用户名: 密码: 验证码:
乙型肝炎病毒Tp相关蛋白抗干扰素作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙型肝炎病毒(hepatitis B virus, HBV)是一种部分双链环状嗜肝DNA病毒,宿主范围狭窄,主要是灵长类中的人类和大猩猩。HBV在人类可引起急、慢性乙型肝炎、肝纤维化、并与原发性肝细胞癌的发生发展关系密切。α-干扰素(Interferon-α, IFN-α)仍是目前最常用的治疗乙型肝炎病毒感染的药物。它通过建立细胞内抗病毒状态和免疫调节作用抑制并清除病毒。但临床发现约2/3的患者表现为对α-干扰素治疗无反应,即没有出现HbeAg血清转换和血清HBV DNA水平降低,除了宿主因素外还与病毒本身抗干扰素作用有关。目前比较明确的是HBV DNA聚合酶的抗干扰素作用。Foster等发现,表达HBV DNA聚合酶末端蛋白(该“末端蛋白”事实上还包括部分Spacer区,详见本研究第一部分)可显著抑制细胞对α-干扰素反应,并认为是由于TP表达阻断α-干扰素通路引起,但其抗IFN-α作用的功能区域迄今尚不清楚。
     中国地区HBV感染主要为B基因型及C基因型,临床资料显示,B基因型HBV感染对干扰素治疗的反应好于C基因型,我们通过对大样本HBV DNA聚合酶区氨基酸序列分析后发现,B、C基因型HBV DNA聚合酶在TP区及Spacer区分别存在14及44个氨基酸差异,目前尚不清楚这些氨基酸差异是否与B、C基因型HBV感染对干扰素治疗反应差异有关。
     另TP位于DNA聚合酶的氨基端,通常情况下只能以DNA聚合酶的形式出现,并不存在单独游离的TP。但随着扩增HBV全基因组DNA方法的建立,在乙肝患者中分离到多种HBV基因组剪接变异体、缺失突变体。其中在2309nt以后发生剪接和缺失的HBV亚基因组DNA能编码TP相关蛋白(HBV DNA聚合酶的编码区起始于2309 nt)。对于这些剪接和缺失的HBV亚基因组DNA及其编码的各种TP相关蛋白的抗干扰素作用还未有过系统研究。为此,本研究内容包括三部分:
     ㈠乙型肝炎病毒TP+Spacer抗干扰素作用功能区域分析
     以HBV全基因组DNA重组质粒FMU013为模板,PCR扩增获得DNA聚合酶TP+Spacer区各功能区基因片段,克隆到真核表达载体pcDNA3.1/HisC中,构建各功能区缺失突变体,与干扰素反应报告质粒p6-16CAT共转染Huh7肝细胞,检测干扰素处理后CAT表达改变,确定抗IFN-α反应的功能区域。
     ㈡比较B、C基因型TP相关蛋白抗干扰素作用的强弱
     收集干扰素治疗有反应、无反应慢性乙型肝炎患者治疗前血清,抽提血清DNA,以限制性片段长度多态性方法确定基因型。PCR获得各B、C基因型标本TP+Spacer区N端257aa基因片段,克隆到真核表达载体pcDNA3.1/HisC中。各重组表达载体与干扰素反应报告质粒p6-16CAT共转染Huh7肝细胞,检测干扰素处理后CAT表达改变,比较B、C基因型TP+Spacer区抗干扰素作用差别㈢乙型肝炎病毒剪接变异缺失突变体编码的TP相关蛋白抗干扰素作用
     收集中、重度慢性乙型肝炎患者血清,抽提血清DNA,PCR扩增HBV基因组DNA克隆到pUC18载体中并测序。与标准株HBV序列进行相似性比较,分析其结构,找出符合本研究的所有可能存在的剪接变异类型(在2309nt以后发生剪接)和各种缺失突变体(在2309nt以后发生缺失),克隆各剪接变异体和缺失突变所编码的TP相关蛋白基因到真核表达载体pcDNA3.1/HisC中,各TP相关蛋白基因重组载体与干扰素反应报告质粒p6-16CAT共转染Huh7肝细胞,检测干扰素处理后CAT表达改变,确定各TP相关蛋白抗干扰素作用并分析其发挥抗干扰素作用的功能区域。
     本研究确定了:TP相关蛋白抗干扰素作用的功能区域与Spacer区密切相关,且其发挥作用需要完整的TP区;B基因型HBV感染对干扰素治疗的反应性显著好于C基因型HBV感染,但这种差异与HBV TP+Spacer区抗干扰素作用无关。分离获得了8种剪接变异体、5种缺失突变体,证实其编码的两种TP相关蛋白具有抗干扰素作用,TP+Spacer是其发挥作用的功能区。
Hepatitis B virus (HBV) is the member of the Hepadnaviridae family, with a narrow host range which are human or gorillas, infection of HBV resulted in a broad spectrum of clinical manifestations, including asymptomatic carrier, acute hepatitis, chronic hepatitis, cirrhosis and hepatocellular carcinoma. Interferon-α(IFN-α) is one of the most commonly used drugs for the treatment of hepatitis B, it can inhibit and ultimately clear the HBV by immunomodulation and establishing intracellular antiviral state. However, it was found that approximately two thirds of IFN-αtreated patients showed IFN-αnon-responseness, i.e., no loss of HBeAg and reduction of serum HBV DNA lever. In addition to the host factors, it is also related to the anti-IFN-αeffects of virus itself. At present,the anti-IFN-αeffects of the HBV DNA polymerase was recognized specificly. Foster et al demonstrated that terminal protein (TP) of HBV DNA polymerase could dramatically inhibit the cellular response to IFN-αby blocking the IFN pathway, yet the related functional region of TP was remained largely obscure.
     The genotype B and C HBV are the predominant genotype in china. Several studies have shown that patients with genotype B have a higher probability of hepatitis B e antigen (HBeAg) seroconversion and the reduce of virus titer than patients with genotype C during IFN-αtreatment. Our analysis of a large sample of HBV DNA polymerase amino acid sequences ascertains that there are separately 14 and 44 diversity in TP and Spacer regionsre spectively.Whether these diversity were corresponded with the different responds to IFN-αtreatment in patients with genotype B and patients with genotype C was still uncertainty now.
     In fact , TP,which is located in the N-terminal of HBV DNA polymerase , can only exist in the form of pol,but, a novel method for efficient amplification of whole hepatitis B virus genome maked it possible to isolate a variety of splice variants and deletion mutants from serum of chronic hepatitis patients. these HBV subgenomic DNA which generated by Splicing and deletion beyond 2309nt from the HBV complete genomic DNA can encode TP Associated proteins. It is presently lack of the systematic study about the anti-IFN-αeffects of these TP Associated protein. To address all these issues, our study includes three parts
     1. Analysis of the functional region for anti-IFN-αeffects by TP+Spacer of HBV DNA polymerase
     The fragments of the serial deletants of TP+Spacer were amplificated from FMU013 which a recombinated vector of HBV complete genome and cloned into the pcDNA3.1/HisC vector. Huh7 hepatocytes were co-transfected with p6-16CAT and the recombinant vectors harboring deleted TP+Spacer,then, treated with IFN-α.The intracellular CAT expression were calculated to evaluate the anti- IFN-αeffects.
     2. Comparison of the anti-IFN-αeffects of genotype B and C TP+Spacer region
     Isolated DNA from IFN pre-treatment serum samples which from chronic hepatitis patients including responsers and non-responsers. Genotypes of all samples were determined by restriction fragment length polymorphism。The Tp257 fragments of all samples were amplificated from isolated DNA and cloned into the pcDNA3.1/HisC vector. Huh7 hepatocytes were co-transfected with p6-16CAT and the recombinant vectors harboring Tp257, then, treated with IFN-α.The intracellular CAT expression were calculated to comparison of the anti-IFN-αeffects of genotype B and C TP associated protein.
     3. The anti-IFN-αeffects of the Tp associated protein encoded by HBV splice variants and deletion mutants
     Isolated DNA from serum samples of chronic hepatitis patients, complete HBV genomes were amplificated from isolated serum DNA and cloned into pUC18 vector and sequenced. Identified all the possible existent Splice variants and deletion mutants which spliced and deleted beyond 2309nt. The PCR fragment of the Tp Associated proteins encoded by these HBV subgenomic DNA were cloned into the pcDNA3.1/HisC vector. Huh7 hepatocytes were co-transfected with p6-16CAT and the recombinant vectors harboring the fragment of the Tp Associated proteins , then, treated with IFN-α.The intracellular CAT expression were calculated to determine the anti-IFN-αeffects of the Tp associated protein encoded by HBV splice variants and deletion mutants .
     Our study demonstrated that functional region for anti-IFN-αeffects of the Tp associated protein was closely related to the Spacer region, and the complete TP indispensable for this effect. Although,the differences of amino acids sequences from Tp + Spacer region between genotype B and C were significant, it showed that they were not attributed to the different anti-IFN-αeffects. Eight kinds of splice variants and five kinds of deletion mutants were obtained,and two kinds of TP associated proteins with anti-IFN-αeffects were confirmed.
引文
1. Lee WM. Hepatitis B virus infection. N Engl J Med. 1997,37:733-45
    2. Franchis R, Hadengue A, Lau G, Lavanchy D, Lok A, McIntyre N, Mele A, Paumgartner G, Pietrangelo A, Rodes J, Rosenberg W, Valla D. EASL International consensus conference on hepatitis B. Geneva Switzerland Consensus statement (long version). 2002,9: 13-14
    3. Guidotti, LG, and FV, Chisari. Noncytolytic control of viral infections by the innate and adaptive immune response. Annu Rev Immunol. 2001,9:65
    4. Seeger C, Mason WS. Hepatitis B virus biology. Microbiol Mol Biol Rev. 2000, 4: 51-68
    5. Greenberg HB, Pollard RB, Lutwick LI, et al. Effect of human leukocyte interferon on hepatitis B virus infection in patients with chronic active hepatitis. N Engl J Med. 1976, 95: 517-522
    6. Janssen HLA, Gerken G, Carreno V, et al. Interferon alfa for chronic hepatitis B virus infection: increased efficacy of prolonged treament. Hepatology.1999, 30: 238-243
    7. Yasushi Seo1, Seitetsu Yoon1, Kenichi Hamano1, Miyuki Nakaji1, et al. Early response to interferon treatment and long-term clinical outcome in Japanese patients with chronic HBV genotype C infection . Inter J Mole Medi. 2004, 13: 75-79
    8. Grandvaux N, tenOever BR, Servant MJ and Hiscot J. The interferon antiviral response: from viral invasion to evasion. Current Opinion in Infectious Diseases. 2002, 15: 259-267
    9. Boehm U, Klamp T, Groot M, and Howard JC. Cellular responses to interferon gamma. Annual Review of Immunology. 1997, 15: 749-795
    10. Giorgio Saracco, et al. Interferon in chronic hepatitisB. Antiviral Research. 1994, 24; 137-143
    11. Korenman J. Long-term remission of chronic hepatitis B after alpha-interferon therapy. Ann Intern Med. 1991, 114: 629-633
    12. Foster GR, Ackrill AM, Goldin RD, et al. Expression of Terminal protein region of hepatitis B virus inhibits cellular responses to interferons alpha and gamma and double-stranded RNA.Proc Natl Acad Sci. U S A.1991,88: 2888-2892
    13. Foster GR, Goldin RD, Hay A, McGarvey MJ, Stark GR, Thomas HC. Expression of the Terminal protein of Hepatitis B virus is associated with failure to interferon therapy. Liver Dise. 1993, 5: 757-762
    14. Okamoto H, Tsuda F, Sakugawa H, et al. Typing hepatitis B virus by homology in nucleotide sequence: comparison of surface antigen subtypes. Journal of General Virology. 1988, 69: 2575-2583
    15. Arauz-Ruiz P, Norder H, Robertson BH, et al. Genotype H: a new Amerindian genotype of hepatitis B virus revealed in Central America. J Gen Virol. 2002, 83: 2059-2073
    16. Summers J, Mason W S. Replication of the genome of a hepatitis B-like virus by reverse transcription of an RNAintermediate. Cell, 1982, 29(2): 403-415
    17. Guther S,Li BC,Miska S,et al.A novel method for efficient amplification of whole hepatitis B virus genomes permits rapid functional analysis and reveals deletion mutants in immunosuppressed patients. J Virol.1995,69:5437-5444
    18. Wang G H, Seeger C. The reverse transcriptase of hepatitis B virus acts as a protein primer for viral DNA synthesis.Cell, 1992, 71(4): 663-670
    19. Ganem D. Schneider R. Hepadnaviridae: the viruses andtheir replication[A]. Knipe D M, Howley P M. Fields virology[C]. 4thed. Philadephia Lippincott Williams& Wilkins. 2001.2923~2970
    20. Seeger C, Mason W S. Hepatitis B virus biology. Microbiol Mol Biol Rev, 2000, 64(1): 51-68
    21. Hirsch R C, Lavine J E, Chang L J, et al. Polymerase gene products of hepatitis B viruses are required for genomic RNA packaging as well as for reverse transcription. Nature,1990, 344: 552-555
    22. Porter AC, Chernajovsky Y, Dale TC, et al. Interferon response element of the human gene 6-16. EMBO. 1988, 7(1): 85-92
    23. Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual. CSHL Press, 2001
    24.姚忻,何建文,袁正宏等。乙型肝炎病毒DNA转染细胞的一种内参标准:真核细胞报告SEAP。上海医学,1999,22:38-40
    25. Samuel CE. Antiviral Actions of Interferons. Clinical Microbilogy Review. 2001, 14(4): 778-809
    26. Darnell Jr JE, Kerr IM, Stark GR. JAK-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994, 264: 1415-1421
    27. Goodbcurn S, Didcock L, Randall RE. Interferons: cell signaling, immune modulation, antiviral responses and virus countermeasures. J Gene Virol. 2000, 81: 2341-2364
    28. Orito E, Mizokami M, Ina Y, et al. Host-independent evolution and a genetic classification of the hepadnavirus family based on nucleotide sequences. Proc Natl Acad Sci. USA. 1989, 86: 7059–62.
    29. Orito E, Mizokami M, Ina Y, et al. Host-independent evolution and a genetic classification of the hepadnavirus family based on nucleotide sequences. Proc Natl Acad Sci. USA. 1989, 86: 7059–62.
    30. Miyakawa Y, Mizokami M. Classifying hepatitis B virus genotypes. Intervirology2003, 46: 329-338
    31. Orito E, Mizokami M, Sakugawa H, et al. A case control study for clinical and molecular biological differences between hepatitis B viruses of genotypes B and C. Hepatology. 2001, 33: 218-233
    32. Chu CJ, Hussain M, Lok AS. Hepatitis B virus genotype B is associated with earlier HBeAg seroconversion compared with hepatitis B virus genotype C. Gastroenterology. 2002, 122: 1756-1762
    33. Nakayoshi T, Maeshiro T, Nakasone H, et al. Difference in prognosis between patients infected with hepatitis B virus with genotype B and those with genotype C in the Okinawa Islands: a prospective study. Journal of Medical Virology. 2003, 70: 350-354
    34. Zhang X, Zoulim F, Habersetzer F, et al. Analysis of hepatitis B virus genotypes and pre-core region variability during interferon treatment of HBe antigen negative chronic hepatitis B. J Med Virol. 1996, 48: 8-16
    35. Lindh M,Andersson AS,Gusdal A.Genotypes,nt 1858 variants,and geographic origin of hepatitis B virus large-scale analysis using a new genotyping method. J Infect Dise,1997,175:1285-1293
    36. Ganem D, Varmus HE. The molecular Biology of the Hepatitis B Virus. Ann Rev Biochem, 1987, 56: 651-693.
    37. Seeger C, Mason WS. Hepatits B Virus Biology. Microbiol Mol Biol Rev, 2000, 64(1): 51-68.
    38. Wu HL,Chen PJ,Tu SJ,et a1.Characterization and genetic analysis of alternatively spliced transcripts ofhepatitisB vipasininfected humanliver tissues and transfected HepG2 cells.J Virol,1991,65:1680—1686.
    39. Guther S, Sommer G, Iwanska A, et al. Heterogencity and common of defectivehepatitis B virus genome derived from splicer pregenomic RNA. Virology. 1997, 238: 363-371
    40. Soussan P,Garreau F,Zylberberg H,et al,In vivo expression of a new hepatitis B virus protein encoded by a spliced RNA.J Clin Invest,2000, 105:55-60.
    41.陈婉南,黄清玲,林建银等。双剪接型2.2Kb乙型肝炎病毒基因组剪接变异体编码蛋白的反式激活作用。中华微生物和免疫学杂志。2006,16: 985-989
    42.林旭,徐晓,黄清玲等。乙型肝炎病毒基因组剪接变异体结构分析。中华传染病杂志,2003,22: 98-101.
    43. Romorduc O,Petit MA,Pol S,et a1.In vivo an din vitro expression of defective hepatitis B virus particles generated by spliced hepatitis B virus RNA.Lancet,l995,22:10-19
    44. Yuan TT, Lin MH, Chen DS, et al. A defective interference-like phenomenon of human hepatitis B virus in chronic carriers. J Virol, 1998,72:578-584.
    45. Yuan TT, Lin MH, Qiu SM, et al. Functional characterization of naturally occurring variants of human hepatitis B virus containing the core internal deletion mutation. J Virol,1998 ,72:2168-2176.
    1. Isaacs A, Lindenmann J,Valentine RC. Virus interferon.II.Some properties of interferon. Proc R Soc Lond B Biol Sci. 1957,147(927):268-273
    2. Greenberg HB, Pollard RB, Lutwick LI, et al. Effect of human leukocyte interferon on hepatitis B virus infection in patients with chronic active hepatitis.N Engl J Med. 1976, 295:(10):517-522.
    3. Kaisho T,Akira S. Toll-like receptor function and signaling.J Allergy Clin Immunol ,2006,117(5):979-987
    4. Kato H, Takeuchi O, Sato S, et al . Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses Nature. 2006 ,441(7089):101-105
    5. Akashi-Takamura S, Miyake K.TLR accessory molecules.Curr Opin Immunol.2008,20(4):420-425
    6. Seth RB,Sun L,Chen ZJ. Antiviral innate immunity pathways. Cell Res, 2006,16(2):141-147
    7. Weighardt H, Holzmann B. Role’of Toll-like receptor responses for sepsis pathogenesis. Immunobiology. 2007;212(9-10):715-722.
    8. Brikos C, O′Neill LA. Signalling of toll-like receptors. Handb Exp pharmacol 2008: (183)21-50
    9. Arancibia SA, Beltrán CJ, Aguirre IM, et al。Toll-like receptors are key participants in innate immune responses。Biol Res. 2007;40(2):97-112.
    10. Hacker H, Redecke V, Blagoev B, et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. 2006, 439 (7073): 204-207
    11. Imaizumi T, Yoshida H, Nishi N, et al. Double-stranded RNA induces galectin-9 in vascular endothelial cells:involvement of TLR3、PI3K、andIRF3 pathway. Glycobiology. 2007 ;17(7):12C-5C.
    12. .Sen GC, Peters GA. Viral stress-inducible genes. Adv Virus Res. 2007;70:233-263.
    13. Kalali BN, K?llisch G, Mages J, et al. Double-stranded RNA induces an antiviral defense status in epidermal keratinocytes through TLR3-, PKR-, andMDA5/RIG-I-mediated differential signaling. J Immunol. 2008 Aug 15;181(4):2694-704.
    14. Seth RB, Sun L, Ea CK,et al, Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. 2005,122(5):669-682. comment in:Cell ,2005,122(5)645-647
    15. Hovanessian AG. The human 2'-5'oligoadenylate synthetase family: unique interferon-inducible enzymes catalyzing 2'-5' instead of 3'-5' phosphodiester bond formation Cytokine Growth Factor Rev. 2007 ,18(5-6):351-361
    16. Gil J,Garcia MA,Gomez-Puertas P,et al, TRAF family proteins link PKR with NF-kappa B activation. 2004, 24(10):4502-4512
    17. García MA, Gil J, Ventoso I, et al. Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action. Microbiol Mol Biol Rev. 2006, 70(4):1032-1060
    18. Samuel CE. Antiviral actions of interferons.Clin. Microbiol Review, 2001, 14(4): 778-809
    19. Haller O,Kochs G,Weber F。Interferon、Mx、and viral countermeasures。Cytokine Growth Factor Rev .2007,18(5-6):425-433
    20. Stark GR,Kerr IM,Williams BR,et al. How cells respond to interferons. Annu Rev Biochem,1998,67:227-264
    21. Grandvaux N, tenOever BR, Servant MJ, et al。The interferon antiviral response: from viral invasion to evasion. Curr Opin Infect Dis. 2002;15(3):259-267
    22. Sen GC, Sarkar SN. Viruses and interferon. Curr Top Microbiol Immunol. 2007;316:233-250.
    23. Wang X, Li M, Zheng H,et al. Influenza A virus NS1 protein prevents activation of NF-kappaB and induction of alpha/beta interferon。J Virol. 2000;74(24):11566-11573.
    24. Xiang Y, Condit RC, Vijaysri S,et al. Blockade of interferon induction and action by the E3L double-stranded RNA binding proteins of vaccinia virus. J Virol,2002,76(10):5251-5259。
    25. Cárdenas WB, Loo YM, Gale M Jr,et al. Ebola virus VP35 protein bindsdouble-stranded RNA and inhibits alpha/beta interferon production induced by RIG-I signaling. J Virol. 2006 Jun;80(11):5168-5178
    26. Poppers J,Mulvey M, Khoo D,et al. Inhibition of PKR activation by the proline-rich RNA binding domain of the herpes simplex virus type 1 Us11 protein. J Virol,2000,74(23):11215-11221.
    27. Brzozka K,Finke S,Conzelmann KK. Identification of the rabies virus alpha/beta interferon antagonist: phosphoprotein P interferes with phosphorylation of interferon regulatory factor 3. J Virol,2005,79(12):7673-7681
    28. Alff PJ,Gavrilovskays IN,Gorbunova E,et al. The pathogenic NY-1 hantavirus G1 cytoplasmic tail inhibits RIG-I- and TBK-1-directed interferon responses. . J Virol,2006,80(19):9676-9686
    29. Mibayashi M,Martinez-Sobrido L,Loo YM,et al. Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus. J Virol,2007,81(2):514-524
    30. Lin R, Lacoste J,Nakhaei P,et al. Dissociation of a MAVS/ IPS-1/ VISA/ Cardif- IKK epsilon molecular complex from the mitochondrial outer membrane by hepatitis C virus NS3-4A proteolytic cleavage. J Virol, 2006, 80(12): 6072-6083
    31. Hartman AL,Dover JE,Towner JS,et al. Reverse genetic generation of recombinant Zaire Ebola viruses containing disrupted IRF-3 inhibitory domains results in attenuated virus growth in vitro and higher levels of IRF-3 activation without inhibiting viral transcription or replication. J Virol,2006,80(13):6430-6440.
    32. Zhang L,Pagano JS. IRF-7, a new interferon regulatory factor associated with Epstein-Barr virus latency. Mol Cell Biol,1997,17(10):5748-5757
    33. Zhang T, Lin RT, Li Y, et al. Hepatitis C virus inhibits intracellular interferon alpha expression in human hepatic cell lines. Hepatology ,2005,42(4):819-827
    34. Burysek L,yeow WS,Pitha PM. Unique properties of a second human herpesvirus 8-encoded interferon regulatory factor (vIRF-2). J Hum Virol, 1999,2(1):19-32
    35. Burysek L,Pitha PM. Latently expressed human herpesvirus 8-encoded interferon regulatory factor 2 inhibits double-stranded RNA-activated protein kinase JVirol,2001,75(5):2345-2352
    36. Andrejeva J,Young DF,Goodbourn S,et al, Degradation of STAT1 and STAT2 by the V proteins of simian virus 5 and human parainfluenza virus type 2, respective- ly : consequences for virus replication in the presence of alpha/beta and gamma interferons. J Virol,2002, 76(5):2159-2167
    37. Ulane CM,Rodriquez JJ,Parisien JP,et al. STAT3 ubiquitylation and degradation by mumps virus suppress cytokine and oncogene signaling. J Virol, 2003, 77 (11) :6385-6393
    38. Gotoh B,Takeuchi K,Komatsu T,et al. The STAT2 activation process is a crucial target of Sendai virus C protein for the blockade of alpha interferon signaling. J Virol,2003,77(6):3360-3370
    39. Heim MH,Moradpour D,Blum HE. Expression of hepatitis C virus proteins inhibits signal transduction through the Jak-STAT pathway. J Virol, 1999, 73 (10) :8469-8475
    40. Palosaari H,Parisien JP,Rodriquez JJ,et al. STAT protein interference and suppression of cytokine signal transduction by measles virus V protein. J Virol, 2003, 77(13):7635-7644
    41. Reid SP,Leung LW,Hartman AL,et al. Ebola virus VP24 binds karyopherin alpha1 and blocks STAT1 nuclear accumulation. J Virol,2006,80(11): 5156 -5167

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700