用户名: 密码: 验证码:
裸露潮间带表观CO_2通量的变化规律
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种特殊类型湿地的重要组成部分,裸露潮间带表观CO2通量研究对于开展及完善潮间带碳循环研究意义重大,正确认识裸露潮间带沉积物-大气间表观CO2交换特征及其所受环境因素的影响是潮间带碳循环研究的重要补充之一。本研究使用Li-8100土壤碳通量测量系统(Licor,USA)首次对我国北方裸露潮间带表观二氧化碳(CO2)通量进行了现场观测。根据对石老人风景区裸露砂质潮间带沉积物-大气间表观CO2通量进行的长时间连续观测,总结裸露潮间带沉积物-大气间表观CO2通量变化规律如下:在春、夏、秋三个季节日间,沉积物-大气间表观CO2通量随着落潮慢慢升高,到最低潮时表观CO2释放通量基本达到最大,并延续至涨潮的全过程,表观CO2通量一直稳定在最大测值附近;而在冬季日间,由于表层沉积物温度较低,沉积物-大气间表观CO2通量不论在退潮期间还是在涨潮期间一直维持在较低水平,没有明显的日间变化;由于夜间潮间带表层沉积物温度比日间低且表层沉积物温度自入夜后一直下降,沉积物-大气间表观CO2通量一直维持在较低水平,没有明显的夜间变化。在潮间带不同位置的观测显示,潮间带中部沉积物-大气间CO2通量>潮间带顶部>潮间带底部。对于青岛湾潮间带和胶州湾底潮间带的观测显示,两处潮间带沉积物-大气间表观CO2通量具有与石老人潮间带相同的日间变化规律。
     潮汐水位、表层沉积物氧化还原电位、温度是影响沉积物-大气间表观CO2通量日变化的重要环境因素。潮汐水位主要影响日间落潮阶段表观CO2通量的变化;表层氧化还原电位会影响日间落潮阶段表观CO2通量对潮高的变化率,同时也影响低氧化还原电位下日间涨潮阶段表观CO2通量平均值的高低;表层沉积物温度会影响高氧化还原电位下日间涨潮阶段表观CO2通量平均值的高低,此外,表层沉积物温度的日夜差别造成了表观CO2通量的日夜差别。
     由于裸露潮间带沉积物-大气间表观CO2通量日间变化明显,所以测量裸露潮间带沉积物-大气间日间表观CO2通量总量需要长时间的观测。为节省大面积观测所需时间,本研究根据露潮间带沉积物-大气间表观CO2通量日间变化规律及环境因素的影响,归纳出利用较少观测数据计算日间表观CO2通量总量的方法。该方法计算得到的日间表观CO2通量总量对实测结果的线性回归方程为y=0.9353x+0.00872(R2 = 0.75,n=432)。
     裸露潮间带沉积物-大气间表观CO2通量日间平均值存在明显的月变化,而表层沉积物氧化还原电位和温度的月变化是造成表观CO2通量月变化的主要因素。低氧化还原电位(如Eh<300mv)下,氧化还原电位为影响表观CO2通量月变化最主要的环境因素,高氧化还原电位(300mv     以Van’t Hoff方程为基础的包含表层沉积物氧化还原电位和温度日间平均值两个自变量的多元方程F = ( aEh + R0 ') ekT(式中F为表观CO2释放通量,a为表层氧化还原电位对表观CO2释放通量影响的参数,Eh为1cm深处沉积物氧化还原电位,R0’为归一化至0℃、0mv时CO2释放通量,k为用于计算表观CO2释放通量温度敏感性Q10的参数,T为1cm深处沉积物温度)能够较好的拟合沉积物-大气间表观CO2通量日间平均值的月变化。
The research on the apparent CO2 flux in the bare intertidal zone which is an important compose of an especial kind of wetland is of consequence. Understanding the variety of the apparent CO2 flux in the bare intertidal zone and the influence from the environmental factors correctly is one of the important complementarities for the research on intertidal carbon cycle. Using a Li-8100 automated soil CO2 flux system (Licor, Lincoln, Nebraska, USA), this work observed the apparent CO2 flux from the sedinment to the atmosphere in situ in the bare intertidal zone in northern China for the first time. According to the long-term observation on the apparent CO2 flux from the sedinment to the atmosphere in the bare sandy intertidal zone in the Laoshan Mountain Scenic Area, Qingdao, sum up the variety of the apparent CO2 flux as follows: during the daytime in the spring, summer and the autumn, the apparent CO2 flux between the sediment and the atmosphere gradually increased as tide ebbed, reached the maximum when the tide reached its lowest ebb and remained at the maximum during the flood tide; however, during the daytime in the winter, the apparent CO2 flux between the sediment and the atmosphere was low in both the ebb tide and the flood tide without obvious variety because the sediment temperature was lower; the apparent CO2 flux between the sediment and the atmosphere was low without obvious variety in the evening because the he sediment temperature was lower in the evening than in the daytime and decreased at all times in the evening. In addition, according to the observation at different position in the same intertidal zone(in the Laoshan Mountain Scenic Area, Qingdao), the apparent CO2 flux in the middle of the intertidal zone>the apparent CO2 flux at the top of the intertidal zone>the apparent CO2 flux at the bottom of the intertidal zone. It was shown that the daytime variety of the apparent CO2 flux between the sediment and the atmosphere in the Qingdao bay and Jiaozhou bay was the same as that in the Laoshan Mountain Scenic Area, Qingdao.
     Tide, sediment redox potential and temperature were the main environmental factors impacting the apparent CO2 flux from intertidal sediments to the atmosphere. The tide mainly impacted the apparent CO2 flux in the daytime ebb tide; the sediment redox potential didn’t only impact the rate in which the apparent CO2 flux changed with the height to tide in the daytime ebb tide but also impacted the average apparent CO2 flux in the daytime flood tide when the sediment redox potential was low; the sediment temperature impacted the average apparent CO2 flux in the daytime flood tide when the sediment redox potential was high, in addition, the low sediment temperaure induced to the low apparent CO2 flux in the evening.
     Observing the total apparent CO2 flux from the sediment to the atmosphere in the daytime needs lots of time because of the obvious daytime vaiety of the apparent CO2 flux. This work summed up the method which can be used to estimate the total daytime apparent CO2 flux with a few of data based on the variety of the apparent CO2 and the influnce from environment factors. The linear regression between the estimated and measured apparent CO2 fluxes was y= 0.9353x+0.0872(R2 = 0.75).
     The monthly variety of the daytime average apparent CO2 flux was obvious, and redox potential and temperature were two main factors impacting the diurnal apparent CO2 flux from intertidal sediments to the atmosphere. When the redox potential was below 300 mv, the redox potential was the key factor controlling apparent CO2 flux while the impact of temperature was limited; when redox potential ranged from 300 to 500 mv, both redox potential and temperature were main factors regulating the variation in apparent CO2 flux, with more important role of temperature than redox potential; when the redox potential was above 500 mv, the apparent CO2 flux was high because both the redox potential and temperature were high, while the impact of the variation in redox potential at this high value on apparent CO2 flux was limited, thus leaving temperature variation the sole important influencing factor. Thus, the higher the redox potential and temperature are, the higher the apparent CO2 flux from sandy intertidal sediment to the atmosphere.
     The equation F = ( aEh + R0 ') ekT including both the redox potential and temperature based on Van’t Hoff equation could estimate the the daytime average apparent CO2 flux better. In this equation, F is the daytime average apparent CO2 flux, a is the rate in which the apparent CO2 flux changes with redox potential, Eh is the redox potential at the depht of 1cm, R0’is the apparent CO2 flux at 0℃and 0mv, k is a canstant and can be used to calculate Q10, T is the temperature at the depth of 1cm.
引文
[1] Etheridge D M, Steele L P, Langenfelds R L, et al. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn.[J]. J. Geophys. Res., [Atmos.]. 1996, 101(D2): 4115-4128.
    [2] Fang C, Moncrieff J B. The dependence of soil CO2 efflux on temperature[J]. Soil Biology and Biochemistry. 2001, 33(2): 155-165.
    [3]张向上.黄河口碳输运过程及其对莱州湾的影响[D].山东青岛:中国海洋大学, 2008.
    [4] Crutzen P J, Ramanathan V. The ascent of atmospheric sciences[J]. Science. 2000(290): 299-304.
    [5]陈泮勤,黄耀,于贵瑞等.地球系统碳循环[M].北京:科学出版社, 2004, 357-358.
    [6]陈泮勤等.国际全球变化研究核心计划(二)[M].北京:气象出版社, 1994, 90-130.
    [7]吕宪国,何岩,杨青.湿地碳循环在全球变化中的响应。见:陈宜瑜主编。中国湿地研究[M].北京:科学出版社, 1995, 68-71.
    [8]陈宜瑜.中国全球变化的研究方向[J].地球科学进展. 1999(04): 319-323.
    [9]王凯雄,姚铭,许利君.全球变化研究热点——碳循环[J].浙江大学学报(农业与生命科学版). 2001(05): 473-478.
    [10]李兆富,吕宪国,杨青.湿地土壤CO2通量研究进展[J].生态学杂志. 2002(06): 47-50.
    [11] Wang Z A, Cai W. Carbon dioxide degassing and inorganic carbon export from a marsh-dominated estuary (the Duplin River): A marsh CO2 pump.[J]. Limnol. Oceanogr. 2004, 49(2): 341-354.
    [12] Liu J, Zhou H, Qin P, et al. Effects of Spartina alterniflora salt marshes on organic carbon acquisition in intertidal zones of Jiangsu Province, China[J]. Ecological Engineering. 2007, 30(3): 240-249.
    [13] Mei X, Zhang X. Carbon storage and carbon fixation during ecological succession of natural vegetation in wetland on east beach of Chongming island.[J]. Yingyong Shengtai Xuebao. 2007, 18(4): 933-936.
    [14] Fejes E, Roelke D, Gable G, et al. Microalgal productivity, community composition, and pelagic food web dynamics in a subtropical, turbid salt marsh isolated from freshwater inflow.[J].Estuaries. 2005, 28(1): 96-107.
    [15] Rodil I F, Lastra M, Lopez J. Macroinfauna community structure and biochemical composition of sedimentary organic matter along a gradient of wave exposure in sandy beaches (NW Spain).[J]. Hydrobiologia. 2007, 579: 301-316.
    [16] Incera M, Cividanes S P, Lastra M, et al. Temporal and spatial variability of sedimentary organic matter in sandy beaches on the northwest coast of the Iberian Peninsula.[J]. Estuarine, Coastal Shelf Sci. 2003, 58(Suppl.): 55-61.
    [17] Eddins S G N, Williams D F, Simeonov V, et al. Sources of organic carbon in bottom sediments in an Atlantic coastal plain estuary.[J]. Chem. Inz. Ekol. 2004, 11(10): 1023-1037.
    [18] Fabiano M, Marin V, Misic C, et al. Sedimentary organic matter and bacterial community in microtidal mixed beaches of the Ligurian Sea (NW Mediterranean).[J]. Chem. Ecol. 2004, 20(6): 423-435.
    [19] Duarte C M, Middelburg J J, Caraco N. Major role of marine vegetation on the oceanic carbon cycle.[J]. Biogeosciences. 2005, 2(1): 1-8.
    [20] Spilmont N, Migne A, Lefebvre A, et al. Temporal variability of intertidal benthic metabolism under emersed conditions in an exposed sandy beach (Wimereux, eastern English Channel, France).[J]. J. Sea Res. 2005, 53(3): 161-167.
    [21] Zhou J, Wu Y, Zhang J, et al. Carbon and nitrogen composition and stable isotope as potential indicators of source and fate of organic matter in the salt marsh of the Changjiang Estuary, China.[J]. Chemosphere. 2006, 65(2): 310-317.
    [22] Zhou J, Wu Y, Zhang J, et al. Study on putrefaction and decomposition process of Scirpus triqueter on the Changjiang estuary tidal flat.[J]. Haiyang Kexue Jinzhan. 2006, 24(1): 44-50.
    [23] Wang X, Litz L, Chen R F, et al. Release of dissolved organic matter during oxic and anoxic decomposition of salt marsh cordgrass.[J]. Mar. Chem. 2007, 105(3-4): 309-321.
    [24] Heymans J J, Mclachlan A. Carbon budget and network analysis of a high-energy beach/surf-zone ecosystem.[J]. Estuarine, Coastal Shelf Sci. 1996, 43(4): 485-505.
    [25] Cacador I, Costa A L, Vale C. Carbon Storage in Tagus Salt Marsh Sediments.[J]. Water, Air, Soil Pollut.: Focus. 2004, 4(2-3): 701-714.
    [26] Magenheimer J F, Moore T R, Chmura G L, et al. Methane and carbon dioxide flux from a macrotidal salt marsh, Bay of Fundy, New Brunswick.[J]. Estuaries. 1996, 19(1): 139-145.
    [27] Hirota M, Senga Y, Seike Y, et al. Fluxes of carbon dioxide, methane and nitrous oxide in two contrastive fringing zones of coastal lagoon, Lake Nakaumi, Japan.[J]. Chemosphere. 2007, 68(3): 597-603.
    [28]杨红霞,王东启,陈振楼等.长江口潮滩湿地-大气界面碳通量特征[J].环境科学学报. 2006(04): 667-672.
    [29]杨红霞,王东启,陈振楼等.长江口崇明东滩潮间带温室气体排放初步研究[J].海洋环境科学. 2006(04): 20-23.
    [30]王东启,陈振楼,王军等.夏季长江口潮间带CH4、CO2和N2O通量特征[J].地球化学. 2007(01): 78-88.
    [31]林而达,郭李萍.减缓全球变暖与温室气体吸收汇研究进展[J].地球科学进展. 1999(04): 54-61.
    [32] Ipcc. Climate Change 2001: the Scientific Basis[M]. Combrige, Newyork:Combridge University Press, 2001.
    [33]朱岳年,吴新年.二氧化碳地质研究[M].兰州:兰州大学出版社, 1994, 1-13.
    [34]袁道先.中国岩溶学[M].北京:地质出版社, 1993.
    [35]刘明柱,张永祥,陈鸿汉.吉林省吊水壶岩溶区碳循环研究[J].中国岩溶. 1999(02): 71-78.
    [36]曹玉清,胡宽,张永祥.岩溶化学环境水文地质学[M].长春:吉林大学出版社, 1994.
    [37]曹明奎,李克让.陆地生态系统与气候相互作用的研究进展[J].地球科学进展. 2000(04): 91-98.
    [38] Ludwig W, Probst J, Kempe S. Predicting the Oceanic Input of Organic Carbon by Continental Erosion[J]. Global Biogeochemistry Cycle. 1996, 10(1): 23-41.
    [39]高全洲,沈承德.河流碳通量与陆地侵蚀研究[J].地球科学进展. 1998(04): 100-107.
    [40]宋金明,徐亚岩,张英等.中国海洋生物地球化学过程研究的最新进展[J].海洋科学. 2006(02).
    [41] Siegenthaler U, Sarmiento J I. Atmospheric carbon dioxide and the ocean[J]. Nature. 1993(365): 119-125.
    [42] Sundquist E T. Budgets of global carbon dioxide[J]. Science. 1993(259): 934-940.
    [43] Caise P, Trans P P, Trolier M. A large northern hemisphere terristrial CO2 sink indicated by the 13C/ 12C ratio of atmospheric CO2[J]. Science. 1995(269): 1098-1101.
    [44]张晓龙,李培英,李萍等.中国滨海湿地研究现状与展望[J].海洋科学进展. 2005(01): 87-95.
    [45]李海涛,沈文清,刘琪璟等.湿地生态系统的碳循环研究进展[J].江西科学. 2003(03): 160-167.
    [46]宋长春.湿地生态系统碳循环研究进展[J].地理科学. 2003(05): 622-628.
    [47] Zhang Y, Li C, Trettin C C, et al. Modelling soil carbon dynamics of forested wetlands[C]. Intemational Peat Society, 1999.
    [48] Bartlett K B, Harriss R C. Review and assessment of methane emissions from wetlands[J]. Chemosphere. 1993, 26(1-4): 261-320.
    [49]张文菊,童成立,吴金水等.典型湿地生态系统碳循环模拟与预测[J].环境科学. 2007(09): 1905-1911.
    [50]张文菊,童成立,赵世伟等.湿地碳循环过程与计算机模拟研究[J].西北植物学报. 2003(06): 1049-1055.
    [51] Elliott W M, Elliott N B, Wyman R L. Relative effect of litter and forest type on rate of decomposition[J]. American Midland Naturalist. 1993, 129(1): 87-95.
    [52] Morris J T, Bradley P M. Effects of nutrient loading on the carbon balance of coastal wetland sediments[J]. Limnology and Oceanography. 1999, 44(3): 699-702.
    [53] Hou A X, Chen G X, Wang Z P, et al. Methane and nitrous oxide emissions from a rice field in relation to soil redox and microbiological[J]. Soil Science Sciety of America Journal. 2000(64): 2180-2186.
    [54]王宪礼.我国自然湿地的基本特点[J].生态学杂志. 1997(04): 622-628.
    [55] Kang H, Freeman C, Lee D, et al. Enzyme activities in constructed wetlands: Implication for water quality amelioration[J]. 1998, 368(1): 231-235.
    [56]张金屯.全球气候变化对自然土壤碳、氮循环的影响[J].地理科学. 1998(05): 262-268.
    [57] Singh J, Gupta S. Plant decomposition and soil respiration in terrestrial ecosystems[J]. 1977, 43(4): 449-528.
    [58] Delaune R D, Reddy C N, Patrick W H. Organic matter decomposition in soil as influenced by pH and redox conditions[J]. Soil Biology and Biochemistry. 1981, 13(6): 533-534.
    [59]马安娜,陆健健.湿地生态系统碳通量研究进展[J]. 2008(02): 116-123.
    [60] Kang H, Freeman C. The Influence of Hydrochemistry on Methane Emissions from TwoContrasting Northern Wetlands[J]. 2002, 141(1): 263-272.
    [61]宋长春,张丽华.淡水沼泽湿地CO2、CH4和N2O排放通量年际变化及其对氮输入的响应[J].环境科学. 2006(12): 2369-2375.
    [62]宋长春,王毅勇,王跃思等.季节性冻融期沼泽湿地CO2、CH4和N2O排放动态[J].环境科学. 2005(04).
    [63] Alm J, Saarnio S, Nyk?nen H, et al. Winter CO2, CH4 and N2O fluxes on some natural and drained boreal peatlands[J]. 1999, 44(2): 163-186.
    [64]王德宣,宋长春.若尔盖高原沼泽湿地与草地二氧化碳通量的比较[J].应用生态学报. 2008(02): 285-289.
    [65]王德宣,宋长春.若尔盖高原泥炭沼泽湿地CO2呼吸通量特征[J].生态环境. 2005(06): 880-883.
    [66] Koizumi H, Nakadai T, Usami Y, et al. Effect of carbon dioxide concentration on microbial respiration in soil[J]. Ecological Research. 1991, 6(3): 227-232.
    [67]杜睿,王庚辰,吕达仁等.箱法在草地温室气体通量野外实验观测中的应用研究[J].大气科学. 2001(01): 61-70.
    [68] Nakayama F. Soil respiration[J]. Remote Sensing Review. 1990(5): 311-321.
    [69] Dugas W A. Micrometeorological and chamber measurements of CO2 flux from bare soil[J]. Agricultural and Forest Meteorology. 1993, 67(1-2): 115-128.
    [70]温学发,孙晓敏,刘允芬等.线性和指数回归方法对土壤呼吸CO2扩散速率估算的影响[J].植物生态学报. 2007(03): 380-385.
    [71]王明星.中国稻田甲烷排放[M].北京:科学出版社, 2001: 165-172.
    [72] Luo Y, Wan S, Hui D, et al. Acclimatization of soil respiration to warming in a tall grass prairie.[J]. Nature (London, U. K.). 2001, 413(6856): 622-625.
    [73] Yim M H, Joo S J, Nakane K. Comparison of field methods for measuring soil respiration: a static alkali absorption method and two dynamic closed chamber methods[J]. Forest Ecology and Management. 2002, 170(1-3): 189-197.
    [74]高程达;孙向阳;栾亚宁.土壤表面CO2通量的原位测定方法[J].土壤通报. 2008(03): 718-720.
    [75]崔玉亭,韩纯儒,卢进登.集约高产农业生态系统有机物分解及土壤呼吸动态研究[J].应用生态学报. 1997(01): 672-679.
    [105] Smith V R. Soil respiration and its determinants on a sub-Antarctic island[J]. Soil Biology and Biochemistry. 2003, 35(1): 77-91.
    [106] Sjogersten S, Wookey P A. Climatic and resource quality controls on soil respiration across a forest-tundra ecotone in Swedish Lapland[J]. Soil Biology and Biochemistry. 2002, 34(11): 1633-1646.
    [107] Blanke M M. Soil respiration in an apple orchard[J]. Environmental and Experimental Botany. 1996, 36(3): 339-341.
    [108] Cao G, Tang Y, Mo W, et al. Grazing intensity alters soil respiration in an alpine meadow on the Tibetan plateau[J]. Soil Biology and Biochemistry. 2004, 36(2): 237-243.
    [109] Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate.[J]. Tellus, Ser. B. 1992, 44B(2): 81-99.
    [110]程声通.环境系统分析教程[M].北京:化学工业出版社, 2006: 25-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700