用户名: 密码: 验证码:
免疫负调控分子TIPE2在肝细胞肝癌中的作用及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的
     肝细胞肝癌是最常见的人类恶性肿瘤之一,在全世界范围内肝癌发病率位于世界第五位,死亡率位于世界第三位。肝细胞肝癌一个显著特点是容易发生侵袭和转移,是影响病人预后的重要因素。因此,寻找能抑制肝癌生长和转移的新分子,对肝癌的治疗具有十分重要的价值。
     TIPE2是新发现的免疫负调控分子,是TNFAIP8家族的重要成员。目前关于TIPE2的研究主要集中在调控固有免疫和适应性免疫应答,维持免疫平衡。TIPE2在小鼠体内主要表达于免疫细胞,TIPE2-/-小鼠发生多器官炎症,表现为脾大,白细胞增多,对TLR和TCR过度敏感。TIPE2缺失还会加重LPS诱导的内毒素休克,实验性中风和动脉粥样硬化。人TIPE2表达水平在多种慢性炎症病人表达下调,如系统性红斑狼疮,慢性乙型肝炎,儿童哮喘等,并且与疾病进程呈负相关关系。我们在前期研究中发现人TIPE2的表达谱与小鼠的TIPE2不同,人TIPE2除表达于免疫细胞外,也表达于肝细胞等非免疫细胞,并且人TIPE2在肝细胞肝癌中表达下调或缺失,提示TIPE2可能在肝癌的发生发展中发挥重要作用。
     为了明确TIPE2在人肝细胞肝癌发生发展中的作用,阐明其作用机制,为以TIPE2为靶点设计合成抗肿瘤药物提供研究基础。本文拟从以下几个方面进行研究:一、TIPE2对肝细胞肝癌恶性行为的研究;二、TIPE2抑制肝癌细胞侵袭转移和血管形成机制的研究;三、TIPE2对于肝癌细胞自噬的影响及其效应研究方法
     一.TIPE2对肝细胞肝癌恶性行为的研究
     1.免疫组化方法检测112例肝癌患者肝癌组织中TIPE2的表达,并且分析其与临床病理特征之间的相关性。
     2.将Mock和TIPE2表达质粒分别转染入肝癌细胞系,用CCK8的方法检测细胞增殖,用平板集落形成实验检测克隆形成能力,用台盼蓝染色的方法检测细胞死亡,用Transwell的方法检测细胞迁移和侵袭,取肿瘤细胞条件培养上清培养内皮细胞,然后用CCK8的方法检测内皮细胞的增值,用小管形成实验观察内皮细胞环化。
     3.建立裸鼠皮下肝癌移植瘤模型,分别给予Mock和TIPE2质粒治疗,治疗过程中根据肿瘤体积绘制肿瘤生长曲线,测量肿瘤体积和重量,同时取血清检测AFP含量。免疫组化的方法检测瘤体中TIPE2表达情况。
     4.建立裸鼠肝脏原位移植瘤模型。取肝脏,肺等可疑的转移器官,HE染色观察转移灶情况,测量肿瘤体积和重量,取血清检测AFP含量。
     二.TIPE2抑制肝癌侵袭转移和血管形成的机制
     1.用western blot的方法检测四种肝癌细胞系(BEL-7402, HepG2, SMMC-7721, HCCLM3)中Rac1的表达。用Rac1的抑制剂NSC23766处理BEL-7402,然后用Transwell的方法检测细胞的迁移和侵袭。
     2.免疫共沉淀方法检测Thp-1中内源性TIPE2能否与Racl结合。构建人TIPE2突变载体。将野生型TIPE2载体和突变载体分别转入BEL-7402细胞进行免疫共沉淀,检测外源性TIPE2能否与内源性Racl结合。用PAK-PBD pull down实验检测Racl的活性。
     3.在TIPE2过表达体系中加入Racl抑制剂NSC23766或Racl的小干扰,用Transwell的方法检测肝癌细胞的迁移和侵袭。
     4.将野生型TIPE2载体和突变载体分别转入肝癌细胞系,用Transwell的方法检测细胞的迁移和侵袭,CCK8的方法检测内皮细胞的增殖,用小管形成实验检测内皮细胞环化。
     5.将野生型TIPE2载体和突变载体分别转入肝癌细胞系,用免疫荧光的方法检测微丝的聚合。用PCR和western blot的方法检测MMP9, uPA和VEGF的表达。
     三.TIPE2对肝癌细胞自噬的影响及其效应
     1.在TIPE2过表达体系中,用western blot的方法检测凋亡相关分子caspase3和PARP的变化。
     2.在TIPE2过表达体系中,用western blot的方法检测自噬相关分子LC3B和P62的表达,用免疫荧光的方法检测自噬小体的形成。
     3. TIPE2过表达体系中加入凋亡阻断剂Z-VAD,自噬抑制剂wortmanin, Rac1抑制剂NSC23766或ATG5小干扰,用CCK8的方法检测细胞存活。结果
     一.TIPE2对肝细胞肝癌恶性行为的影响
     1. TIPE2表达降低或缺失与肝癌的侵袭转移有关
     我们课题组在前期研究中发现,相比于癌旁组织,TIPE2在肝癌组织中表达下调。为了阐明TIPE2在肝癌发生发展中的作用,我们详细分析了TIPE2表达与肝癌临床病理特征之间的关系。结果显示,TIPE2表达与性别、年龄、病理分级、血清AFP含量以及是否有肝硬化和乙型肝炎无关,但是与TNM分期有显著相关性。Ⅲ-Ⅳ期病人中TIPE2低表达或缺失的比例显著高于Ⅰ-Ⅱ期病人。提示我们TIPE2表达降低或缺失与肝癌的侵袭转移有关。
     2. TIPE2抑制肝癌细胞在体外的生长,转移和血管形成
     (1) TIPE2抑制肝癌细胞的生长和克隆形成能力
     为了探究TIPE2对肝癌细胞生长的作用,我们选取两种肝癌细胞系BEL-7402和HepG2,瞬时转染Mock和TIPE2重组质粒,用CCK8的方法检测细胞增殖。结果发现,转染TIPE2后细胞生长明显减缓。克隆形成实验的结果显示,过表达TIPE2组肝癌细胞克隆形成数明显减少。表明TIPE2能够抑制肝癌细胞的生长和克隆形成能力。
     (2) TIPE2促进饥饿诱导的细胞死亡
     为了研究TIPE2对细胞生存的影响,我们采用台盼蓝染色的方法检测细胞死亡,发现转染TIPE2后细胞死亡率增加。说明TIPE2能够加速饥饿诱导的细胞死亡。
     (3) TIPE2抑制肝癌细胞的迁移和侵袭能力
     为了研究TIPE2对肝癌细胞迁移和侵袭的作用,我们采用Transwell的方法,结果发现,转染TIPE2后细胞迁移和侵袭的数量均明显降低。表明TIPE2能够抑制肝癌细胞的迁移和侵袭能力。
     (4) TIPE2抑制肝癌细胞促血管形成能力
     为了研究TIPE2对血管形成的影响,我们采用了两种方法-内皮细胞增殖实验和毛细血管形成实验。用肿瘤细胞条件培养上清(TCM)培养脐静脉内皮细胞(HUVEC),通过CCK8的方法检测HUVEC的活性。结果显示,来自Mock组的TCM能够维持HUVEC的生长,而用TIPE2组TCM培养的HUVEC随着时间延长细胞活力明显降低。毛细血管形成实验结果显示,来自Mock组的TCM促进HUVEC形成较多的管腔样结构,而用TIPE2组TCM培养的HUVEC比较分散,管腔样结构明显减少。以上结果表明TIPE2抑制肝癌细胞促血管形成能力。
     3. TIPE2抑制肝细胞肝癌在体内的生长和转移
     (1) TIPE2抑制裸鼠皮下肿瘤的生长
     为了进一步研究TIPE2在体内的作用,我们对荷瘤的裸鼠给予外源性质粒治疗。结果显示,TIPE2抑制皮下肿瘤的生长。TIPE2组皮下瘤重量和体积以及血清中AFP的含量明显均低于Mock组。免疫组化结果显示,TIPE2组瘤体中TIPE2表达升高。HE染色结果显示,TIPE2组肿瘤组织相比于Mock组细胞形状更规则,分化程度更高。以上结果表明,TIPE2能够抑制裸鼠皮下瘤的生长。
     (2) TIPE2抑制裸鼠肝脏原位瘤的生长和转移
     为了模拟肝细胞肝癌原位生长的情况,我们构建了肝脏原位移植模型。结果显示,TIPE2组原位肿瘤的重量和体积以及血清AFP含量均低于Mock组。对可疑转移器官进行连续切片并进行组织病理分析,结果显示TIPE2组裸鼠发生肺转移比例降低,而且Mock组裸鼠有胰腺、膈肌和腹壁侵犯的情况,而TIPE2组则没有。说明TIPE2能够抑制肝脏原位肿瘤的生长和转移。
     二.TIPE2抑制肝癌细胞侵袭转移和血管形成的机制
     1. Racl的表达和活性与肝癌细胞的转移能力呈正相关
     最新的研究显示小鼠TIPE2能与Racl结合并且抑制其活性,而Racl在肿瘤的发生发展中也起着十分重要的作用。因此,我们提出了假设,人TIPE2是否是通过Racl通路影响肝癌的侵袭转移?为了验证这一假设,我们首先用western blot的方法检测了四种肝癌细胞系中Racl的表达。结果发现所有肝癌细胞系均高表达Racl,并且与肝癌细胞系的转移能力呈正相关。接下来,我们用Racl的抑制剂NSC23766处理BEL-7402,然后用Transwell的方法检测细胞的迁移和侵袭,结果显示,NSC23766处理后细胞迁移和侵袭的数量明显降低,并且具有浓度依赖性。以上结果表明,Racl的表达和活性与肝癌细胞的转移能力呈正相关。
     2. TIPE2能够与Racl结合并抑制其活性
     为了进一步证实TIPE2与Racl的相互关系,我们用TIPE2高表达细胞系Thp-1进行免疫共沉淀,结果显示人内源性TIPE2能够与Racl结合。同时我们构建了人TIPE2突变载体,然后将野生型TIPE2和突变载体分别转入BEL-7402细胞进行免疫共沉淀。结果显示,野生型TIPE2能够与Racl结合,而突变的TIPE2与Racl的结合能力降低。接下来,我们用PAK-PBD pull down实验检测Racl的活性,结果显示转染野生型TIPE2后Racl的活性降低,而突变的TIPE2能逆转其抑制效应。以上结果表明人TIPE2也能与Racl结合并抑制其活性。
     3. TIPE2通过Racl通路抑制肝癌细胞的迁移和侵袭
     为了研究Racl在TIPE2调节肝癌迁移和侵袭中的作用,我们在TIPE2过表达体系中加入NSC23766抑制Racl的活性。结果发现,过表达TIPE2后细胞迁移和侵袭的数量明显降低,而NSC23766处理后Mock组和TIPE2之间的差异消失,同时我们用Racl的小干扰,得到了与Racl抑制剂类似的结果。接下来,我们将野生型TIPE2载体和突变载体分别转入肝癌细胞系,用Transwell的方法检测细胞的迁移和侵袭。结果发现,转染野生型TIPE2后细胞迁移侵袭数量均降低,而突变载体的抑制效应消失。以上结果均表明TIPE2抑制肝癌细胞的迁移和侵袭依赖于Racl通路。
     4. TIPE2通过Racl通路抑制肝癌细胞促血管形成能力
     为了研究Racl在TIPE2抑制血管形成中的作用,我们用TCM培养HUVEC,结果发现,来自野生型TIPE2组的上清能够显著抑制内皮细胞的增值和小管形成,来自突变载体转染组的上清则能够逆转这一抑制效应。以上结果表明,TIPE2抑制血管形成的作用依赖于Racl通路。
     5. TIPE2抑制Racl下游的效应分子
     (1) TIPE2通过Racl通路抑制微丝的聚合
     为了进一步研究TIPE2抑制细胞迁移的机制,我们用免疫荧光的方法检测细胞微丝的聚合。Mock组细胞中微丝丰富、排列规则,并且有伪足形成,而转染TIPE2后微丝发生了明显的解聚,但是转染突变载体后这一效应得以逆转。说明TIPE2通过Racl通路抑制微丝聚合。
     (2) TIPE2通过Racl通路抑制MMP9和uPA的表达
     为了进一步探究TIPE2抑制细胞侵袭的机制,我们用real time PCR和western blot的方法检测MMP9和uPA的表达。结果发现,转染野生型TIPE2后MMP9和uPA的mRNA水平和蛋白水平均降低,而突变的TIPE2则丧失了抑制效应。说明TIPE2通路Racl通路抑制MMP9和uPA的表达。
     (3) TIPE2通过Racl通路抑制VEGF的表达
     为了进一步探究TIPE2抑制血管形成的机制,我们用RT-PCR和western blot的方法检测VEGF的表达。结果显示,野生型TIPE2抑制VEGF的表达,而突变的TIPE2抑制作用消失。说明TIPE2通过Rac1通路抑制VEGF的表达。
     三.TIPE2对肝癌细胞自噬的影响及其效应
     1. TIPE2通过凋亡非依赖的途径促进细胞死亡
     我们在第一节的结果中提到TIPE2能够促进细胞死亡,但是这种死亡的具体形式尚不清楚。为了研究TIPE2对凋亡通路的影响,我们用western blot的方法检测凋亡相关分子的变化。结果显示转染TIPE2后caspase3和PARP的总量以及剪切体都没有明显的变化。CCK8结果显示TIPE2能够抑制细胞的活性,加入caspase抑制剂Z-VAD后TIPE2的抑制作用依然存在,说明TIPE2促进细胞的死亡可能不依赖于凋亡。
     2. TIPE2促进肝癌细胞的自噬
     为了研究TIPE2对自噬的影响,我们用western blot的方法检测自噬水平的变化。结果显示过表达TIPE2后自噬标志分子LC3BII水平升高,自噬底物P62水平降低。同时,我们用免疫荧光的方法检测自噬小体的形成,发现转染TIPE2后自噬小体的数量升高。说明TIPE2能够促进自噬的发生和自噬小体的形成。
     3. TIPE2促进自噬性细胞死亡
     为了研究自噬在TIPE2诱导细胞死亡中的作用,我们在TIPE2过表达体系中加入自噬抑制剂wortmanin,然后用CCK8的方法检测细胞活性。结果显示,过表达TIPE2后细胞活性降低,而加入wortmanin后Mock和TIPE2组之间的差异消失。ATG5的小干扰也得到了同样的结果。以上结果说明TIPE2诱导自噬性细胞死亡。
     4. TIPE2通过Racl通路促进细胞死亡
     为了探究Racl在TIPE2促进细胞死亡中的作用,我们在TIPE2过表达体系中加入Racl抑制剂NSC23766,然后用CCK8的方法检测细胞存活。结果显示,过表达TIPE2后细胞活性降低,加入Racl抑制剂NSC23766后Mock组和TIPE2组之间的差异消失。表明TIPE2通过Racl通路促进细胞死亡。
     结论
     1. TIPE2在人肝癌组织中表达降低或缺失与肝细胞肝癌的转移密切相关。
     2. TIPE2在体内外抑制肝细胞肝癌的生长、转移和血管形成。
     3. TIPE2通过Racl通路抑制细胞骨架的聚合,MMP9. uPA和VEGF的表达,进而抑制肝癌细胞的迁移,侵袭和促血管形成能力。
     4. TIPE2促进自噬性细胞死亡,并且不依赖于凋亡,其机制可能是通过抑制Racl通路发挥作用。
     创新性和意义
     1.首次提出TIPE2与人肝细胞肝癌的关系,发现TIPE2在肝癌中表达降低或缺失与肝癌的转移有关,TIPE2在体内外均能抑制肝癌的生长和转移。为以TIPE2作为靶点设计肝癌治疗的药物提供理论依据和实验基础。
     2.首次提出人TIPE2能够与Racl结合并抑制其活性,证实TIPE2通过Racl通路抑制肝癌的侵袭和转移,丰富了人TIPE2的功能和分子机制研究。
     3.首次提出TIPE2与自噬的关系,明确了TIPE2促进自噬性细胞死亡而非凋亡,对于研究自噬和肿瘤的关系具有十分重要的意义。
     局限性
     1.扩大病例标本,对临床资料的相关性进行更加准确的分析。
     2. TIPE2促进自噬的通路还需要进一步研究
Objective
     Hepatocelluar carcinoma (HCC) is one of the most common cancers in the world. The morbidity and mortality of HCC were ranked fifth and third among all the cancers respectively. Lack of effective technique for HCC early diagnosis and curative therapy leads to extremely poor prognosis of patients. The primary characters of HCC are invasion and metastasis, accordingly the overall lifetime of HCC patients on last stage is only6months. Therefore, searching for mechanism of development and progression of HCC will provide new technology of HCC therapy.
     TIPE2is a newly described immunity negative molecule and belongs to TIPE family. TIPE2maintain negatively both innate and adaptive immunity. It is preferentially expressed in immune organ and lymphoid tissue in mice. Its deficiency in mice leads to multi-organ inflammation, splenomegaly and premature death. TIPE2deficient animals are hypersensitive to septic shock, experimental stroke, and atherosclerosis. TIPE2is down-regulated in patients with chronic inflammatory diseases such as systemic lupus erythematosus (SLE) and hepatitis, and its expression inversely correlated with disease progression. Unlike murine TIPE2, human TIPE2is expressed in multiple non-hematopoietic cell type, including hepatocytes, indicating more functions of human TIPE2. Recently, our previous research is shown that TIPE2is down-regulated or completely lost in HCC compared with adjacent tissue. However, the role and underling mechanism of TIPE2in progression of HCC remain unclear.
     In this study, we explore the effect of TIPE2on development and progression of HCC, and search for the mechanism.
     Methods
     Ⅰ. The effect of TIPE2on malignant phenotype of HCC
     1. IHC was used to detect TIPE2level in tumor tissue of112HCC cases. The correlation between TIPE2and clinical pathological parameters was analyzed by wilcoxon test.
     2. Mock and TIPE2plasmid was transfected into HCC cell. Cell proliferation was detected by CCK8. Colony formation capacity was detected by colony assay. Trypan blue staining was used for cell death and transwell assay for cell migration and invasion ability. And proliferation and tube formation of HUVEC were also detected.
     3. To provide in vivo evidence that TIPE2suppresses HCC, we established subcutaneous xenograft tumor model and treated with Mock and TIPE2plasmid respectively. The size and weight of tumor and AFP in serum were detected.
     4. We established orthotopic tumor in liver of mice. The size and weight of primary tumor were detected. All possible metastasizing visceral organs or tissues were processed for standard histopathological study.
     Ⅱ. The mechanism of TIPE2on metastasis and angiogenesis of HCC
     1. Western blot was applied to detect Racl expression in four different HCC cell lines. And cells pretreated with Racl inhibitor NSC23766were applied for transwell assay.
     2. Co-IP was used to find interaction between endogenous TIPE2and Racl in Thp-1. Wild TIPE2and mutant TIPE2were transfected into HCC cells respectively and interaction between exogenous TIPE2and Racl was detected by co-IP. And activity of Racl was detected by PAK-PBD pull down assay.
     3. Cells pretreated with NSC23766or siRNA for Rac1were overexpressed with TIPE2and applied for transwell assy.
     4. HCC cell transfected with Wild and mutant TIPE2plasmids were applied for transwell assay. Proliferation and tube formation were detected also. Furthermore, MMP9, uPA and VEGF expression were detected by PCR and western blot.
     III. The effect of TIPE2on autophagy and its function
     (1) Apoptosis associated molecules (caspase3and PARP) were detected by western blot.
     (2) Autophagy associated molecules (LC3BⅡ and P62) were detected by western blot and autophagosomes were detected by IF.
     (3) Caspase inhibitor Z-VAD, autophagy inhibitor wortmannin, Racl inhibitor NSC23766and siRNA for ATG5was added to cells and cell proliferation was detected by CCK8.
     Results
     I. The effect of TIPE2on malignant phenotype of HCC
     1. Loss or reduction of TIPE2expression in HCC was associated with metastasis
     In order to explore effect of TIPE2on HCC, we first analyze association between TIPE2expression and clinical pathological characters. We found that there was no significant correlation of TIPE2to age, gender, cirrhosis, hepatitis B, serum AFP and pathological grade. However, TIPE2was related to TNM stage. The results indicated that loss or reduction of TIPE2expression in HCC was associated with metastasis.
     2. TIPE2suppressed HCC cell growth, metastasis and angiogenesis in vitro
     (1) TIPE2suppressed proliferation and colony formation of HCC cells
     In order to explore the effect of TIPE2on proliferation of HCC cells, we detected cell viability using CCK8. We found that overexpression of TIPE2suppressed cell viability from48h and colony formation numbers compared with Mock. The results indicated that TIPE2inhibited HCC cell proliferation and colony formation capacity.
     (2) TIPE2accelerated cell death of HCC cells
     To determine the effect of TIPE2on cell death, we used trypan blue staining assay and found that overexpression of TIPE2increased cell death rate. It was indicated that TIPE2accelerated cell death induced by serum free medium.
     (3) TIPE2suppressed HCC cell migration and invasion ability.
     To determine effect of TIPE2on HCC cell metastasis, we used transwell assay. Overexpression of TIPE2decreased HCC cell migration and invasion numbers. The results indicated that TIPE2suppressed HCC cell migration and invasion ability.
     (4) TIPE2inhibited angiogenesis of HCC
     To determine effect of TIPE2on angiogenesis of HCC, we used HUVEC proliferation assay and tube formation assay. Supermatant from HCC cell with TIPE2suppressed HUVEC proliferation and capillary formation. The results indicated that TIPE2inhibited angiogenesis of HCC.
     3. TIPE2suppressed HCC growth and metastasis in vivo
     (1) TIPE2suppressed subcutaneous tumor growth.
     To determine effect of TIPE2on tumor in vivo, we established subcutaneous tumor model. We found that treatment of TIPE2plasmid attenuated the tumor growth. The tumor volume and weight and AFP level of TIPE2group were decreased compared with Mock group. The results showed that TIPE2suppressed subcutaneous tumor growth.
     (2) TIPE2suppressed orthotopic tumor growth and metastasis.
     To determine effect of TIPE2on metastasis of HCC, we established orthotopic tumor model. The tumor volume and weight and AFP level of TIPE2group were decreased compared with Mock group. Significantly, the lung metastasis of TIPE2group reduced. Tumor had invaded into pancreas, diaphragm and abdominal wall in Mock group but not in TIPE2group. All the results demonstrate that TIPE2markedly suppressed metastasis of orthotopic tumor.
     II. The mechanism of TIPE2on invasion, metastasis and angiogenesis of HCC
     1. Expression and activity of Racl were correlated with metastasis
     In order to explore mechanism of inhibitory effect of TIPE2on HCC metastasis, we detected Racl expression in different HCC cell lines. Racl was upregulated in HCC cell line and was positively correlated with metastasis capacity. Racl inhibitor NSC23766suppressed HCC cell migration and invasion ability in dose dependent manner. All the results indicated that expression and activity of Racl was correlated with HCC metastasis.
     2. TIPE2could bind to Racl and blocked its activity
     To further determine the association between TIPE1and Rac1, we used co-IP assay. We found that endogenous TIPE2could bind to Racl in Thp-1cell. Furthermore, wild type TIPE2and mutant TIPE2were transfected into HCC cell. We found that exogenous wild type TIPE2could bind to Racl while the mutant lost the ability. PAK-PBD pull down assay showed that wild type TIPE2decreased the Rac1activity while mutant TIPE2reversed the inhibitory effect. All the results indicated that human TIPE2could bind to Rac1and block its activity.
     3. TIPE2suppressed HCC cell migration and invasion via Racl pathway
     In order to confirm association between Rac1and inhibitory effect of TIPE2on metastasis, we added NSC23766into HCC cell. Pretreatment with Racl inhibitor NSC23766or siRNA diminished the difference between Mock and TIPE2group. And siRNA for Racl had similar effect. And we also found that wild type TIPE2inhibited cell migration and invasion while the mutant one reversed the inhibitory effect. The results indicated that TIPE2inhibited HCC cell migration and invasion via Racl pathway.
     4. TIPE2suppressed angiogenesis via Racl pathway
     Furthermore we detected association between Rac1and inhibitory effect of TIPE2on angiogenesis. The TCM from wild type TIPE2cell decreased proliferation and tube formation of HUVEC, however the TCM from mutant reversed the inhibitory effect. It was indicated that TIPE2suppressed angiogenesis via Rac1pathway.
     5. The molecular targets of TIPE2on metastasis and angiogenesis
     (1) TIPE2inhibited F-actin polymerization via Racl pathway
     To determine mechanism that TIPE2inhibited migration, we detected microfilament using IF. The results showed that wild TIPE2decreased F-actin polymerization while the mutant TIPE2inversed the inhibitory effect. It was indicated that TIPE2inhibited F-actin polymerization via Rac1pathway.
     (2) TIPE2inhibited MMP9and uPA expression via Racl pathway
     To determine mechanism that TIPE2inhibited invasion, we detected MMP9and uPA expression by real time PCR and western blot. The results showed that wild TIPE2decreased MMP9and uPA expression, however the mutant TIPE2inversed the inhibitory effect. It was indicated that TIPE2inhibited MMP9and uPA expression via Rac1pathway.
     (3) TIPE2inhibited VEGF expression via Racl pathway
     To determine mechanism that TIPE2inhibited angiogenesis, we detected VEGF expression by RT-PCR and western blot. The results showed that wild TIPE2decreased VEGF expression, however the mutant TIPE2inversed the inhibitory effect. It was indicated that TIPE2inhibited VEGF expression via Racl pathway.
     III. The effect of TIPE2on autophagy and its function
     1. TIPE2enhanced cell death via apoptosis-independent pathway
     In the previous results, we proposed that TIPE2increased cell death. But the underlying mechanism was unknown. We detected apoptosis associated molecules by western blot. The results showed that TIPE2had no effect on the activity of caspase3and PARP. CCK8results showed that TIPE2decreased cell viability while Z-VAD could not reverse it. The results indicated that TIPE2enhanced cell death independent of apoptosis.
     2. TIPE2enhanced autophagy
     In order to determine effect of TIPE2on autophagy, we detected autophagy associated molecule by western blot. Overexpression of TIPE2increased LC3BII and decreased P62level. And autophagosomes numbers increased in TIPE2group by IF. The results indicated that TIPE2enhanced autophagy.
     3. TIPE2induced autophagic cell death
     To determine the effect of TIPE2induced autophagy, we detected cell viability via CCK8. We found that TIPE2decreased cell viability and wortmanin and siRNA for ATG5diminished the inhibitory effect of TIPE2. The results indicated that TIPE2induced autophagic cell death.
     4. TIPE2induced cell death via Racl pathway
     To determine effect of Rac1on TIPE2induced cell death, we used Rac1inhibitor NSC23766. TIPE2decreased cell viability while Racl NSC23766diminished the difference induced by TIPE2. The results indicated that TIPE2induced cell death via Rac1pathway.
     Conclusions
     1. Loss or reduction of TIPE2expression in tumor tissue of HCC is associated with metastasis.
     2. TIPE2inhibits growth and metastasis of HCC in vivo and in vitro.
     3. TIPE2suppresses migration, invasion and angiogenesis of HCC cell mediated by F-actin polymerization and MMP9, uPA and VEGF expression via Racl pathway.
     4. TIPE2induced autophagic cell death via Racl pathway.
     Originality and Significance
     1. For the first time, we demonstrate the correlation between TIPE2and HCC. We find that TIPE2is lost or decreased in HCC and associated with TNM stage.TIPE2inhibits growth and metastasis of HCC in vivo and in vitro. The results are significant for new technology of HCC therapy.
     2. Significantly, human TIPE2binds with Racl and block its activity. The finding provides new understanding of human TIPE2function.
     3. TIPE2induced autophagic cell death that is important for tumor suppression.
     Limitations
     1. More cases are needed to confirm the relationship between TIPE2expression and clinopathological features.
     2. The signaling pathway that TIPE2enhanced autophagy should be studied in the future.
引文
1. Arzumanyan, A., H.M. Reis, and M.A. Feitelson, Pathogenic mechanisms in HBV-and HCV-associated hepatocellular carcinoma. Nat Rev Cancer,2013. 13(2):p.123-35.
    2. Shiraha, H., K. Yamamoto, and M. Namba, Human hepatocyte carcinogenesis (review). Int J Oncol,2013.42(4):p.1133-8.
    3. Sun, H., et al., TIPE2, a negative regulator of innate and adaptive immunity that maintains immune homeostasis. Cell,2008.133(3):p.415-26.
    4. Patel, S., et al., Identification of seven differentially displayed transcripts in human primary and matched metastatic head and neck squamous cell carcinoma cell lines:implications in metastasis and/or radiation response. Oral Oncol,1997.33(3):p.197-203.
    5. Cui, J., et al., The expression of TIPE1 in murine tissues and human cell lines. Mol Immunol,2011.48(12-13):p.1548-55.
    6. Carmody, R.J., et al., Genomic scale profiling of autoimmune inflammation in the central nervous system:the nervous response to inflammation. J Neuroimmunol,2002.133(1-2):p.95-107.
    7. Zhang, X., et al., Crystal structure of TIPE2 provides insights into immune homeostasis. Nat Struct Mol Biol,2009.16(1):p.89-90.
    8. Li, A., et al., Characterization and transcriptional regulation analysis of the porcine TNFAIP8L2 gene. Mol Genet Genomics,2010.284(3):p.185-95.
    9. Zhang, G., et al., Tissue-specific expression of TIPE2 provides insights into its function. Mol Immunol,2010.47(15):p.2435-42.
    10. Zhang, L., et al., The unique expression profile of human TIPE2 suggests new functions beyond its role in immune regulation. Mol Immunol,2011.48(9-10): p.1209-15.
    11. Zhang, Y., et al., TIPE2, a novel regulator of immunity, protects against experimental stroke. J Biol Chem,2012.287(39):p.32546-55.
    12. Lou, Y, et al., Enhanced atherosclerosis in TIPE2-deficient mice is associated with increased macrophage responses to oxidized low-density lipoprotein. J Immunol,2013.191(9):p.4849-57.
    13. Li, D., et al., Down-regulation of TIPE2 mRNA expression in peripheral blood mononuclear cells from patients with systemic lupus erythematosus. Clin Immunol,2009.133(3):p.422-7.
    14. Xi, W., et al., Roles of TIPE2 in hepatitis B virus-induced hepatic inflammation in humans and mice. Mol Immunol,2011.48(9-10):p.1203-8.
    15. Ma, Y, et al., The expression and significance of TIPE2 in peripheral blood mononuclear cells from asthmatic children. Scand J Immunol,2013.78(6):p. 523-8.
    16. Sun, H., et al., TIPE2 controls innate immunity to RNA by targeting the phosphatidylinositol 3-kinase-Rac pathway. J Immunol,2012.189(6):p. 2768-73.
    17. Wang, Z., et al., TIPE2 protein serves as a negative regulator of phagocytosis and oxidative burst during infection. Proc Natl Acad Sci U S A,2012.109(38): p.15413-8.
    18. Gus-Brautbar, Y., et al., The anti-inflammatory TIPE2 is an inhibitor of the oncogenic Ras. Mol Cell,2012.45(5):p.610-8.
    19. Dong, Q.Z., et al., Overexpression of SCC-S2 correlates with lymph node metastasis and poor prognosis in patients with non-small-cell lung cancer. Cancer Sci,2010.101(6):p.1562-9.
    20. Kumar, D., et al., Expression of SCC-S2, an antiapoptotic molecule, correlates with enhanced proliferation and tumorigenicity of MDA-MB 435 cells. Oncogene,2004.23(2):p.612-6.
    21. Zhang, C., et al., The significance of TNFAIP8 in prostate cancer response to radiation and docetaxel and disease recurrence. Int J Cancer,2013.133(1):p. 31-42.
    22. Liu, K., et al., Expression of tumor necrosis factor-alpha-induced protein 8 in pancreas tissues and its correlation with epithelial growth factor receptor levels. Asian Pac J Cancer Prev,2012.13(3):p.847-50.
    23. Hadisaputri, Y.E., et al., TNFAIP8 overexpression:clinical relevance to esophageal squamous cell carcinoma. Ann Surg Oncol,2012.19 Suppl 3:p. S589-96.
    24. Zhang, C., et al., Role of SCC-S2 in experimental metastasis and modulation of VEGFR-2, MMP-1, and MMP-9 expression. Mol Ther,2006.13(5):p. 947-55.
    25. Portolani, N., et al., Early and late recurrence after liver resection for hepatocellular carcinoma:prognostic and therapeutic implications. Ann Surg, 2006.243(2):p.229-35.
    26. Yeung, Y.P., et al., Natural history of untreated nonsurgical hepatocellular carcinoma. Am J Gastroenterol,2005.100(9):p.1995-2004.
    27. Stovold, C.F., T.H. Millard, and L.M. Machesky, Inclusion of Scar/WAVE3 in a similar complex to Scar/WAVE1 and 2. BMC Cell Biol,2005.6(1):p.11.
    28. Zhang, M., et al., Cyclophilin A promotes human hepatocellular carcinoma cell metastasis via regulation of MMP3 and MMP9. Mol Cell Biochem,2011. 357(1-2):p.387-95.
    29. Gao, J., et al., Knockdown of MACC1 expression suppressed hepatocellular carcinoma cell migration and invasion and inhibited expression of MMP2 and MMP9. Mol Cell Biochem,2013.376(1-2):p.21-32.
    30. Han, P., et al., BVES Inhibition Triggers Epithelial-Mesenchymal Transition in Human Hepatocellular Carcinoma. Dig Dis Sci,2014.
    31. Zhou, Y., et al., MicroRNA-491 is involved in metastasis of hepatocellular carcinoma by inhibitions of matrix metalloproteinase and epithelial to mesenchymal transition. Liver Int,2013.33(8):p.1271-80.
    32. Chan, C.F., et al., Evaluation of nuclear factor-kappaB, urokinase-type plasminogen activator, and HBx and their clinicopathological significance in hepatocellular carcinoma. Clin Cancer Res,2004.10(12 Pt 1):p.4140-9.
    33. Zheng, Q., Z. Tang, and Z. Wu, [Urokinase-type plasminogen activator (uPA), uPA receptor (uPA-R) and inhibitors (PA I-1) expression in hepatocellular carcinoma in relation to cancer invasion/metastasis and prognosis]. Zhonghua Zhong Liu Za Zhi,1998.20(1):p.57-9.
    34. Chen, W.N., et al., Interaction of the hepatitis B spliced protein with cathepsin B promotes hepatoma cell migration and invasion. J Virol,2012.86(24):p. 13533-41.
    35. Chen, R.X., et al., Osteopontin promotes hepatocellular carcinoma invasion by up-regulating MMP-2 and uPA expression. Mol Biol Rep,2011.38(6):p. 3671-7.
    36. Tsai, J.P., et al., Licochalcone A Suppresses Migration and Invasion of Human Hepatocellular Carcinoma Cells through Downregulation of MKK4/JNK via NF-kappaB Mediated Urokinase Plasminogen Activator Expression. PLoS One,2014.9(1):p. e86537.
    37. Zhou, L., et al., The significance of Notchl compared with Notch3 in high metastasis and poor overall survival in hepatocellular carcinoma. PLoS One, 2013.8(2):p. e57382.
    38. Li, X.M., et al., Significance of vascular endothelial growth factor mRNA expression in invasion and metastasis of hepatocellular carcinoma. J Exp Clin Cancer Res,1998.17(1):p.13-7.
    39. Li, J., et al., Cbx4 governs HIF-lalpha to potentiate angiogenesis of hepatocellular carcinoma by its SUMO E3 ligase activity. Cancer Cell,2014. 25(1):p.118-31.
    40. Lin, W., et al., Livistona chinensis seeds inhibit hepatocellular carcinoma angiogenesis in vivo via suppression of the Notch pathway. Oncol Rep,2014. 31(4):p.1723-8.
    41. Qin, L.X. and Z.Y. Tang, Recent progress in predictive biomarkers for metastatic recurrence of human hepatocellular carcinoma:a review of the literature. J Cancer Res Clin Oncol,2004.130(9):p.497-513.
    42. Haataja, L., J. Groffen, and N. Heisterkamp, Characterization of RAC3, a novel member of the Rho family. J Biol Chem,1997.272(33):p.20384-8.
    43. Jordan, P., et al., Cloning of a novel human Rac1b splice variant with increased expression in colorectal tumors. Oncogene,1999.18(48):p.6835-9.
    44. Malosio, M.L., et al., Differential expression of distinct members of Rho family GTP-binding proteins during neuronal development:identification of Rac1B, a new neural-specific member of the family. J Neurosci,1997.17(17): p.6717-28.
    45. Mira, J.P., et al., Endogenous, hyperactive Rac3 controls proliferation of breast cancer cells by a p21-activated kinase-dependent pathway. Proc Natl Acad Sci U S A,2000.97(1):p.185-9.
    46. Reibel, L., et al., A hemopoietic specific gene encoding a small GTP binding protein is overexpressed during T cell activation. Biochem Biophys Res Commun,1991.175(2):p.451-8.
    47. Schnelzer, A., et al., Racl in human breast cancer:overexpression, mutation analysis, and characterization of a new isoform, Raclb. Oncogene,2000. 19(26):p.3013-20.
    48. Matos, P., et al., Small GTPase Racl:structure, localization, and expression of the human gene. Biochem Biophys Res Commun,2000.277(3):p.741-51.
    49. Shirsat, N.V., et al., A member of the ras gene superfamily is expressed specifically in T, B and myeloid hemopoietic cells. Oncogene,1990.5(5):p. 769-72.
    50. Bolis, A., et al., Differential distribution of Racl and Rac3 GTPases in the developing mouse brain:implications for a role of Rac3 in Purkinje cell differentiation. Eur J Neurosci,2003.18(9):p.2417-24.
    51. Kreck, M.L., et al., Membrane association of Rac is required for high activity of the respiratory burst oxidase. Biochemistry,1996.35(49):p.15683-92.
    52. Joseph, G. and E. Pick, "Peptide walking" is a novel method for mapping functional domains in proteins. Its application to the Racl-dependent activation of NADPH oxidase. J Biol Chem,1995.270(49):p.29079-82.
    53. Williams, C.L., The polybasic region of Ras and Rho family small GTPases:a regulator of protein interactions and membrane association and a site of nuclear localization signal sequences. Cell Signal,2003.15(12):p.1071-80.
    54. Karnoub, A.E., et al., Molecular basis for Racl recognition by guanine nucleotide exchange factors. Nat Struct Biol,2001.8(12):p.1037-41.
    55. Rossman, K.L., C.J. Der, and J. Sondek, GEF means go:turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol, 2005.6(2):p.167-80.
    56. Hakoshima, T., T. Shimizu, and R. Maesaki, Structural basis of the Rho GTPase signaling. J Biochem,2003.134(3):p.327-31.
    57. Aznar, S., et al., Rho GTPases:potential candidates for anticancer therapy. Cancer Lett,2004.206(2):p.181-91.
    58. Bishop, A.L. and A. Hall, Rho GTPases and their effector proteins. Biochem J, 2000.348 Pt 2:p.241-55.
    59. Fritz, G. and B. Kaina, Rho GTPases:promising cellular targets for novel anticancer drugs. Curr Cancer Drug Targets,2006.6(1):p.1-14.
    60. Pan, Y., et al., Expression of seven main Rho family members in gastric carcinoma. Biochem Biophys Res Commun,2004.315(3):p.686-91.
    61. Fritz, G, I. Just, and B. Kaina, Rho GTPases are over-expressed in human tumors. Int J Cancer,1999.81(5):p.682-7.
    62. Soon, L.L., et al., Overexpression of WISP-1 down-regulated motility and invasion of lung cancer cells through inhibition of Rac activation. J Biol Chem, 2003.278(13):p.11465-70.
    63. Taniuchi, K., et al., Overexpressed P-cadherin/CDH3 promotes motility of pancreatic cancer cells by interacting with p120ctn and activating rho-family GTPases. Cancer Res,2005.65(8):p.3092-9.
    64. Zhang, B., Y. Zhang, and E. Shacter, Racl inhibits apoptosis in human lymphoma cells by stimulating Bad phosphorylation on Ser-75. Mol Cell Biol, 2004.24(14):p.6205-14.
    65. Yang, W., et al., Up-regulation of Tiaml and Racl correlates with poor prognosis in hepatocellular carcinoma. Jpn J Clin Oncol,2010.40(11):p. 1053-9.
    66. Liu, S., et al., Melittin prevents liver cancer cell metastasis through inhibition of the Rac1-dependent pathway. Hepatology,2008.47(6):p.1964-73.
    67. Baugher, P.J., et al., Rac1 and Rac3 isoform activation is involved in the invasive and metastatic phenotype of human breast cancer cells. Breast Cancer Res,2005.7(6):p. R965-74.
    68. Chan, A.Y., et al., Roles of the Racl and Rac3 GTPases in human tumor cell invasion. Oncogene,2005.24(53):p.7821-9.
    69. Hordijk, P.L., Regulation of NADPH oxidases:the role of Rac proteins. Circ Res,2006.98(4):p.453-62.
    70. Sierra, A., Metastases and their microenvironments:linking pathogenesis and therapy. Drug Resist Updat,2005.8(4):p.247-57.
    71. Burridge, K. and K. Wennerberg, Rho and Rac take center stage. Cell,2004. 116(2):p.167-79.
    72. Etienne-Manneville, S. and A. Hall, Rho GTPases in cell biology. Nature, 2002.420(6916):p.629-35.
    73. Ridley, A.J., et al., Cell migration:integrating signals from front to back. Science,2003.302(5651):p.1704-9.
    74. Soderling, S.H. and J.D. Scott, WAVE signalling:from biochemistry to biology. Biochem Soc Trans,2006.34(Pt 1):p.73-6.
    75. Lee, T.K., et al., Significance of the Rac signaling pathway in HCC cell motility:implications for a new therapeutic target. Carcinogenesis,2005. 26(3):p.681-7.
    76. Wang, Z.G., et al., Knockdown of Coronin-1C disrupts Racl activation and impairs tumorigenic potential in hepatocellular carcinoma cells. Oncol Rep, 2013.29(3):p.1066-72.
    77. Balasubramanian, S., et al., The interferon-gamma-induced GTPase, mGBP-2, inhibits tumor necrosis factor alpha (TNF-alpha) induction of matrix metalloproteinase-9 (MMP-9) by inhibiting NF-kappaB and Rac protein. J Biol Chem,2011.286(22):p.20054-64.
    78. Santibanez, J.F., et al., Racl modulates TGF-betal-mediated epithelial cell plasticity and MMP9 production in transformed keratinocytes. FEBS Lett, 2010.584(11):p.2305-10.
    79. Appledorn, D.M., et al., Rac1 and Cdc42 are regulators of HRasV12-transformation and angiogenic factors in human fibroblasts. BMC Cancer,2010.10:p.13.
    80. Ko, H.S., et al., Urokinase-type plasminogen activator expression and Racl/WAVE-2/Arp2/3 pathway are blocked by pterostilbene to suppress cell migration and invasion in MDA-MB-231 cells. Bioorg Med Chem Lett,2014. 24(4):p.1176-9.
    81. Han, Q., et al., Racl-MKK3-p38-MAPKAPK2 pathway promotes urokinase plasminogen activator mRNA stability in invasive breast cancer cells. J Biol Chem,2002.277(50):p.48379-85.
    82. Lee, K.H., S.W. Kim, and J.R. Kim, Reactive oxygen species regulate urokinase plasminogen activator expression and cell invasion via mitogen-activated protein kinase pathways after treatment with hepatocyte growth factor in stomach cancer cells. J Exp Clin Cancer Res,2009.28:p.73.
    83. Lee, K.H. and J.R. Kim, Reactive oxygen species regulate the generation of urokinase plasminogen activator in human hepatoma cells via MAPK pathways after treatment with hepatocyte growth factor. Exp Mol Med,2009. 41(3):p.180-8.
    84. Lee, T.K., et al., Rac activation is associated with hepatocellular carcinoma metastasis by up-regulation of vascular endothelial growth factor expression. Clin Cancer Res,2006.12(17):p.5082-9.
    85. Lee, T.K., et al., FTY720:a promising agent for treatment of metastatic hepatocellular carcinoma. Clin Cancer Res,2005.11(23):p.8458-66.
    86. Hirota, K. and G.L. Semenza, Racl activity is required for the activation of hypoxia-inducible factor 1. J Biol Chem,2001.276(24):p.21166-72.
    87. Turcotte, S., R.R. Desrosiers, and R. Beliveau, HIF-1 alpha mRNA and protein upregulation involves Rho GTPase expression during hypoxia in renal cell carcinoma. J Cell Sci,2003.116(Pt 11):p.2247-60.
    88. Wu, L., et al., MicroRNA-142-3p, a new regulator of RAC1, suppresses the migration and invasion of hepatocellular carcinoma cells. FEBS Lett,2011. 585(9):p.1322-30.
    89. Joyce, P.L. and A.D. Cox, Racl and Rac3 are targets for geranylgeranyltransferase I inhibitor-mediated inhibition of signaling, transformation, and membrane ruffling. Cancer Res,2003.63(22):p.7959-67'.
    90. Roney, K.E., et al., Plexin-B2 negatively regulates macrophage motility, Rac, and Cdc42 activation. PLoS One,2011.6(9):p. e24795.
    91. Gao, Y., et al., Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci U S A,2004.101(20):p. 7618-23.
    92. Eskelinen, E.L. and P. Saftig, Autophagy:a lysosomal degradation pathway with a central role in health and disease. Biochim Biophys Acta,2009.1793(4): p.664-73.
    93. Helminen, H.J. and J.L. Ericsson, Ultrastructural studies on prostatic involution in the rat. Mechanism of autophagy in epithelial cells, with special reference to the rough-surfaced endoplasmic reticulum. J Ultrastruct Res,1971. 36(5):p.708-24.
    94. Ericsson, J.L., Studies on induced cellular autophagy. Ⅱ. Characterization of the membranes bordering autophagosomes in parenchymal liver cells. Exp Cell Res,1969.56(2):p.393-405.
    95. Suzuki, K., et al., The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J, 2001.20(21):p.5971-81.
    96. Suzuki, K. and Y. Ohsumi, Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Lett,2007.581(11):p.2156-61.
    97. Liou, W., et al., The autophagic and endocytic pathways converge at the nascent autophagic vacuoles. J Cell Biol,1997.136(1):p.61-70.
    98. Berg, T.O., et al., Isolation and characterization of rat liver amphisomes. Evidence for fusion of autophagosomes with both early and late endosomes. J Biol Chem,1998.273(34):p.21883-92.
    99. Gordon, P.B., H. Hoyvik, and P.O. Seglen, Prelysosomal and lysosomal connections between autophagy and endocytosis. Biochem J,1992.283 (Pt 2): p.361-9.
    100. Lawrence, B.P. and W.J. Brown, Autophagic vacuoles rapidly fuse with pre-existing lysosomes in cultured hepatocytes. J Cell Sci,1992.102 (Pt 3):p. 515-26.
    101. Dunn, W.A., Jr., Studies on the mechanisms of autophagy:maturation of the autophagic vacuole. J Cell Biol,1990.110(6):p.1935-45.
    102. Punnonen, E.L., et al., Autophagic vacuoles fuse with the prelysosomal compartment in cultured rat fibroblasts. Eur J Cell Biol,1993.61(1):p.54-66.
    103. Tooze, J., et al., In exocrine pancreas, the basolateral endocytic pathway converges with the autophagic pathway immediately after the early endosome. J Cell Biol,1990.111(2):p.329-45.
    104. Fujita, N., et al., The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell,2008.19(5):p.2092-100.
    105. Hanada, T., et al., The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem,2007.282(52):p.37298-302.
    106. Sou, Y.S., et al., The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol Biol Cell,2008. 19(11):p.4762-75.
    107. Kabeya, Y., et al., LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci,2004.117(Pt 13):p. 2805-12.
    108. Reggiori, F. and D.J. Klionsky, Autophagosomes:biogenesis from scratch? Curr Opin Cell Biol,2005.17(4):p.415-22.
    109. Rosenfeldt, M.T. and K.M. Ryan, The role of autophagy in tumour development and cancer therapy. Expert Rev Mol Med,2009.11:p. e36.
    110. Kawamata, T., et al., Organization of the pre-autophagosomal structure responsible for autophagosome formation. Mol Biol Cell,2008.19(5):p. 2039-50.
    111. Mizushima, N., T. Yoshimori, and Y. Ohsumi, The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol,2011.27:p.107-32.
    112. Xie, Z. and D.J. Klionsky, Autophagosome formation:core machinery and adaptations. Nat Cell Biol,2007.9(10):p.1102-9.
    113. Maiuri, M.C., et al., Macrophage autophagy in atherosclerosis. Mediators Inflamm,2013.2013:p.584715.
    114. Funderburk, S.F., Q.J. Wang, and Z. Yue, The Beclin 1-VPS34 complex-at the crossroads of autophagy and beyond. Trends Cell Biol,2010.20(6):p.355-62.
    115. Itakura, E., et al., Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell,2008.19(12): p.5360-72.
    116. Sun, Q., et al., Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class Ⅲ phosphatidylinositol 3-kinase. Proc Natl Acad Sci U S A,2008.105(49):p.19211-6.
    117. Zhong, Y., et al., Distinct regulation of autophagic activity by Atgl4L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol,2009.11(4):p.468-76.
    118. Fimia, G.M., et al., Ambral regulates autophagy and development of the nervous system. Nature,2007.447(7148):p.1121-5.
    119. Wirth, M., J. Joachim, and S.A. Tooze, Autophagosome formation--the role of ULK1 and Beclinl-PI3KC3 complexes in setting the stage. Semin Cancer Biol, 2013.23(5):p.301-9.
    120. Williams, R.A., et al., ATG5 is essential for ATG8-dependent autophagy and mitochondrial homeostasis in Leishmania major. PLoS Pathog,2012.8(5):p. el002695.
    121. Rosenfeldt, M.T. and K.M. Ryan, The multiple roles of autophagy in cancer. Carcinogenesis,2011.32(7):p.955-63.
    122. Qu, X., et al., Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest,2003.112(12):p.1809-20.
    123. Yue, Z., et al., Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A,2003.100(25):p.15077-82.
    124. Iqbal, J., et al., Genomic analyses reveal global functional alterations that promote tumor growth and novel tumor suppressor genes in natural killer-cell malignancies. Leukemia,2009.23(6):p.1139-51.
    125. Huang, X., et al., Reduced expression of LC3B-Ⅱ and Beclin 1 in glioblastoma multiforme indicates a down-regulated autophagic capacity that relates to the progression of astrocytic tumors. J Clin Neurosci,2010.17(12): p.1515-9.
    126. Moeini, A., H. Cornella, and A. Villanueva, Emerging Signaling Pathways in Hepatocellular Carcinoma. Liver Cancer,2012.1(2):p.83-93.
    127. Xing, C, et al., Class I phosphatidylinositol 3-kinase inhibitor LY294002 activates autophagy and induces apoptosis through p53 pathway in gastric cancer cell line SGC7901. Acta Biochim Biophys Sin (Shanghai),2008.40(3): p.194-201.
    128. Motyl, T., et al., Apoptosis and autophagy in mammary gland remodeling and breast cancer chemotherapy. J Physiol Pharmacol,2006.57 Suppl 7:p.17-32.
    129. Shimizu, S., et al., Involvement of JNK in the regulation of autophagic cell death. Oncogene,2010.29(14):p.2070-82.
    130. Clarke, P.G., Developmental cell death:morphological diversity and multiple mechanisms. Anat Embryol (Berl),1990.181(3):p.195-213.
    131. Bursch, W.. et al., Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture:the role of autophagy. Carcinogenesis,1996.17(8):p.1595-607.
    132. Jin, S., p53, Autophagy and tumor suppression. Autophagy,2005.1(3):p. 171-3.
    133. Inbal, B., et al., DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J Cell Biol, 2002.157(3):p.455-68.
    134. Arico, S., et al., The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem,2001.276(38):p.35243-6.
    135. Byun, J.Y., et al., The Racl/MKK7/JNK pathway signals upregulation of Atg5 and subsequent autophagic cell death in response to oncogenic Ras. Carcinogenesis,2009.30(11):p.1880-8.
    136. Aguilera, M.O., W. Beron, and M.I. Colombo, The actin cytoskeleton participates in the early events of autophagosome formation upon starvation induced autophagy. Autophagy,2012.8(11):p.1590-603.
    137. Saci, A., L.C. Cantley, and C.L. Carpenter, Racl regulates the activity of mTORC1 and mTORC2 and controls cellular size. Mol Cell,2011.42(1):p. 50-61.
    138. Wei, Y.M., et al., Enhancement of autophagy by simvastatin through inhibition of Racl-mTOR signaling pathway in coronary arterial myocytes. Cell Physiol Biochem,2013.31(6):p.925-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700