Development biology, 2000, 266(2): 167-179.
    Carambula SF, Goncalves PBD, Costa LFS, et al. Effect of fetal age and method of recovery on isolation of preantral follicles from bovine ovaries. Theriogenology, 1999, 52: 563-571.
    Carroll J, Jones KT, Whittingham DG. Ca~(2+) release and the development of Ca~(2+) release mechanisms during oocyte maturation: a prelude to fertilization. Rev Reprod, 1996, 1: 137-143.
    Carvalho FCA, Lucci CM, Silva JRV, et al. Effect of braun-collins and saline solutions at
    
    different temperatures and incubation times on the quality of goat preantral follicles preserved in situ. Animal Reproduction science, 2001, 66: 195-208.
    Cecconi S D'Aurizio R, Co lorma R. Role of antral follicle development and cumulus cells on in vitro fertilization of mouse oocytes. J Reprod, Fitil, 1999, 107: 207-214.
    Cecconi S, Barboni B, Coccia M, et al. In vitro development of sheep preantral follicles. Biol Reprod, 1999, 60: 594-601.
    Cecconi S, Barboni B, Coccia M, et al. In vitro development of sheep preantral follicles. Biology of Reproduction, 1999, 60: 594-601.
    Cecconi S, Colonna R. Influence of granulose cells and of different somatic cell types on mammalian oocyte development in vitro. Zygote, 1996, 4: 305-307.
    Cecconi S, Rossi G De Felici M, et al. Mammalian oocyte growth in vitro is stimulated by soluble factor(s) produced by preantral granulose cells and by Sertoli cells. Mol Reprod Dev, 1996, 44: 540-546.
    Cecconi S, Rossi G, Gualtieri R et al. Presence of a 31-kd protein band in human cumulus-corona radiata-conditioned media and pregnancy outcome. Fert Ster, 2001, 75: 1-11.
    Cecconi S, Rossi G. Mouse antral oocytes regulate preantral granulosa cell ability to stimulate oocyte growth in vitro. Developmental Biology, 2001, 233: 186-191.
    Cecconi S, Rossi G. Mouse antral oocytes regulate preantral granulose cell ability to stimulate oocyte growth in vitro. Dev Biol, 2001, 233: 186-191.
    Cecconi S, Tatone C, Buccione R, et al. Granulosa cell-oocyte interactions: the phosphorylation of specific proteins in mouse oocytes at the germinal vesicle stage is dependent upon the differentiative state of companion somatic ceels. Jexp Zool, 1991, 258: 249-254.
    Chen ZQ, Lefebvre D, Bai XH, et al. Identification of two regulatory elements within the promoter region of the mouse connexin 43gene. Jbiol Chem, 1995, 270: 3863-3968.
    Chesnel F, Wigglesworth K, Epig JJ. Acquisition of meiotic competence by denuded mouse oocytes: participation of somatic-cell product(s) and cAMP. Del boil, 1994, 161: 285-295.
    Chun SY, McGee EA, Sheau YH, et al. Restricted Expression of WT1 Messenger Ribonucleic Acid in Immature Ovarian Follicles: Uniformity in Mammalian and Avian Species and Maintenance during Reproductive Senescence. Biology Reproduction, 1999, 60: 365-373.
    Colonna R, Cecconi S, Tatone C, et al. Somatic cell-oocyte interaction in mouse oocyte oogenesis: stage-specific ergulation of mouse oocyte protein phosphorylation by granulose cells. DevBiol, 1989, 133: 305-308.
    Cortvrind R, Smitz J, Van Steirteghem AC. A morphological and functional study of the
    
    effect of slow freezing followed by complete in-vitro maturation of primary mouse ovarian follicles. Human Reproduction, 1996, 11: 2648-2655.
    Cortvrind R, Smitz J, Van Steirteghem AC. In vitro maturation fertilization and embryo development of immature oocytes from early preantral follicles from prepubertal mice in a simplified culture system. Human Reproduction, 1996, 11: 2656-2666.
    Cotvrind R, Hu Y, Lin J, et al. Timed analysis of the nuclear maturation of oocytes in early preantral mouse follicle culture supplemented with recombinant gonadotropin. Fertil Steril, 1998, 70: 1114-1125.
    Daniel, Armstrong DT, Gore-Langton RE. Growth and development of rat oocytes in vitro. Gamete Research 1989;24(1): 109-121.
    De la Fuente R, Epigg JJ Transcriptional activity of the mouse oocyte genome: companion granulose cells modulate transcription and chromatin remodeling. Dev Biol, 2001, 229: 224-236.
    De la Pala EC, Takahashi Y, Katagiri S, et al. Birth of pups after transfer of mouse embryos derived from vitrified preantral follicles. Reproduction, 2002, 123: 593-600.
    Deane HW. Histochemical observation on the ovary and oviduct of the albino rat during the estrous cycle. American Journal of Anatomy, 1952, 91: 363-413.
    Derrar N, Price CA, Sirard MA. Effect of growth factors and co-culture with ovarian medulla on the activation of primordial follicles in explants of bovine ovarian cortex. Theriogenology, 2000, 54: 587-598.
    Dhar A, Salamonsen LA, Doughton, et al. Effect of immunization against the amino-terminal peptilde (alpha N) of the alpha 43-subunit of inhibin on follicle atresia and expression of tissue inhibtor of matrix metalloproteinase (TIMP-1) in ovarian follicle of shep. J Reproduction Fertility, 1998, 114: 147-155.
    Dong J, Albertini DF, Nishimaori K, et al. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature, 1996, 383: 531-535.
    Donnelly K, Telfer EE. Growth of porcine preantral ovarian follicles in different culture systems. J Reprod Fertil, 1994, Abstract Series, 13: 76.
    Downs SM, Coleman DL, Ward-Bailey PF, et al. Hypoxanthine is the principal inhibitor of murine oocyte maturation in a low molecular weight fraction of porcine follicular fluid. Proc Natl Acad Sci USA, 1985, 82: 454-458.
    Downs SM, Daniel SA, Bornslaeger EA, et al. Maintenance of meiotic arrest in mouse oocytes by purines: modulation of cDMAlevel and cDMA phosphodiesterase activity. GamRes, 1989, 23: 323-334.
    Drummond AE, Dyson M, Thean E, et al. Temporal and hormoral regulation of inhibin protein and subunit mRNA expression by post-natal and immature rat ovaries. J Endocrinol, 166: 339-354.
    
    
    Dube JL, Wang P, Elvin J, et al. The bone morphogenetic protein 15 gene is-linked and expressed in oocyte. Mol Endocrinol, 1998, 12: 1809-1817.
    Dunkel L, Tilly J, Shikone T, et al. Follicle stimulating hormone receptor expression in the rat ovary: increases during prepubertal development and regulation by opposing actions of transforming growth factor beta and alpha. Biol Reprod, 1994, 50: 940-948.
    Durrant BS, Pratt NC, Russ KD, et al. Isolation and characterization of canine advanced preantral and early antral follicles. Theriogenology, 1998, 49: 917-932.
    Elvin JA, Clark AT, Wang P, et al. Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Mol Endocrinol, 1999, 13; 1018-1034.
    Elvin JA, Yah C, Wang P, et al. Mlecular characterization of the follicle defects in the growth differentiation factor 9-deficient ovary. Mol Endoncrinol, 1999, 13: 1035-1045.
    Eppig JJ, Chesnel F, Hirao Y, et al. Oocyte control of granulose cell development: how and why. Hum Reprod, 1997, 12: 127-132.
    Eppig JJ, Hosoe M, O'Brien M J, et al. Conditions that affect acquisition of developmental competence by mouse oocytes in vitro: FSH. insulin, glucose and ascorbic acid. Mol Cell Endocrinol, 2000, 163: 109-116.
    Eppig JJ, O'Brien M. J. Development in vitro of mouse oocyte from primordial follicles. Biology of Reproduction, 1996, 54: 197-207.
    Eppig JJ, O'Brien M J, Pendola FL, et al. Factors affecting the developmental competence of mouse oocytes grown in vitro: follicle-stimulating hormone and insulin. Biol Reprod, 1998, 59: 1445-1453.
    Eppig JJ, O'Brien M J, Wigglesworth K. Mammalian oocyte growth and development in vitro. Molecular Reproduction and Development, 1996, 44: 260-273.
    Eppig JJ, O'Brien MJ. Comparison of preimplantation developmental competence after mouse oocyte growth and development in vitro and in vivo. Theriogenology, 1998, 49: 415-422.
    Eppig JJ, O'Brien MJ. Development in vitro o mouse oocytes from primordial follicles. Biol Reprod, 1996, 54: 197-207.
    Eppig JJ, Peters AHFM, Telfer EE, et al. Production of cumulus expansion enabling factor by rnouse oocytes grown in vitro: preliminary characterization of the factor. Molecular Reproduction and Development, 1993, 34: 450-456.
    Eppig JJ, Schroeder AC. Capacity of mouse oocytes from preantral follicles to undergo embryogenesis and development to live young after growth, maturation, and fertilization in vitro. Biology of Reproduction, 1989, 41: 268-276.
    Eppig JJ, Telfer EE. Isolation and culture ofoocytes. Methods Enzymol, 1993, 225: 77-84
    Eppig JJ, Wigglesworth K, Pendola F, et al. Murine oocytes suppression of luteinizing
    
    hormone receptor messenger ribonucleic acid by granulose cells. Biol Reprod, 1997, 56, 976-984.
    Eppig JJ, Wigglesworth K, Pendola F. The mammlian oocyte orchestrates the rate of ovcarian follicular development. Pro Natl Acad Sci USA, 2002, 99; 2890-2894.
    Eppig JJ, Wigglesworth K. Factors affecting the developmental competence of mouse oocytes growth in vitro: oxygen concentration. Molecular Reproduction Development, 1995, 2: 447-456.
    Eppig JJ. A comparision between oocytes growth in co-culture with granulose cells and oocytes with granulose cell-oocyte junctional contact maintained in vitro. Jexp Zool, 1979, 209: 345-353.
    Eppig JJ. Mouse oocyte development in vitro with various culture system. Development Biology, 1977, 60: 371-388.
    Eppig JJ. Oocyte control of ovarian folliclar development and function in mammals. Reproduction, 2001, 122: 829-838.
    Erickson BH. Development and senescence of the postnatal bovine ovary. J Anim Science, 1966, 25: 800-805.
    Fabbri R, Porcu E, Marsella T, et al. Human embryo development and pregnancies in an homologous granulose cells coculture system. J Ass Reprod Gen, 2000, 17: 1-12.
    Fabbri R, Porcu E, Marsella T, et al. Human oocyte cryopreservation: new perspectives regarding oocyte survival. Hum Reprod, 2001, 16: 411-416.
    Fair T, Hulshof SCJ, Hyttel P, et al. Nucleus ultrastructure and transcriptional activity of bovine oocytes in preantral and early antral follicles. Mol Reprod Dev, 1997, 46: 208-15.
    Fazel AR, Schulte BA, Spicer SS. Glycoconjugate unique to migrating germ cells differs with genera. Anat Rec, 1990, 228: 177-184.
    Ferreira MAL, Brasil AF, Silva JRV, et al. Effects of storage time and temperature on atresia of goat ovarian preantral follicles held in M199 with or without indole-3-acetic acid supplementation. Theriogenology, 2001, 55: 1607-1617.
    Figueiredo JR, Hulshof SCJ, Thiry M, et al. Extracellular matrix proteins and basement membrane: their identification in bovine ovaries and significance for the attachment of cultured preantral follicles. Theriogenology, 1995, 43: 845-858.
    Figueiredo JR, Hulshof SCJ, Van den Hurk R, et al. Develoment of a combined new mechanical and enzymatic method for the isolation of intact preantral follicles from fetal, calf and adult bovine ovaries. Theriogenology, 1993, 40: 789-799.
    Figueiredo JR, Hulshof SCJ, Van den Hurk R, et al. Preservation of oocyte and granulose cell morphology in bovine preantral follicles cultured in vitro. Theriogenology, 1994, 41: 1333-1346.
    
    
    Findlay JK, Drummond AE, Dyson M, et al. Production and actions of inhibin and activin during folliculogenesis in the rat. Molecular and Cellular Endocrinology 2001, 180: 139-144.
    Flaws JA, Hirshfield AN, Judith A, et al. Furth Effect of Bcl-2 on the Primordial Follicle Endowment in the Mouse Ovary. Biol Reprod, 2001, 64: 1153-1159.
    Fortune JE, Cushman RA, Wahl CM, et al. The primordial to primary follicle transition. Molecular and Cellular Endocrinology, 2000, 163: 53-60.
    Frank G. The recovery of preantral follicles from ovaries of domestic eats and their characterization before and after culture. Animal Reproduction Science, 1995, 39: 285-297.
    Furtune JE. Ovarian follicular growth and development in mammals. Biol Reprod 1994, 50: 225-232.
    Galloway SM, McNatty KP, Cambridge LM, et al. Maturation in an oocyte-derived growth factor gene (BMP15) cause increased ovulation manner. Nat Genet, 2000, 25: 279-283.
    Geraldine MH. In vitro cultue of ovarian follicles. Reviews of Reproduction, 1997, 2: 94-104.
    Gilchrist RB, Ritter L J, Armstrong DT, et al. Mouse oocyte mitogenic activity is developmentally coordinated throughout folliculogenesis and meiotic maturation. Dev Biol, 2001, 240: 289-298.
    Ginsburg M, Snow MHL, McLaren A. Primordial germ cells in the mouse embryo during gastrulation. Development, 1990, 110: 521-528.
    Goodenough DA, Goliger JA, Paul DL., Connexins, connxons, and intercellular communication. Ann Rev Biochem, 1996, 65: 475-502.
    Gosden RG. Restitution of fertility in sterilized mice by transferring primordial ovarian follicles. Hum Reprod, 1990, 5: 499-504
    Gospadarowicz D, Bialecki H. Fibroblast and epidermal growth factors are mitogenic gaents for cultured granulose cells of roents, porcine and human origin. Endocrinology, 1979, 4: 757-764.
    Gospodarowic D, Greenburg, Birdwell C. R. Determination of cellular shape by the extracellular matrix and its correlation with the control of cellular growth. Cancer Res, 1978, 38: 4155-4171.
    Gougeon A. Dynamics of follicular growth in the human: a model from preliminary results. Hum Reprod, 1986, 1: 81-87.
    Greenwald GS, Moor RM. Isolation and preliminary characterization of pig primordial follicles. J Reprod Fertil, 1989, 87: 561-571.
    Grob HS. Enzymatic dissection of the mammalian ovaries. Science, 1964, 146: 73.
    
    
    Grob HS. Monolayer cultures of ovarian follicular elements derived from isolated by oocytes. Boil Reprod, 1969, 1: 320-323.
    Gupta PSP, Nandi S, Ravindranatha BM, et al. Isolation of preantral follicles from buffalo ovaries. Vet Rec, 2000, 148: 580-581.
    Gupta PSP, Nandi S, Revindranatha BM, et al. In vitro culture of buffalo (Bubalus bubalis) preantral follicles. Theriogenology, 2002, 57: 1839-1854.
    Gutierrez CG, Ralph JH, Telfer EE, et al. Growth and antrum formation of bovine preantral follicles in long-term culture in vitro. Biology of Reproduction, 2000, 62: 1322-1328.
    Halpin DM, Charlton HM, Faddy MJ. Effects of gonadotrophin deficiency on follicular development in hypogonadal (hpg) mice. J Reprod Fertil, 1986, 78: 119-125.
    Hartshorne GM. In vitro culture of ovarian follicles. Reviews of Reproduction, 1997, 2: 94-104.
    Hartshorne GM., Sargent IL, Barlow DH. Growth rates and antrum formation of mouse ovarian follicles in vitro in response to follicle-stimulating hormone, relaxin, cyclic AMP and hypoxanthine. Hum Reprod, 1994, 9: 1003-1012.
    Hillier SG. Current concepts of the roles of follicle stimulating hormone and luteinizing hormone in folliculogenesis. Hum Reprod, 1994, 9: 188-191.
    Himeno N, Kawamura N, Okamura H, et al. Collagen synthetic activity in rabbit ovary during ovulation and its blockage by indomethacin. Acta Obstetrica and Gynaecologica Japonica, 1984, 36: 1930-1934.
    Hirao Y, Nagai T, Kubo M, et al. In vitro growth and maturation of pig oocytes. Journal of Reproduction and Fertility, 1994, 100: 333-339.
    Hirshfield AN. Comparison of granulosa cell proliferation in small follicles of hypophysectomized, prepubertal, and mature rats. Biol Reprod, 1985, 32: 979-987.
    Hirshfield AN. Development of follicles in the mammalian ovary. Int Cytol, 1991, 124: 43-101.
    Hovatta O, Silye R, Abir R., et al. Extracellular matrix improves the survival of human primordialand primary fresh and frozen-thawed ovarian follicles in long-term culture. Human Reproduction, 1997, 12: 1032-1036.
    Hovatta O, Wright C, Krausz T, et al. Human primordial, primary and secondary ovarian follicles in long-term culture: effect of partial isolation. Human reproduction, 1996, 11: 1268-1272.
    Hovatta O. Cryopreservation and culture of human primordial and primary ovarian follicles. Molecular and Cellular Endocrinology, 2000, 169: 95-97.
    Hsueh AJW, McGee EA, Hayashi M, et al. Hormonal regulation of early follicle development in the rat ovary. Molecular and Cellular Endocrinology, 2000, 163: 95-100.
    
    
    Huang E J, Manova K, Packer AI, et al. The murine steel panda maturation affects kit ligand expression and growth of early ovarian follicles. Dev Biol, 1993, 157: 100-109.
    Huanmin Z, Yong Z. In vitro development of caprine ovarian preantral follicles. Theriogenology, 2000, 641-650.
    Hulmes DJS. The collagen superfamily: diverse structures and assemblies. Essays in Biochemistry, 1992, 27: 49-67.
    Hulshof SCJ, Figueiredo JR, Beckers JF Isolation and characterization of preantral follicles from fetal bovine ovaries. The Veterinary Quarterly, 1994, 16: 78-90.
    Hulshof SCJ, Figueiredo JR, Beckers JF, et al. Effect of fetal bovine serum, FSH and 17 β-estradial on the culture of bovine preantral follicles. Theriogenology, 1995, 44: 217-226.
    Hulshorf SCJ, Figueiredo JR, Beckers JF, et al. Bovine preantral follicles and activin receptor and the effect of bovine activin a in vitro. Theriogenology, 1997, 48: 133-142.
    Hyttel P, Fair T, Callesen H, et al. Oocyte growth, capacitation and final maturation in cattle. Theriogenology, 1997, 47: 23-32.
    Ireland JJ. Control of follicular growth and development. J Reprod Fertil(suppl), 1987, 34: 39-54.
    Irving-Roders HF, Rodgers RJ. Ultrastructure of the basal lamina of bovine ovarian follicles and its relationship to the membrana granulosa. Journal of Reproduction and Fertility, 2000, 118: 221-228.
    Itoh T, hoshi H. Efficient isolation and long-term viability of bovine small preantral follicles in vitro. In Vitro Cell Dev Biol Amim, 2000, 36: 235-40.
    Itoh T, Kacchi M, Abe H, et al. Growth, antrum formation, and estradiol production of bovine preantral follicles cultured in a serum-free medium. Biology of Reproduction, 2002, 67: 1099-1105.
    Jewgenow K, Goritz F. The recovery of preantral follicles from ovaries of domestic cats and their characterization before and after culture. Animal Reproduction Science, 1995, 39: 285-297.
    Jewgenow K, Pitra C. A method for isolation of preantral follicles from cattle ovaries. Reproduction in Domestic Animals, 1991, 6: 281-289.
    Jewgenow K, Pitra C. Hormone-controlled culture of secondary follicles of domestic cats. Theriogenology, 1993, 39: 527-535.
    Jewgenow K, Stolte M. Isolation of preantral follicles from nondomestic cats—viability and ultrastructural investigations. Animal Reproduction Science, 1996, 44: 183-193.
    Jewgenow K. Impact of peptide growth factors on the culture of small preantral follicles of domestic cats. Theriogenology, 1996, 45: 889-895.
    
    
    Jewgenow K. Role of media, protein and energy supplements on maintenance of morphology and DNA-synthesis of small preantral domestic cat follicles during short-term culture. Theriogenology, 1998, 49:1567-1577.
    Joyce IM, Clark AM, Pendola FL, et al. Comparison of Recombinant Growth Differentiation Factor-9 and Oocyte Regulation of KIT Ligand Messenger Ribonucleic Acid Expression in Mouse Ovarian Follicles. Biol Reprod, 2000, 63: 1669-1675.
    Joyce IM, Pendola FL, O'Brien M, et al. regulation of prostaglandin-endoperoxide synthasw 2 messenger ribonucleicacid expression in mouse granulosa cells during ovulation. Endocrinology, 2001, 142:3187-3197.
    Joyce IM, Pendola FL, Wigglesworth K, et al. Oocyte regulation of kit ligand expression in mouse ovarian follicles. Dev Biol, 1999, 214-353.
    Juneja SC, Barr KJ, Enders GC, et al. Defects the germ line and gonads of mice lacking connexin43. Boil Reprod, 1999, 60: 1263-1270.
    Katska L, Rynska B. The isolation and in vitro culture of bovine preantral and early antral follicles of different size classes. Theriogenology, 1998, 50:213-222.
    Kemphues K. Parsing embryonic polariy. Cell, 2000, 101:345-348.
    Khosla S, Dean W, Reik W, et al. Epigenetic and experimental modifications in early mammalian development. Culture of preimplantation embryo and its long-term effects on gene expression and phenotype. Hum Reprod Update, 2001, 7:419-427.
    Kim SS, Radford J, Harris M, et al. Ovarian tissue harvested from lymphoma patients to preserve fertility may be safe for autotransplantation. Hum Reprod, 2001, 16: 2056-2060.
    Klinger FG, De Felici M. In vitro development of growing oocytes from fetal mouse oocytes: stagespecific regulation by stem cell factor and granulose cells. Dev Biol, 2002, 244: 85-95.
    Koering MJ, Danforth DR, Hoden G. Early follicle growth and in the juvenile macaca monkey ovarian: the effects of estrogen priming and follicle-stimulating hormone. Biol Reprod, 1994, 50: 686-694.
    Kulick LJ, Wiltbank MC, Ginther O.J. Follicular and hormonal dynamics during the first follicular wave in heifers. Theriogenology, 1999, 52:913-921.
    Lanuza GM, Fischman ML, Baranao JL, et al. Growth promoting zctivity of oocytes on granulose cells is decreased upon meiotic maturation. Dev Biol, 1998, 197:129-139.
    Lara HE, Hill DF, Katz KH, et al. The gene encoding nerve growth factor is expressed in the immature rat ovary: effect of denervation and hormonal treatment. Endocrinology, 1990. 126: 357-363.
    Latham KE, Bautista FD, Hirao Y. Comparison of protein synthesis patterns in mouse cumulus cells and mural granulosa cells: effects of follicle-stimulating hormone and
    
    insulin on granulosa cell differentiation in vitro. Biol Reprod, 1999, 61: 482-492.
    Li R, Norman RJ, Armstrong DT, et al. Oocyte-secreted factor(s) determine functional differences between bovine mural granulose cells and cumulus cells. Biol Reprod, 2000, 63: 839-845.
    Lisa C, Shilla C, Thomas JC. In vitro folliculogenesis of rat preantral follicles. Endocrinology, 1995, 136:3369-3377.
    Liu HC, He Z.Y, Rosenwakes Z. In vitro culture and in vitro maturation of mouse preantral follicles with recombinant gonadotropins. Fertility and Sterility, 2002, 77(2): 373-383.
    Liu J, Rybouchkin A, Van der Elst J, et al. Fertilization of mouse oocytes from in vitro-matured preantral follicles using classical in vitro fertilization or intracytoplasmic sperm injection. Biology of Reproduction, 2002, 67: 575-579.
    Liu J, Van Der Elst I, Van Den Broecke R, et al. Live offspring by vitro fertilization of oocyte from cryopreserved primordial mouse follicles after sequential in vivo transplantation and in vitro maturation. Biol Reprod, 2001, 64:171-178.
    Liu J., Van Der Elst I, Van Den Broecke R, et al. Maturation of mouse primordial follicles by combination of grafting and in vitro culture. Biol Reprod, 2000, 62:1218-1223.
    Liu X, Andoh K, Abe Y, et al. A comparative study on transforming growth factor-β and activin A for preantral follicles from adult immature and diethylstilbestrol-primed immaure mice. Endocrinology, 1999, 140: 2480-2485.
    Lonergan P, Monaghan P, Rizos D, et al. Effect of follicle size on bovine oocyte quality and development competence following maturation, fertilization, and culture in vitro. Molecular Reproduction and Development, 1994, 37: 48-53.
    Louhio H, Hovatta O, Sjoberg J, et al. The effects of insulin, and insulin-like growth factors Ⅰ and Ⅱ on human ovarian follicles in long-term culture. Mol Hum Reprod, 2000, 6: 694-698.
    Lucci CM, Amorim CA, Bao SN, et al. Effect of the interval of serial sections of ovarian tissue in the tissue chopper on the number of isolated caprine preantral follicles. Animal Reproduction Science, 1999, 56: 39-49.
    Lucci CM, Amorim CA, Rodrigues APR, et al. Study of preantral follicle population in situ and after mechanical isolation from caprine ovaries at different reproduction stages. Animal Reproduction Science, 1999, 56: 223-236.
    Lucci CM, Rumpf R, Figueiredo JR, et al. Zebu (Bos indicus) ovarian preantral follicles: morphological characterization and development of an efficient isolation method. Theriogenology, 2002, 57: 1467-1483.
    Lucci C M, Silva RV, Carvalho CA, et al. Light microscopical and ultrastructural characterization of goat preantral follicles. Small Ruminant Research 2001, 41:61-69.
    Luck MR, Jeyaseelan I, Scholes RA. Ascorbic acid and fertility. Biology of Reproduction,
    
    1995, 52: 262-266.
    Lunenfeld B, Insler V. Follicular development and its control. Gynecol Endocrinol, 1993, 7: 283-291.
    Lussier JG, Matton P, Dufour JJ. Growth rates of follicles in the ovary of the cow . J Reprod Fertil, 1987, 81: 301-307.
    Macchiarelli G, Vizza E, Nottola SA, et al. Cellular and microvascular changes of the ovarian follicle during folliculogenesis: a scanning electron microscopic study. Arch Histol Cytol, 1992, 55: 191-204.
    Manova K, Huang EJ, Ageles M, et al. The xepression patern of the c-kit ligand in gonads of mice supports a role for the c-kit receptor in oocyte growth and in proliferation of spermatogonia. Dev Biol, 1993, 157: 85-99.
    Mao JD, Wu GM, Smith MF, et al. Effects of culture medium, serum type, and various concentrations of follicle-stimulating hormone on porcine preantral follicular development and antrum formation in vitro. Biology of Reproduction, 2002, 67: 1197-1203.
    Maresh GA, Timmons TT, Dunbar BD, et al. Effcet of matrix on the expression of specific ovarian proteins. Biol Reprod, 1990, 43: 965-976.
    Mayerhofer A, Dissen GA, Costa ME, et al. A role for neurotransmitters in early follicular development: induction of functional follicle-stimulating hormone receptors in newly formed follicles of the rat ovary. Endocrinology, 1997, 138: 3320-3329.
    McCaffery FH, Leask R, Riley SC, et al. Culture of bovine preantral follicles in a serum-free system: markers for assessment of growth and development. Biology of Reproduction, 2000, 63: 267-273.
    McCaffery FH, Leask R, Riley SC, et al. The culture of bovine preantral follicles in a serum-free system: markers for assessment of growth and development. Theriogenology, 2000, 53: 376.
    McGee EA, Hsueh AJ. Initial and cyclic recruitment of ovarian follicles. Endocr Rev, 2000, 21: 200-214.
    McGee EA, Perlas E, Lapolt PS, et al. Follicle-stimulating hormone enhances the development of preantral follicles in juvenile rats. Biology of Reproduction, 1997, 57: 990-998.
    McGee EA, Smith R, Spears N, et al. Inhibitory Substance Induces Growth of Rat Preantral Ovarian Follicles. Biol Reprod, 2001, 64: 293-298.
    McGrath SA, Esquela AF, Lee SJ. Oocyte-specific expression of growth/differentiation factor-9. Mol Endorinol, 1995, 9:131-136.
    Meredith S, Doolin D. Timing of activation of primordial follicles in mature rats is only slightly affected by fetal stage at meiotic arrest. Biology of Reproduction, 1997, 57:
    
    63-67.
    Mobeck DE, Flowers WL, Britt JH, et al. Response of porcine granulose cells isolated from primary and secondary follicles to FSH,8-bromo-cAMP and epidermal growth factor in vitro. J Reprod Fertil, 1993, 99: 577-584.
    Monget P, Bondy C. Importance of the IGF system in early follieulogenesis. Molecular and Cellular Endocrinology, 2000, 163: 89-93.
    Moor RM, Lee C, Dai YF, et al. Antral follicles confer developmental competence on oocytes. Zygote, 1996, 4: 289-293.
    Morbeck DE, Flowers WL, Britt JH. Kinetics of Follicle Growth in the prepubertal Gilt. Biol Reprod, 1994, 47: 485-491.
    Morbeck DE, Flowers WL, Britt JH. Response of porcine granulosa cells isolated from primary and secondary follicles to FSH, 8-bromo-cAMP and epidermal growth factor in vitro. J. Reprod Fertil, 1993, 99: 377-384.
    Morita Y, Tillt JL. Oocyte apoptosis: like sand through an hourglass. Dev Biol, 1999, 213: 1-17.
    Motlik J, Nagai T, Kikuchi K. Resumption of meiosis in pig oocytes cultured with cumulus and parietal granulose cells: the effect of protein synthesis inhibition. J Exp Zool, 1991. 259: 286-391.
    Morro B, Van Der Kooy D, Rossant J, et al. Contiguous patterns of c-kit and steel expression, analysis of mutations at the W and S1 Loci. Development, 1991, 113: 1207-1221.
    Murry AA, Molinek MD, Baker S J, et al. Role of ascorbic acid in promoting follicle intergrity and survival in intact mouse ovarian follicles in vitro. Reproduction, 2001, 121: 89-96.
    Nayudu PL, Fehrenbaeh A, Kiesel P, et al. Progress toward understanding follicle development in vitro: appearances are not deceiving. Archives of Medical Research, 2001, 32: 587-594.
    Nayudu PL., Osborn SM. Factors influencing the rate of preantral and antral growth of mouse ovarian follicles in vitro. J Reprod Fert, 1992, 95(2): 349-362.
    Newton H, Illingworth P. In-vitro growth of murine pre-antral follicles after isolation from cryopreserved ovarian tissue. Human Reproduction, 2001, 16(3): 423-429.
    Newton H, Picton H, Gosden RG. In vitro growth of oocyte-granulosa cell complexes isolated from cryopreserved ovine tisse. J Reprod Fertil, 1999, 115: 141-150.
    Nicosia SV, Evangelista I, Batta SK. Rabbit ovarian follicles. I-Isolation technique and characterization at different stages of development. Biol Reprod, 1975, 13: 423-447.
    Nicosia SV. Luteinization of rabbit preovulatory granulosa cells cultured in vitro in
    
    presence of folliclear oocytes. In: Growth characteristics and progestin biosynthesis. Fertil Steril, 1972, 23: 793-801.
    Nilsson E, Parrott JA, Skinner MK. Basic fibroblast growth factor induces primordial follicle development and initiates folliculogenesis. Mol Cell End, 2000, 175: 123-130.
    Nilsson E, Skinner MK. Cellular interactions that control primordial follicle development and folliculogenesis. J Soc Gynecol Invest, 2001, 8(1): 17-20.
    Nishimori K, Matzuk MM. Transgenic mice in the analysis of reproductive development and function. Rev Reprod, 1996,1: 203-212.
    Nugent D, Newton H, Gallivan L, et al. Protective effect of vitamin E on ischaemiareperfusion injury in ovarian grafts. J Reprod Fertil, 1998, 114:341-346.
    Nuttinck J, Collette L, Massip A, et al. Histological and autoradiographic study of the in vitro effects of FGF-2 and FSH on isolated bovine preantral follicles: preliminary investigation.Theriogenology, 1996, 45:1235-1245.
    Nuttinck J, Mermillod P, Massip A, Dessy F. Characterization of in vitro growth of bovine preantral ovarian follicles: A preliminary study. Theriogenology, 1994, 39: 811-821.
    Obata Y, Kaneko-Ishino T, Koide T, et al. Disruption of primary imprinting during oocyte growth leads to the modified expression of imprinted genes during embryogenesis. Development, 1998, 125: 1553-1560.
    Obata Y, Kono T. Maternal primary imprinting is established at a specific time for each gene throughout oocyte growth. J Biol Chem, 2002, 277: 5285-5289.
    Oktay K, Briggs D, Gosden RG. Ontogeny of follicle stimulating hormone receptor gene expression in isolated human ovarian follicles. J Clin Endocrinol Metab, 1997, 82: 3748-3751.
    Oktay K, Newton H, Aubard Y, et al. Cryopreservation of immature human oocytes and ovarian tissue: an emerging technology? Fertil Steril, 1998, 69: 1-7.
    Oktay K. Ovarian tissue cryopreservation and transplantation: preliminary findings and implications for cancer patients. Hum Reprod Update, 2001, 7: 526-534.
    Otstuka F, Kelly Moore R, Shimasaki S, et al. Biological function and cellular mechanism of bone morphogenetic protein-6 in the ovary. J Biol Chem, 2001, 276: 32889-32895.
    Otsuka F, Moore R, Iemura S, et al. Follistatin Inhibits the Function of the Oocyte-Derived Factor BMP-15. Biochemical and Biophysical Research Communications, 2001, 289(5): 961-966.
    Otsuka F, Yamamoto S, Erickson GF, et al. Bone morphogenetic protein-15 inhibits follicle-stimulating hormone(FSH)action by suppressing FSH receptor expession. J Biol Chem, 2001, 276(14): 11387-11392.
    Otsuka F, Yao Z, Lee T, et al. Bone morphogenetic protein-15. Identification of target cells and biological functions. J Biol Chem, 2000, 275: 3952-3958.
    
    
    Ozols RS. Recurrent ovarian cancer: evidence-based treatment. J Clin Oncol, 2002, 20:1161-1163.
    Padh H. Vitamin C: newer insights into its biochemical functions. Nutrition Reviews, 1991, 49: 65-70.
    Palta P, Chauhan MS. Laboratory production of buffalo(Bubalus bubalis)embryos. Reprod Fertil Dev, 1998, 10: 379-91.
    Parrott JA, Michael K, Skinner MK. Developmental and Hormonal Regulation of Hepatocyte Growth Factor Expression and Action in the Bovine Ovarian Follicle. Biol Reprod. 1998, 59: 553-560.
    Parrott JA, Skinner MK. Kit-ligand/stem cell factor induces primordial follicle development and initiates follculogenesis. Endocrinology, 1999, 140:4262-6271.
    Peluso JJ. Putative mechanism through which N-cadherin-mediated cell contact miantains calcium homeostasis and thereby prevents ovarian cells from undergoing apoptosis. Biochemical Pharmacology, 1997, 54: 847-853.
    Pepling ME, Spradling AC. Mouse ovarian germ cell cysts undergo programmed breakdown to form primordial follicles. Dev Biol, 2001, 234: 339-351.
    Pfeffer F, Casenueva E, Kamar J, et al. Modulation of 72-kilodalton type Ⅳ collagenase(matrexmetalloproteinase-2) by ascorbic acid in cultured human amnionderived cells. Biol reprod, 1998, 59: 326-329.
    Picton HM. Activation of follicle development: the primordial follicle. Theriogenology, 2001, 55: 1193-1210.
    Picton HM., Gosden RG. In vitro growth of human primordial follicles from frozen-banked ovarian tissue. Molectar and Cellular Endocrinology, 2000, 166: 27-35.
    Pines J. Four-dimensional control of the cell cycle. Nat Cell Biol, 1999, 1: E73-79.
    Plachot M, Antoine JM, Alvarez S, et al. Grunulosa cells improve human embryo development in vitro. Hum Reprod, 1993, 8: 2133-2140.
    Qu J, Nisolle M, Donnez J. Expression of transforming growth factor-alpha, epidermal trowth factor and epidermal growth factor receptor in follicles of human ovarian tissue before and after cryopreservation. Fertil Steri, 2000, 74(1): 113-121.
    Ralph JH, Telfer EE, Wilmut I. In vitro growth of bovine preantral follicles and the influence of FSH on follicular and diameters. Journal of Reproduction and Fertility Abstract Series, 1998, 15: 12.
    Ralph JH, Wilmut I, Teller EE. In vitro growth of bovine preantral follicles and the influence of FSH on follicular and oocyte diameters. J Reprod Fertil Abstr Series, 1995, 15:6.
    Redmer DA, Reynolds LP. Angiogenesis in the ovary. Rev Reprod, 1996, 1: 182-192.
    
    
    Reynaud K, Cortvrindt R, Smib J, et al. Effects of Kit Ligand and anti-Kit antibody on growth of cultured mouse preantral follicles: Mol Ryrod Dev, 2000, 56: 483-494.
    Rose UM, Hanssen RG, Kloosterboer HJ. Development and characterization of an in vitro ovulation model using mouse ovarian follicles. Biology of Reproduction 1999, 61: 503-511.
    Roy SK, Greenwal GS. An enzymatic method for dissociation of intact follicles from the hamster ovary: histological and quatitative aspects. Biol Reprod, 1985, 32: 203-215.
    Roy SK, Greenwald GS. Hormonal requirements for the growth and differentiation of hamster preantral follicles in long-term culture. J Reprod Fertil, 1989, 87:103-144.
    Roy SK, Kole AR. Ovarian trandforming growth factor-beta(TGF-β) receptors: in-vitro effects of follicles stimulating hormone, epidermal growth factor and TGF-β on receptor expression in human preantral follicles. Mol Hum Reprod 1998, 4:207-214.
    Roy SK, Terada DM. Activities of glucose metabolic enzymes in human preantral follicles: in vitro modulation by follicle-stimulating hormone, luteinizing hormone, epidermal growth factor, insulin-like growth factor Ⅰ, and transforming growth factor betal. Biol Reprod, 1999, 60: 763-768.
    Roy SK, Treacy BJ. Isolation and long-term culure of human preantral follicles. Fertil Steril, 1993, 59: 783-790.
    Roy SK. TGF-β potentiation of FSH-induced DNA synthesis in hamster preantral follicles is mediated by a latent induction of EGF. Biol Reprod, 1993, 48: 558-563.
    Saha S, Shimizu M, Geshi M, et al. In vitro culture of bovine preantral follicles. Animal Reproduction Science, 2000, 63: 27-39.
    Sakai H, Kobayashi Y, Sakai M, et al. Cell adhesion is a prerequisite for osteoclast survival. Biophysical Research Communications, 2000, 270: 550-556.
    Salustri A, Yanagishita M, Hascall VC. Mouse oocyte regulate hyaluronic acid synthesis and mucification by FSH-stimulated cumulus cells. Dev Biol, 1990, 138: 26-32.
    Saumamde J. La folliculogenese chez les ruminants. Rec Vet, 1991, 167:205-218.
    Saunders PK, Millar MR, Williams K, et al. Differential expression of estrogen recepter-alpha and -beta and androgen recepter in the ovaries of marmosets and humans. Biol reprod, 2000, 63(4): 1089-1105.
    Schotanus K, Hage W J, Spek ER, et al. Viability and aspects of isolatd bovine preantral follicles. Proc 13th ICAR, Sidney,1996b, 2-27.
    Schotanus K, Hage WJ, Van den Hurk R. Novel methods to determine viability and growth aspects of cultured bovine preantral follicles. J reprod Fertil, 1996a, 15: 49-50.
    Schultz RM, Wassarman PM. Specific changes in the patern of protein synthesis during meiotic maturation of mammalian oocytes in vitro. Proc Natl ACAD Sci USA, 1976,
    
    74: 538-541.
    Shaw JM, Bowles J, Koopman P, et al. Fresh and cryopreserved ovarian tissue samples from donors with lymphoma transmit the cancer to graft recipients. Hum Reprod, 1996, 11: 1668-1673.
    Shuttleworth G, Pipkin FB, Hunter MG. In vitro development of pig preantral follicles cultured in a serum-free medium and the effect of angiotensin Ⅱ. Reproduction, 2002, 123: 807-818.
    Sicinski P, Donaher JL, Geng Y, et al. Cyclin D2 is an FSH-responsive gene involved in gonadal cell proliferation and oncogenesis. Nature, 1996, 384: 470-474.
    Silva JRV, Bao SN, Lucci CM, et al. Morphological and ultrastructural changes occurring during degeneration of goat preantral follicles preserved in vitro. Animal Reproduction Science, 2001, 66: 209-223.
    Silva JRV., Lucci CM, Carvalho FCA, et al. Effect of coconut water and braun-collins solutions at different temperatures and incubation times on the morphology of goat preantral follicles preserved in vitro. Theriogenology, 2000, 54: 809-822.
    Simon AM, Goodenough DA, Li E, et al. Female infertility in mice lacking connexin 37. Nature, 1997, 385: 525-529.
    Simon AM, Goodenough DA. Dverse function of vertibrate gap junctions. Trends Cell boil, 1998, 8: 477-483.
    Sinclair KD, McEvoy TG, Maxfield EK, et al. Aberrant fetal growth and development after in vitro culture of sheep zygotes. J Reprod Fert, 1999, 116:177-186.
    Smith SS, Ojeda SR. Neonatal release of gonadotropins is essential for development of ovarian follicle-stimulating hormone receptors. Biol Reprod, 1986, 34:219-227.
    Smitz J, Cortvrindt R, Hu-yanxin, et al. Effect of recombinant activin on in vitro culture of mouse preantral follicles. Mol Reprod Dev, 1998, 50: 294-304.
    Smitz J, Cortvrindt R, van Sterteghem AC.. Normal oxygen atmosphere is essential for the solitarylong-term culture of early preantral follicles. Mol Reprod Dev, 1996, 45: 466-475.
    Smitz JJ, Cortvrindt G. The earliest stages of folliclulogenesis in vitro. Reproduction, 2002, 123: 185-202.
    Solovyeva EV, Hayashi M, Margi K, et al. Growth Differentiation Factor-9 Stimulates Rat Theca-Interstitial Cell Androgen Biosynthesis. Biol Reprod, 2000, 63: 1214-1218.
    Sorensen RA, Wassarman PM. Relation between growth and meiotic maturation of the mouse oocyte. Dev Biol, 1976, 50: 531-536.
    Soules MR, Battaglia DE, Klein NA. Inhibin and reproductive aging in women. Maturtas, 1998, 30: 193-204.
    
    
    Soyal SM, Amleh A, Dean J. FIGalpha, a germ cell-specific transcription factor required for ovarian follicle formation. Development, 2000, 127: 4645-4654.
    Spears N, Boland NI, Murray AA, et al. Mouse oocytes derived from in vitro grown primary ovarian follicles are fertile. Hum Reprod 1994, 9: 527-532.
    Spears N. In-vitro growth of ovarian oocytes. Hum Reprod, 1994, 9: 969-970.
    Squire J, Weksberg R. Genomic imprinting in tumours. Semin Cancer Biol, 1996, 7: 41-47.
    Sztein JR, O'Brien MJ, Farley JS, et al. Rescue of oocytes from antral follicles of cryoreserved mouse ovaries: competence to undergo maturation, embryogenesis, and development to term. Hum Reprod, 2000, 15: 567-571.
    Szybek K. In vitro maturation of oocytes from sexually immatured mice. J Endocrinol, 1972, 54: 572-528.
    Telfer EE, Birmie JP, McCaffery FH, et al. In vitro development of oocytes from porcine and bovine primary follicles. Molecular and Cellular Endocrinology, 2000, 163:117-123.
    Teller EE, Webb R, Moor RM, et al. New approaches to increase in oocyte yield from ruminants. Anim Sci, 1999, 67: 285-98.
    Telfer EE. In vitro models for oocyte development. Theriogenology, 1998, 49:451-460.
    Telfer EE. The development of methods for isolation and culture of preantral follicles from bovine and porcine ovaries. Theriogenology, 1996, 45:101-110.
    Thibault C. Are follicular maturation and oocyte maturation independent processes? J Reprod Fertil, 1972, 51:397-411.
    Thomas FH, Leask R, Siren V, et al. Effect of ascorbic acid on health and morphology of bovine preantral follicles during long-tern culture. Reproduction, 2001, 122: 487-495.
    Tilly JL, Tilly KI. Inhibitors of oxidative stress mimic the ability of follicle-stimulating hormone to suppress apoptosis in cultured rat ovarian follicles. Endocrinology, 1995, 136: 242-252.
    Torrance C, Telfer EE, Gosden RG. Quantitative study of the development of isolated mouse preantral follicle in collagen gel culture. J Reprod Fertil, 1989, 87: 367-374.
    Tsafriri A, Channing CP. Influences of follicular maturation and culture conditions on the meiosis of pig oocytes in vitro. J Reprod Fert, 1975, 43: 149-152.
    Tucker MJ, Wright G, Morton PC, et al. Birth after cryopreservation of immature oocytes with subsequent in vitro maturation. Fertil Steril, 1998, 70: 578-579.
    Usui N, Yanagimachi R. Behaviour of hamster sperm nuclei incorporated into eggs at varius stages of maturation, fertilization and early development appearance and disappearance of factors involved in sperm chromatin decondensation in egg cytoplasm. J Ultastructure Res, 1976, 57: 276-288.
    
    
    Van Blerkom J, Runner M. Mithochondrial reorganization during resumption of arrested meiosis in the mouse oocyte. Am J Anat, 1984, 171: 335-355.
    Van den Hurk R, Abir R, Telfer EE, et al. Primate and bovine immature oocytes and follicles as sources of fertilizatable oocytes. Human Reproduction, 2000, 6: 457-474.
    Van den Hurk R, Bevers MM, Beckers JF. In-vivo and in-vitro development of preantral follicles. Theriogenology, 1997, 47: 73-82.
    Van den Hurk R, Dijkstra O, Van Mil FN. Distribution of the intermediate filament proteins vimentin, keratin and dismin in the bovine ovary. Mol Reprod Develop, 1995, 41: 459-467.
    Van den Hurk R, Spek ER, Hage WJ, et al. Ultrastructure and viability of isolated bovine preantral follicles. Hum Reprod Update, 1998, 4: 833-841.
    Van Wezel IL, Rodgers RJ. Morphological characterization of bovine primordial follicles and their environment in vivo. Biol Reprod, 1996, 55:1003-1011.
    Vanderhyden BC, Cohen JN,. Morley P. Mouse oocytes regulate granulose cells steroidogenesis. Endocrinology, 1993, 133: 423-426.
    Vanderhyden BC, Telfer EE, Epigg JJ, et al. Mouse oocytes promote prolilferation of cells from preantral and antral follicles in vitro. Biol Reprod, 1992, 46:1196-1240.
    Vitt UA, Hayashi M, Klein C, et al. Growth Differentiation Factor-9 Stimulates Proliferation but Suppresses the Follicle-Stimulating Hormone-Induced Differentiation of Cultured Granulosa Cells from Small Antral and Preovulatory Rat Follicles. Biol Reprod, 2000, 62: 370-377.
    Vitt UA, Hsueh AJ. Stage-dependent role of growth differentiation factor-9 in ovarian follicle development. Mol Cell Endocrinol, 2002, 186: 21-23.
    Vitt UA, Kloosterboer HJ, Rose UM, et al. Isoforms of human recombinant follicle-stimulating hormone: comparison of effects on murine follicle development in vitro. Biol Reprod, 1998, 59: 854-861.
    Vitt UA, McGee EA, Hayashi M, et al. In vivo treatment with GDF-9stimulates primordial and primary follicle progression and theca cell marker CYP 17 in ovaries of immature rats. Endocrinology, 2000, 141: 3814-3820.
    Wandji SA, Eppig JJ, Fortune JE. FSH and growth factors affect the growth and endocrine function in vitro of granulose cells of bovine preantral follicles. Theriogenology, 1996, 45: 817-832.
    Wandji SA, Pelletier G, Sirard MA. Ontogeny and cellular localization of 125Ⅰ-labeledbasic fibroblast growth factors and 125Ⅰ-labeled epidermal growth factor binding sites in ovaries from bovine fetuses and neonatal calves. Biol Reprod 1992, 47: 807-813.
    Wandji SA, Srsen V, Nathanielsz PW, et al. Initiation of growth of baboon primordial follicles in vitro. Hum Reprod, 1997, 12: 1993-2001.
    
    
    Wandji SA, Srsen V, Voss AK, et al. Initiation in vitro of growth of bovine primordial follicles. Biology of Reproduction, 1996, 55: 942-948.
    Wang X, Chen H, Yin H, et al. Fertility after intact ovary transplantation. Nature, 2002, 415: 385.
    Wassarman PM, Josefowicz WJ. Oocyte development in the mouse: an ultrastructural comparison of the isolated at various stages of growth and meiotic competence. J Morphol, 1987, 156: 209-235.
    Woodly DT, Sarret YC. Basement Membranes. In: Lapiere C.M., Kriegf T ed. Connective Tissue Diseases of the Skin. New York: Marcel Dekker Inc, 1993, 41-57.
    Wright CS, Hovatta O, Margara R, et al. Effects of follicle stimulating hormone and serum substitution on the in vitro growth fo human ovarian follicles. Human Reprodion, 1999, 14: 1555-1562.
    Wu J, Carrell DT, Wilcox AL. Development of in vitro-matured oocytes from porcine preantral follicles following intracytoplasmic sperm injection. Biol Reprod, 2001, 65: 1579-1585.
    Wu J, Emery BR, Carrell DT. In vitro growth, maturation, fertilization, and embryonic development of oocytes from porcine preantral follicles. Biology of Reproduction, 2001, 64: 375-381.
    Wu J, Nayudu PL, Kiesel PS, et al. Luteinizing hormone has a stage-limited effect on preantral follicle development in vitro. Biol Reprod, 2000, 63(1): 320-327.
    Yen DC. Effects of time of incubation of minced pig ovary in a solution containing collagenase and the embedding of preantral follicle with various coating matrix, on the growth and survival of oocytes cultured in vitro. Journal of the Chinese Society of Animal Science, 1997, 26: 197-210.
    Yoshida H, Takakura N, Kataoka H, et al. Stepwise requirement of c-kit tyrosine kinase in mouse ovarian follicle development. Dev Biol, 1997; 184: 122-137.
    Yoshida M, Ishigaki K, Pursel VG. Effect of maturation media on male pronucleus formation in pig oocytes matured in vitro. Mol Reprod Del, 1992, 31: 68-71.
    Young LE, Fairburn HR. Improving the safety of embryo technologies: possible role of genomic imprinting. Theriogenology, 1999, 53: 627-648.
    Zhao Y, Luck MR. Bovine granulose cells express ECM proteins and their regulators during luteinisation in culture. Reprod Fert Dev, 1996, 8: 226-259.
    Zhou J, Kumar TR, Matzuk MM, et al. Insulin-like growth factor Ⅰ regulates gonadotropin responsiveness in the murine ovary. Mol Endocrinol, 1997:1924-1933.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700