用户名: 密码: 验证码:
废水生物处理过程的紫外与荧光光谱解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
废水生物处理反应器中污染物和污泥的成份复杂,而传统的化学分析方法已不能满足其实时在线监测的需要。光谱法具有非接触监测、不消耗试剂、能在线原位测定等优点,是具有应用前景的生物反应器监控方法。
     本论文研究引入化学计量学解析所获得的紫外与荧光光谱,提取好氧反应器、厌氧反应器、微生物燃料电池和细菌菌液样品的光谱信息,并建立它们与反应器过程参数之间的联系,旨在构建基于紫外和荧光光谱表征生物反应器参数和运行状态的方法。主要研究内容和结果如下:
     1、利用偏最小二乘法建立了硝化反应器出水的紫外光谱与硝酸盐和亚硝酸盐浓度的关系模型,探讨了偏最小二乘法解析反应器出水重叠严重光谱的可行性;以微生物产生的四种荧光物质(色氨酸、酪氨酸、维生素B6和辅酶NADH)为研究对象,证实了平行因子法解析重叠严重的荧光光谱的可行性,该方法还可以获得样品中各荧光组分的激发发射光谱和相对浓度。
     2、利用三维荧光光谱分别表征了好氧反应器中的溶解性微生物产物、污泥胞内物质以及胞外聚合物,并利用平行因子分析法对荧光光谱进行了解析,获取了其反应历程中的浓度变化。胞内物质中的荧光成分主要是蛋白和辅酶NADH,其浓度与反应器状态有密切联系,胞内蛋白与VSS成线性相关,而胞内NADH与底物比增长速率相关;溶解性微生物产物中的荧光成分主要是蛋白、类富里酸和类胡敏酸物质,反应器的状态参数与溶解性微生物产物的生成可以用Leudeking-Piret方程来描述;蛋白和类胡敏酸的产生主要与底物利用相关,而类富里酸的产生则是与非生长相关的;胞外聚合物中的荧光成分主要是蛋白和类富里酸物质;好氧反应器中泥水混合液的荧光在线测定可以反映污泥浓度的高低,但是无法反映底物加入的影响,倍增管高压、光纤耦合效率和外界光源的影响都是在线测定需要考虑的因素。
     3、研究了间歇厌氧产氢反应器过程的三维荧光光谱,发现蛋白和NADH是该过程产生的主要荧光物质,其强度得分之比与氢气分压之间存在着量化关系;高温厌氧产氢反应器出水的三维荧光光谱的分析结果表明,蛋白、NADH和核黄素是该反应器主要的荧光物质,并获得了光谱分析结果对反应器工艺参数(水力停留时间、底物浓度和温度)的响应关系,发现NADH的相对浓度与氢气分压具有很好的一致性;建立了定量测定了高温厌氧反应器出水中的三种荧光物质的标准加入法。
     4、研究了微生物燃料电池反应过程的紫外与荧光光谱变化。伴随着微生物燃料电池的产电过程,产电微生物释放出的产物导致UV_254吸收值总体增加;这些产物中蛋白和类富里酸是主要荧光物质,蛋白峰主要源于蛋白内色氨酸残基的贡献,而类富里酸可能源于一些辅酶或富里酸物质的贡献;Fe~(2+)的投加有助于燃料电池的产电,并出现荧光物质的浓度变化。
     5、利用米散射理论计算了不同折射率条件下米散射系数与无因次粒径的关系,并且分别对细菌结构所引起的消光光谱进行了计算;以模拟细菌的聚苯乙烯小球为例,用米散射结合Levenberg-Marquart最小二乘法对其紫外消光光谱进行了解析,并估计出其粒径和浓度;初步探索了巨大芽孢杆菌的多波长消光光谱。
The biological wastewater treatment reactors with various pollutants and microorganisms are complex systems. Conventional chemical analysis can not meet the requirement of real-time and on-line monitoring of bioreactors. Spectrometry method is a non-invasive and regent-free one, and can be performed on-line and in situ. Thus, it is a promising method for monitoring the bioreactor.
     In this study the chemometrical method was introduced to decompose the spectra of microorganisms and the effluents from various bioreactors, including aerobic, anaerobic, and nitrifying bioreactors and a microbial fuel cell (MFC). The information was drawn and related to the bioreactor process parameters. The main objective of this work was to develop a new method of characterizing the parameter and status of bioreactors, based on UV/Vis and fluorescence spectra. Main contents and results are as follows:
     In Chapter 2, the correlation model was established between the UV spectra and the concentrations of nitrate and nitriate from a mtrifying reactor. The feasibility of decomposing the overlapped spectra by partial least squares (PLS) was verified. Taking the four biogenic fluorophores as an example, the feasibility of decomposing the severely overlapped fluorescence spectra by parallel factor analysis (PARAFAC) was verified. The information about the relative concentration, the excitation and emission spectra was obtained.
     In Chapter 3, the excitation-emission matrix (EEM) fluorescence spectra were used to characterize the soluble microbial products (SMP), intracellular substances and extracellular polymer substances (EPS). PARAFAC was applied to extract the pure spectra from the overlapped spectra. Results show that proteins and nicotinamide adenine dinucleotide, reduced form (NADH), were identified as the two main intracellular fluorophores in the intracellular substances. The fluorescence intensity scores of the intracellular fluorophores were closely related to the bioreactor performance. The profiles of the intracellular proteins were similar to those of volatile suspended solids (VSS), and the intracellular NADH was correlated to the specific substrate degradation rate. Three main components, i.e., proteins, fulvic- and humic-like substances, were identified from the SMP. Their fluorescence intensity scores of the three fluophores in the SMP could be connected with process parameters through the Leudeking-Piret equation. The extracellular proteins and humic-like substances were substrate-utilization-associated, and that the fulvic-like substances were non-growth-associated. Proteins and fulvic-like substances were identified as the two main fluorophores in the EPS. The on-line monitoring data of the mixture in the reactor were able to reflect the variation of the sludge concentration, but failed to reflect the effect of substrate addition. The voltage of the photomultiplier tube (PMT), the coupling efficiency of the fiber optics and the influence of the circumstance lightshould be taken into account.
     In Chapter 4, the EEM of an anaerobic H_2-producing batch reactor were explored,and the main fluorophores of the reactor effluents were proteins and NADH. The ratio of the fluorescence intensity scores of the two fluorophores was related to the H_2 partial pressure, and the relationship between them could be expressed using a non-liner equation. The EEM fluorescence spectra of the effluents from a thermophilic upflow anaerobic sludge bed (UASB)H_2-producing reactor were also explored. Proteins, NADH and riboflavin were the main fluorophores. The effects of hydraulic retention time, substrate concentration and temperature on the bioreactor performance were evaluated, and the response of the three fluorophores scores was also explored. The profiles of the NADH scores were related to the variation of the H_2 partial pressure. Standard addition method was used to quantitatively determinate the concentration of these three fluorophores from the UASB effluents.
     In Chapter 5, the variation of the UV and fluorescence spectra from an MFC was investigated. Accompanied with the reaction in the microbial fuel cell, the microorganisms released some microbial products, which led to an increase in UV_(254). Proteins and fulvic-like substances were identified as the main fluorophores by decomposing the EEM fluorescence spectra of the MFC with PARAFAC. The protein fluorescence was attributed to the tryptophane residues of the proteins, while the fulvic-like substances might be attributed to the coenzyme and fulvic acid. The dose of Fe~(2+) promoted the electrogenesis of the MFC, and the profiles of the fluorophores were different from those of the control.
     In Chapter 6, Mie scattering theory was used to calculated the extinction coefficient as a function of dimensionless radius at different reflection indexes. The extinction spectra produced by the macrostructure and internal structure were also calculated as a function of wavelength. Taking the polystyrene pellet as an example, levenberg-marquart least squares coupled with the Mie theory were used to calculate the extinction spectrum, and the radius and concentration were estimated. The UV/Vis spectra of Bacillus megaterium was explored.
引文
[1]Thomas O.1996.Wastewater quality monitoring.Trends Anal.Chem.16(7):419-424.
    [2]Reynolds D.M.,Ahmad S.R.,1997.Rapid and direct determination of wastewater BOD values using a fluorescence technique.Water Res.31,2012-2018.
    [3]Ahmad S.R.,Reynolds D.M.1999.Monitoring of water quality using fluorescence technique:prospect of on-line process control.Water Res.33(9):2069-2074.
    [4]Pons,M.N.,Bonte,S.L.,Potier,O.,2004.Spectral analysis and fingerprinting for biomedia characterisation.J.Biotechnol.113,211-230.
    [5]朱明华.1999.仪器分析.高等教育出版社.
    [6]Van de Hulst H.C.1957.Light scattering by small particles.Wiley,New York.
    [7]Kerker M.1969 The Scattering of Light and Other Electromagnetic Radiation.Academic,New York.
    [8]Alupoaei,C.E.,Garcia-Rubio L.H.2004.Growth behavior of microorganisms using UV-Vis spectroscopy.Biotechnol.Bioeng.86(2)163-167.
    [9]Mattley Y.D.,Garcia-Rubio L.H.2001.Multiwavelength spectroscopy for the detection,identification and quantification of cells.Proc.of SPIE.4206:64-70
    [10]Khorassani,H.E.,Trebuchon,P.,Bitar,H.,Thomas,O.,1999.A simple UV spectrophotometric procedure for the survey of industrial sewage system.Water Sci.Technol.39,77-82.
    [11]Thomas O.1996.Wastewater quality monitoring.Trends Anal.Chem.16(7):419-424.
    [12]Matsche N.,Stumwohrer K.1996.UV absorption as control parameter for biological treatment plants.Wat.Sci.Tech.33(12):211-218.
    [13]Langergraber G.,Gleischmann N.,Hofstadter F.2003.A multivariate calibration procedure for UV/Vis spectrometric quantification of organic matter and nitrate in wastewater.Wat.Sci.Tech.47(2):63-71.
    [14]王乃宁等.2000.颗粒粒径的光学测量技术及应用.北京:原子能出版社
    [15]王清华.2003.光散射法颗粒大小与形状分析.南京.南京工业大学博士论文.
    [16]郑刚,张志伟,蔡小舒,等.1998.颗粒浓度及粒度的光散射在线测量.中国激光.25(3):285-288.
    [17]刘铁英,张志伟,郑刚,等.1998颗粒尺寸在线测量的光透消光法,光学仪器,20.
    [18]徐贯东,王乃宁.1997.多波长散射光通量法测颗粒尺寸分布的实验研究.应用激光.17(2):61-64.
    [19]苏明旭,王夕华,黄有贵,等.2006.LM优化算法在消光法测粒技术中的应用.26(8)增刊63-65.
    [20]张杰.2006.具有复折射率微粒的Mie散射光学特性研究.光散射学报.17(4)359-365.
    [21]Alupoaei,C.E.,Garcia-Rubio L.H.2004.Growth behavior of microorganisms using UV-Vis spectroscopy.Biotechnol.Bioeng.86(2):163-167.
    [22]Callahan M.R.,Rose J.B.,Garcia-Rubio L.H.2003.Use of multiwavelength transmission spectroscopy for the characterization of cryptosporidium parvum oocyst:quantitative interpretation.Environ.Sci.Tech.37:5254-5261.
    [23]Garcia-Rubio L.H.,Alupoaei C.E.,Olivares J.,et al.2004.A new spectroscopy method for in-situ rapid detection and classification for microorganisms.Proc.of SPIE.5585:88-97.
    [24]Mattley Y.D.,Garcia-Rubio L.H.2001.Multiwavelength spectroscopy for the detection,identification and quantification of cells.Proc.of SPIE.4206:64-70
    [25]许金钩,王尊本.2006.荧光分析法.科学出版社.
    [26]刘志宏,蔡汝秀.2000.三维荧光光谱技术分析应用进展.分析科学学报.16(6):516-523.
    [27]Baker A.2002.Spectrophotometric discrimination of river dissolved organic matter.Hydrol.Process 16:3203-3213.
    [28]Baker A.,Ward W.,Lieten S.H.2004.Measurement of protein-like fluorescence in river and wastewater using a handheld spectrophotometer.38:2934-2938.
    [29]Baker A.,2002.Fluorescence Excitation-Emission Matrix Characterization of River Waters Impacted by a Tissue Mill Effluent.36(7):1377-1382.
    [30]Harrison,D.E.F.,Chance,B.,1970.Fluorometric technique for monitoring changes in the level of reduced nicotinamide nucleotides in continuous culture of microorganisms.Appl.Microbiol.19:446-449.
    [31]Lindemann C.,Marose S.,Nielsen H.O.,Scheper T.1998.2-Dimensional fluorescence spectroscopy for on-line bioprocess monitoring.Sens.Actuators,B.51:273-277.
    [32]Stark E.,Hitzmann B.,Schuger K.et al.2002.In-Situ-Fluorescence-Probes:A Useful Tool for Non-invasive Bioprocess Monitoring.Adv.Biochem.Eng./Biotechnol.74:21-38.
    [33]Skibsted E.,Lindemann C.,Roca C.2001.On-line bioprocess monitoring with a multi-wavelength fluorescence sensor using multivariate calibration.J.Biotechnol.88:47-57.
    [34]Wolf,G.,Almeida,J.S.,Pinheiro,C.,Correia,V.,Rodrigues,C.,Reis,M.A.M.,Crespo,J.G.,2001.Two-dimensional fluorometry coupled with artificial neural networks:a novel method for on-line monitoring of complex biological processes.Biotechnol.Bioeng.72:297-306.
    [35]Wolf,G.,Almeida,J.S.,Crespo,J.G.,Reis,M.A.M,2007.An improved method for two-dimensional fluorescence monitoring of complex bioreactors.J.Biotechnol.128:801-812
    [36]Saurina J.,Compano C.L.R,Granados M.2000.Determination of triphenyltin in sea-water by excitation-emission matrix fluorescence and multivariate curve resolution.Anal.Chim.Acta 409:237-245.
    [1]俞汝勤.1991.化学计量学导论[M].长沙:湖南教育出版社.
    [2]陆晓华.1997.化学计量学[M].武汉:华中理工大学出版社.
    [3]李志良,石乐明,李梦龙,等.1991化学计量学在我国光度分析中的进展.分析化学.18(5):588-595.
    [4]国家环保局《水和废水监测分析方法》编委会.1989.水和废水监测分析方法.中国环境科学出版社.
    [5]任金响,王英滨,黄益溢,等.2005.导数-比导数紫外分光光度法同时测量水样中硝酸根和亚硝酸根的含量.光谱实验室.22(6):1249-1253.
    [6]Wold,H.1966.Estimation of principal components and related models by iterative least squares.In P.R.Krishnaiaah(Ed.).Multivariate Analysis.(pp.391-420)New York:Acade
    [7]Wold,S.2001.Personal memories of the early PLS development.Chemometrics and Intelligent Laboratory Systems,58,83-84.Vogt F,Tacke M,Jakusch M,et al.2000.A UV spectroscopic method for monitoring aromatic hydrocarbons dissolved in water.Anal.Chim.Acta 422:187-198.
    [8]Helland I.S.1990.PLS regression and statisticalmodels.Scand.J.Statistics.,17:97-114.
    [9]Hoskuldson,A.1988.PLS regression methods.J.Chemom.2:211-228.
    [10]Geladi,P.,Kowlaski B.1986.Partial least square regression:A tutorial.Anal.Chem.Acta.35:1-17.
    [11]Vogt F,Tacke M,Jakusch M,et al.2000.A UV spectroscopic method for monitoring aromatic hydrocarbons dissolved in water.Anal.Chim.Acta 422:187-198.
    [12]丁亚平,苏庆德,吴庆生.2001.导数荧光-偏最小二乘法同时测定注射液中色氨酸、酪氨酸和苯丙氨酸.光谱学与光谱分析.21(2):212-214.
    [13]刘志宏,蔡汝秀.2000.三维荧光光谱技术分析应用进展.分析科学学报.16(6):516-523.
    [14]Sheng G.P.,Yu H.Q.,2006.Characterization of extracellular polymeric substances of aerobic and anaerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy.Water Res.40:1233-1239.
    [15]Bro R.PARAFAC.1997.Tutorial and applications.Chemo.Intell.Lab.Syst.38:149-171.
    [16]Bro R.,Kiers H.A.L.,2003.A new efficient method for determining the number of components in PARAFAC models.J.Chemom.17:274-286.
    [17]Thygesen L.G.,Rinnan A.,Barsberg S.,Moller.J.K.S.,2004.Stabilizing the PARAFAC decomposition of fluorescence spectra by insertion of zeros outside the data area.Chemo.Intell.Lab.Syst.71:97-106.
    [18]Bahram M.,Bro R.,Stedmon C.,et al.Handling of Rayleigh and Raman scatter for PARAFAC modeling of fluorescence data using interpolation.J.Chemom.2006,20:99-105.
    [19]Rinnan A.,Booksh,K.S.,Bro,R.,2005.First order Rayleigh scatter as a separate component in the decomposition of fluorescence landscapes.Anal.Chim.Acta 537:349-358.
    [20]Baunsgaard D.1999.Factors affecting 3-way modeling(PARAFAC)of fluorescence landscapes,http://www.models.kvl.dk.
    [1]Matsche N.,Stumwohrer K.1996.UV absorption as control parameter for biological treatment plants.Wat.Sci.Tech.33(12):211-218.
    [2]Thomas O.1996.Wastewater quality monitoring.Trends Anal.Chem.16(7):419-424.
    [3]Tartakovsky B.,Lishman L.A.,Legge R.L.1996.Application of multi-wavelength fluorometry for monitoring wastewater treatment process dynamics.Water Res.30(12):2941-2948.
    [4]Lindemann C.,Marose S.,Nielsen H.O.,Scheper T.1998.2-Dimensional fluorescence spectroscopy for on-line bioprocess monitoring.Sens.Actuators,B.51:273-277.
    [5]Marose,S.,Lindemann,C.,Scheper,T.,1998.Two-dimensional fluorescence spectroscopy:a new tool for on-line bioprocess monitoring.Biotechnol.Prog.14:63-74.
    [6]Wolf,G..,Almeida,J.S.,Pinheiro,C.,Correia,V.,Rodrigues,C.,Reis,M.A.M.,Crespo,J.G.,2001.Two-dimensional fluorometry coupled with artificial neural networks:a novel method for on-line monitoring of complex biological processes.Biotechnol.Bioeng.72:297-306.
    [7]Wolf,G.,Almeida,J.S.,Crespo,J.G.,Reis,M.A.M,2007.An improved method for two-dimensional fluorescence monitoring of complex bioreactors.J.Biotechnol.128:801-812.
    [8]Bro,R.,1997.PARAFAC.Tutorial and applications.Chemom.Intell.Lab.Syst.38,149-171.
    [9]Haack M.B.,Lantz A.E.,Mortensen P.P.,et al.2007.Chemometric Analysis of In-Line Multi-Wavelength Fluorescence Measurements Obtained During Cultivations With a Lipase Producing Aspergillus oryzae Strain.Biotechnol.Bioeng.96(5):904-913
    [10]Reynolds D.M.,Ahmad S.R.,1997.Rapid and direct determination of wastewater BOD values using a fluorescence technique.Water Res.31:2012-2018.
    [11]Ahmad S.R.,Reynolds D.M.1999.Monitoring of water quality using fluorescence technique:prospect of on-line process control.Water Res.33(9):2069-2074.
    [12]Baker A.2002.Spectrophotometric discrimination of river dissolved organic matter.Hydrol.Process 16:3203-3213.
    [13]Baker,A.,2001.Fluorescence excitation-emission matrix characterization of some sewage-impacted rivers.Environ.Sci.Technol.35:948-953.
    [14]Hudson N.,Baker A.,Reynold.2007.Fluorescence analysis of dissolved organic matter in natural,waste and polluted waters-a review.2007.River.Res.Applic.23:631-649.
    [15]Kwong S.C.W.,Randers L.,Rao G.1993.On-Line Detection of Substrate Exhaustion by Using NAD(P)H Fluorescence.Appl.Environ.Microbiol.59(2):604-606.
    [16]Trivedi H.K.,Ju L.K.1994.Study of nitrate metabolism of Escherichia coli using fluorescence. Biotechnol. Prog. 10: 421-427.
    [17] Ju L. K., Yang X., Lee J. F. 1995. Monitoring of the Biological Nutrient Removal Process by an On-line NAD(P)H Fluorometer. Biotechnol. Prog. 11: 545-551.
    [18] Leblanc L., Dufour E. 2002. Monitoring the identity of bacteria using their intrinsic fluorescence. FEMS Microbiol. Lett. 211:147-153.
    [19] Huang L., Ju L K. 2007. Sludge settling and online NAD(P)H fluorescence profiles in wastewater treatment bioreactors operated at low dissolved oxygen concentrations. Water Res. 41:1877-1884.
    
    [20] Farabegoli, G, Hellinga, C, Heijnen, J.J., van Loosdrecht, M.C.M. 2003. Study on the use of NADH fluorescence measurements for monitoring wastewater treatment systems. Water Res. 37,2732-2738.
    [21] Wos, M., Pollard, P., 2006. Sensitive and meaningful measures of bacterial metabolic activity using NADH fluorescence. Water Res. 40, 2084-2092.
    [22] Wingender, J., Neu, T.R., Flemming, H.C., 1999. Microbial Extracellular Polymeric Substances: Characterization, Structures and Function. Springer,Berlin, Heidelberg.
    
    [23] Sheng G.P., Yu H.Q., 2006. Characterization of extracellular polymeric substances of aerobic and anaerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy. Water Res. 40,1233-1239.
    [24] Wang J, Fang F, Yu H Q. Substrate consumption and biomass growth of Ralstonia eutropha at various S_0/X_0 levels in batch cultures. Bioresource Technology, 2007, 98: 2599-2604.
    
    [25] Frolund, B., Palmgren, R., Keiding, K., Nielsen, P.H., 1996. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res. 30,1749-1758.
    [26] APHA, 1995. Standard Methods for the Examination of Water and Wastewater,19~(th) ed. American Public Health Association, New York.
    [27] Lowrey, O.H., Resebrough, N.J., Farr, A.L., Randall, R.J., 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 132, 265-275.
    [28] Grady C.P.L., Glen T.D., Henry C.L., 1999. Biological wastewater treatment: Second edition,revised and expanded.Marcel Dekker,Inc.
    [29]Thygesen,L.G.,Rinnan,A.,Barsberg,S.,Moller.J.K.S.,2004.Stabilizing the PARAFAC decomposition of fluorescence spectra by insertion of zeros outside the data area.Chemo.Intell.Lab.Syst.71,97-106.
    [30]Bro,R.,Kiers H.A.L.,2003.A new efficient method for determining the number of components in PARAFAC models.J.Chemom.17,274-286.
    [31]Beun,J.J.,Paletta,F.,van Loosdrecht,M.C.M.,Heijnen,J.J.,2000.Stoichiometry and kinetics of poly-b-hydroxybutyrate metabolism in aerobic,slow growing,activated sludge cultures.Biotechnol.Bioeng.67:379-389.
    [32]Coble,P.G.,1996.Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy.Mar.Chem.51(4):325-346.
    [33]Pons,M.N.,Bonte,S.L.,Potier,O.,2004.Spectral analysis and fingerprinting for biomedia characterisation.J.Biotechnol.113:211-230.
    [34]Harrison,D.E.F.,Chance,B.,1970.Fluorometric technique for monitoring changes in the level of reduced nicotinamide nucleotides in continuous culture of microorganisms.Appl.Microbiol.19:446-449.
    [35]Baunsgaard,D.,1999.Factors affecting 3-way modeling(PARAFAC)of fluorescence landscapes,http://www.models.kvl.dk.
    [36]Barker,D.J.,Stuckey D.C.,1999.A review of soluble microbial products(SMP)in the wastewater treatment systems.Water Res.33:3063-3082.
    [37]Laspidou C.S.,Rittmann B.E.,2002.A unified theory for extracellular polymeric substances,soluble microbial products,and active and inert biomass.Water Res.,36:2711-2720.
    [38]Characklis W.G.,Marshall K.C.1990.Biofilms.New York,Wiley.
    [39]Arunachalam,R.,Shah,H.K.,Ju,L.K.,2005.Monitoring aerobic sludge digestion by online scanning fluorometry.Water Res.39:1205-1214.
    [1]Bockris,J.M.,1981.The economics of hydrogen as a fuel.Int.J Hydrogen Energy 6,223-264.
    [2]Lodhi,M.A.K.,1987.Hydrogen production from renewable sources of energy.Int.J.Hydrogen Energy.12,461-468.
    [3]李建政,任南琪,林明等.有机废水发酵法生物制氢中试研究.太阳能学报,2002,23(2):252-256.
    [4]洪天求,郝小龙,俞汉青.有机废水厌氧发酵产氢技术的现状与发展.合肥工业大学学报,2003,26(5):947-952.
    [5]Miura Y.,1995.Hydrogen production by biophotolysis based on microalgal photosynthesis.Process Biochem.30,1-7.
    [6]Benemnn,J.R.,2000.Hydrogen production by microalgae.J.Appl.Phycol.12,291-300.
    [7]Momirlan,M.,Veziroglu,T.,1999.Recent directions of world hydrogen production.Renew.Sust.Energ.Rev.3,219-231.
    [8]Nandi,R.,Sengupta,S.,1998.Microbial production of hydrogen:an overview.Crit.Rev.Microbiol.24:61-84.
    [9]Benemanrl,J.,1996.Hydrogen biotechnology:process and prospects.Nat.Biotechnol.14,1101-1103.
    [10].Y Mu,XJ Zheng,HQ Yu(2006)Biological hydrogen production by anaerobic sludge at various temperatures.Int.J.of Hydrogen Energy.31,780-785.
    [11]Pons,M.N.,Bonte,S.L.,Potier,O.,2004.Spectral analysis and fingerprinting for biomedia characterisation.J.Biotechnol.113,211-230.
    [12]Oh,S.E,van Ginkel,S.,Logan,B.,2003.The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production.Environ.Sci.Technol.37,5186-5190.
    [13]穆杨,2006.厌氧产氢过程及其反应器特性的研究.合肥.中国科学技术大 学博士学位论文.
    [14]Dubois,M.,Gilles,K.A.,Hamilton,J.K.,Rebers,P.A.,Smith,F.,1956.Colorimetric method for determination sugars and related substance.Anal.Chem.28,350-356.
    [15]Harrison,D.E.F.,Chance,B.,1970.Fluorometric technique for monitoring changes in the level of reduced nicotinamide nucleotides in continuous culture of microorganisms.Appl.Microbiol.19,446-449.
    [16]Bro,R.,Kiers H.A.L.,2003.A new efficient method for determining the number of components in PARAFAC models.J.Chemometrics.17,274-286.
    [17]任南琪,李建政,林明等.产酸发酵细菌产氢机理探讨.太阳能学报,2002,23(1):124-127.
    [18]Mosey FE.(1983).Mathematical modeling of the anaerobic digestion process:regulatory mechanisms for the formation of short-chain volatile acids form glucose.Water Sci.Technol.15,209-32.
    [19]Fang D.M.,Wu H.L.,Ding Y.J.2006.Interference-free determination of fluoroquinolone antibiotics in plasma by using excitation-emission matrix fluorescence coupled with second-order calibration algorithms.Talanta.70:58-62
    [1]Kim JR,Min B,Logan BE.2005.Evaluation of procedures to acclimate a microbial fuel cell for electricity production.Appl.Microbiol.Biotechnol.68(1):23-30.
    [2]Logan,B.E.Biologically extracting energy from wastewater:Biohydrogen production and microbial fuel cells.Environ.Sci.Technol.2004,38:160-167.
    [3]Rabaey K,Verstraete W.2005.Microbial fuel cells:Novel biotechnology for energy generation.Trends Biotechnol 23(6):291-298.
    [4]He Z.,Minteer S.D.,Angenent L.T.Electricity generation from artificial wastewater using an upflow microbial fuel cell.Environ.Sci.Technol.2005,39:5262-5267.
    [5]Liu H,Ramnarayanan R,Logan BE.2004.Production of electricity during wastewater treatment using a single chamber microbial fuel cell.Environ Sci Technol 38(7):2281-2285.
    [6]Liu,H.;Cheng,S.;Logan,B.E.2005.Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell.Environ.Sci.Technol.39:658-662.
    [7]Angenent L.T.,Karim K.,A1-Dahhan M.H.et al.2004.Production of bioenergy and biochemicals from industrial and agricultural wastewater.Trends Biotechnol.,22:477-485.
    [8]Oh,S.;Logan,B.E.2005.Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies.Water Res.39:4673-4682.
    [9] Min B., Kim J., Oh S. et al. 2005 Electricity generaton from swine wastewater using microbial fuel cells. Water Res. 39: 4961-4968.
    [10] He Z., Minteer S.D., Angenent L.T. 2005. Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ. Sci. Technol. 39:5262-5267.
    [11] Oh S.E., Min B., Logan B.E. 2004. Cathode performance as a factor in electricity generation in microbial fuel cells. Environ. Sci. Technol. 38: 4900-4904.
    [12] Angenent L.T., Sung S. 2001. Development of anaerobic migrating blanket reactor (AMBR), a novel anaerobic treatment system. Water Res. 35:1739-1747.
    [13] Rabaey K., Clauwaert P., Aelterman, P. et al. 2005. Tubular microbial fuel cells for efficient electricity generation. Environ. Sci. Technol., 39: 8077-8082.
    [14] Liu, H.; Cheng, S.; Logan, B. E. 2005. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration.Environ. Sci. Technol. 39: 5488-5493.
    [15] Zhao F, Harnisch F, Schroder U, Scholz F et al. 2005 Application of pyrolysed iron(II) phthalocyanine and coTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells Electrochem. Commun. 7:1405-1410.
    [16] Cheng S., Liu H., Logan B.E. 2006. Power densities using different cathode catalysts (Pt andCoTMPP) and polymer binders (Nafion and PTFE) in single microbial fuel cells. Environ. Sci. Technol. 40: 364-369.
    [1]Van de Hulst H.C.1957.Light scattering by small particles.Wiley,New York.
    [2]Kerker M.1969 The Scattering of Light and Other Electromagnetic Radiation.Academic,New York.
    [3]王乃宁等.2000.颗粒粒径的光学测量技术及应用.北京:原子能出版社.
    [4]Alupoaei C.E.,Garcia-Rubio L.H.2004.Growth behavior of microorganisms using UV-Vis spectroscopy.Biotechnol.Bioeng.86(2):163-167.
    [5]Callahan M.R.,Rose J.B.,Garcia-Rubio L.H.2003.Use of multiwavelength transmission spectroscopy for the characterization of cryptosporidium parvum oocyst:quantitative interpretation.Environ.Sci.Tech.37:5254-5261.
    [6]Garcia-Rubio L.H.,Alupoaei C.E.,Olivares J.et al.2004.A new spectroscopy method for in-situ rapid detection and classification for microorganisms.Proc.of SPIE.5585:88-97.
    [7]Mattley Y.D.,Garcia-Rubio L.H.2001.Multiwavelength spectroscopy for the detection,identification and quantification of cells.Proc.of SPIE.4206:64-70
    [8]Alupoaei C.E.,Olivares J.A.,Garcia-Rubio L.H.2004.Quantitative spectroscopy analysis of prokaryotic cells:vegetative cells and spores.Biosens.Bioelectron.19:893-903.
    [9]王清华.2003.光散射法颗粒大小与形状分析.南京.南京工业大学博士论文.
    [10]Wiscombe W.J.1980.Improved Mie scattering algorithms.Appl.Opt.19:1505-1509.
    [11]项建胜,何俊华.2007.Mie光散射理论的数值计算方法.应用光学.28(3):363-366.
    [12]张杰.2006.具有复折射率微粒的Mie散射光学特性研究.光散射学报.17(4):359-365.
    [13]Tuminello P.S.,Arakawa E.T.,Khare B.N.,et al.Optical properties of Bacillus subtilis spores from 0.2 to 2.5 mm.Appl.Opt.36(13):2818-2824.
    [14]Mourant J.R.,Canpolat M.,Brocker C.2000.Light scattering from cells:the contribution of the nucleus and the effects of proliferative status.J.Biomed.Opt.5(2):131-137.
    [15]徐贯东,王乃宁.1997.多波长散射光通量法测颗粒尺寸分布的实验研究.应用激光.17(2):61-64.
    [16]苏明旭,王夕华,黄有贵,等.2006.LM优化算法在消光法测粒技术中的应用.26(8):增刊63-65.
    [17]郑刚,张志伟,蔡小舒,等.1998.颗粒浓度及粒度的光散射在线测量.中国激光.25(3):285-288.
    [18]刘铁英,张志伟,郑刚,等.1998颗粒尺寸在线测量的光透消光法.光学仪器.20:3-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700