用户名: 密码: 验证码:
安徽铜陵朝山矽卡岩型金矿的特征和成因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矽卡岩型金矿的成矿作用是近年来矿床学界的研究热点之一。长江中下游地区是我国最重要的金(铜)矽卡岩型矿成矿带。安徽铜陵朝山金矿是该成矿带一典型的矽卡岩型金矿,该矿床矿体埋藏浅、矿石品位高、成矿过程复杂,具有很高的研究价值。笔者在前人研究的基础上,对该矿床的成矿母岩、变质岩、蚀变岩以及矿石开展岩相学、矿物学和地球化学等方面的研究,试图从以上几方面的特征中挖掘该矿床的成因信息。通过本论文的工作,获得了以下主要认识。
     首先,该矿床的成矿母岩——白芒山辉石闪长岩属于高钾、准铝质的岩浆岩,它形成于碰撞后的构造环境,其母岩浆是来自富集岩石圈地幔的碱性玄武质岩浆,通过底侵作用在下地壳形成深部岩浆房,并与下地壳物质发生同化混染作用,角闪石和辉石斑晶也是在这个深部岩浆房中结晶的。白芒山辉石闪长岩含有较多的磁铁矿,属于氧化型的岩体。
     再者,朝山金矿形成过程中主要经历了接触热变质阶段、干矽卡岩阶段、湿矽卡岩阶段、石英硫化物阶段、碳酸盐硫化物阶段、硫酸盐阶段以及表生氧化阶段。接触热变质阶段有反应矽卡岩形成。干矽卡岩阶段形成的矿物主要是石榴石,其次是单斜辉石、方柱石、硅灰石。退化蚀变阶段(从湿矽卡岩阶段到硫酸盐阶段)形成的主要矿物有绿帘石、阳起石、符山石、绿泥石、石英、方解石、绢云母、金云母。金成矿和退化蚀变阶段关系密切,尤其是石英硫化物阶段和碳酸盐硫化物阶段。
     在干矽卡岩中石榴石的含量明显多于单斜辉石,而且石榴石核部多贫铁,但常见富铁的石榴石增生边,单斜辉石铁含量很低。这些特征都表明朝山金矿为氧化型的矽卡岩型金矿。
     蚀变带矿物组合、矿物成分以及全岩地球化学特征及变化规律表明热液蚀变系统中的硅、铝、铁、镁、钠、钾、水主要来自岩浆而钙主要来自碳酸盐地层。稳定同位素特征表明成矿流体中的水和碳主要来自岩浆而硫则来自于岩浆和膏盐层。
     另外,成矿流体从早到晚经历了从相对酸性和还原到相对碱性和氧化的转变,这种转变有利于金的沉淀,流体的沸腾可能是导致这种转变的原因之一。金在成矿流体中主要以含硫络合物的形式运移,金的成矿主要发生在相对低温的条件下。
The ore-forming processes of gold skarn deposits have been one of the hottest topics in thefield of economic geology. The middle and lower Yangtze River Valley is the most importantmetallogenic belt of gold (copper) skarn deposits in China. The Chaoshan deposit is a typicalgold skarn deposit of this belt. The orebodies of this deposit have been buried in shallow depthand the ores generally have high grades. Because the ore-forming process was relativelycomplex, this deposit is of great value for genetic research. On the basis of the formerresearchers, the author has carried out petrographic, mineralogical and geochemical research onthis deposit. The following achievements have been obtained in this dissertation.
     The Baimangshan pyroxene diorite, which is the mother rock of the Chaoshan deposit,belongs to high-K and metaluminous igneous rocks and was formed in a postcollisional tectonicenviroment. The mother magma of the Baimangshan pyroxene diorite was alkalic basalticmagma which came from enriched lithospheric mantle. This magma underplated into the lowercrust, which resulted in the material exchange between the magma and the lower crust as well asthe formation of a magma chamber in that depth. Amphibole and clinopyroxene phenocrystswere formed just in this magma chamber. There is a lot of magnetite in the Baimangshanproxene diorite, which means that it is a oxidized pluton.
     There are seven main mineralization stages, which are contact thermal metamorphism stage,dry skarn stage, wet skarn stage, quartz-sulfide stage, carbonate-sulfide stage, sulfate stage andsupergene oxidization stage, in the formation of the Chaoshan deposit. Reaction skarns wereformed in the contact thermal metamorphism stage. The main mineral formed in the dry skarnstage is garnet, which is accompanied by minor diopside, scapolite and wollastonite. The mainminerals formed in the retrograde alteration stages (from wet skarn stage to sulfate stage) areepidote, actinolite, vesuvianite, chlorite, quartz, calcite, sericite and phlogopite. Goldmineralization had a close relationship with retrograde alteration, especially quartz and calcite.There are more garnet than clinopyroxene in dry skarns. The garnet cores generally have lowiron contents but the garnet rims generally have high iron contents. Clinopyroxene generally hasvery low iron contents. These characteristics all indicate that the Chaoshan deposit is an oxidizedgold skarn deposit.
     The characteristics and variations of mineral associations, mineral chemistry and whole rock chemistry in the alteration zone indicate that Si, Al, Fe, Mg, Na and K were mainly from themagma and Ca was mainly from the the carbonate in the strata. Stable isotope contents of theores of the Chaoshan deposit indicate that carbon and water of the ore-forming fluid was mainlyfrom the magma and sulfur was from the magma and anhydrock in the strata.
     The ore-forming fluid of the Chaoshan deposit changed from relatively acidic and reducedto relatively alkalic and oxidized. This change, which was caused partly by the boiling of thefluid, benefited the deposition of gold. Gold was carried in the form of sulfur complex in thefluid and was deposited at relatively low temperatures.
引文
Aoki K, Shiba I. Pyroxenes from Iherzolite inclusions of Itinomegata, Japan. Lithos,1973,6:41-51
    Belousova E A, Griffin W L, O’Reilly S Y, et al. Igneous zircon: trace elementcomposition as an indicator of source rock type. Contributions to Mineralogy andPetrology,2002,143:602-622
    Blevin P L. Paleozoic granite metallogenesis of eastern Australia. In: Blevin P L,Jones M, Chappel B, eds. Magmas to mineralisation: the Ishihara symposium. Sydney:Geoscience Australia,2003. Record14,5-8
    Bonin B. Do coeval mafic and felsic magmas in post-collisional to within-plateregimes necessarily imply two contrasting, mantle and crustal, sources? A review.Lithos,2004,78(1-2):1-24
    Brooks J W, Meinert L D, Kuyper B A, et al. Petrology and geochemistry of the McCoygold skarn, Lander County, NV. In: Raines G L, Lisle R E, Schafer R W, et al., eds.Geology and Ore Deposits of the Great Basin. Reno: Nevada Geological Society,1991.419-442
    Carpenter R H, Desborough G A. Range in solid solution and structure of naturallyoccurring troilite and pyrrhotite. American Mineralogist,1964,49:1350-1365
    Chen Y J, Chen H Y, Zaw K, et al. Geodynamic settings and tectonic model of skarngold deposits in China: An overview. Ore Geology Reviews,2007,31(1-4):139-169Einaudi M T, Meinert L D, Newberry R J. Skarn deposits. Economic Geology,1981,75thAnniversary Volume:317-391
    Einaudi M T, Burt D M. Introduction-terminology, classification, and compositionof skarn deposits. Economic Geology and the Bulletin of the Society of EconomicGeologists,1982,77(4):745-754
    Ernst W G, Liu J. Experimental phase-equilibrium study of Al-and Ti-contents ofcalcic amphibole in MORB—A semiquantitative thermobarometer. AmericanMineralogist,1998,83:952-969
    Ettlinger A D, Meinert L D, Ray G E. Gold skarn mineralization and fluid evolutionin the Nickel Plate deposit, British Columbia. Economic Geology and the Bulletinof the Society of Economic Geologists,1992,87(6):1541-1565
    Fuertes-Fuente M, Martin-Izard A, Nieto J G. Preliminary mineralogical andpetrological study of the Ortosa Au-Bi-Te ore deposit: a reduced gold skarn in thenorthern part of the Rio Narcea Gold Belt, Asturias, Spain. Journal of GeochemicalExploration,2000,71(2):177-190
    Foster M D. Interpretation of the composition of trioctahedral micas. U. S.Geological Survey Professional Paper,1960,354-B:1-49
    Franchini M B, Meinert L D, Vallés J M. First occurrence of ilvaite in a gold skarndeposit. Economic Geology,2002,97:1119-1126
    Gammons C H, Williams-Jones A E. Hydrothermal geochemistry of electrum:thermodynamic constraints. Economic Geology and the Bulletin of the Society ofEconomic Geologists,1995,90(2):420-432
    Gammons C H, Williams-Jones A E. Chemical mobility of gold in the porphyry-epithermalenvironment.Economic Geology and the Bulletin of the Society of Economic Geologists,1997,92(1):45-59
    Gao S, Luo T C, Zhang B R, et al. Chemical composition of the continental crust asrevealed by studies in East China. Geochimica et Cosmochimica Acta,1998,62:1959-1975
    Gas’kov I V.New data on the correlation of skarn and gold mineralization at theTardan deposit (northeastern Tuva). Russian Geology and Geophysics,2008,49(12):923-931
    Gaspar M, Knaack C, Meinert L D, et al. REE in skarn systems: A LA-ICP-MS study ofgarnets from Crown Jewel gold deposit. Geochimica et Cosmochimica Acta,2008,72(1):185-205
    Gray N, Mandyczewsky A, Hine R. Geology of the zoned gold skarn system at JunctionReefs, New South Wales. Economic Geology,1995,90(6):1533-1552
    Hall D L, Sterner S M, Bodnar R J. Freezing point depression of NaCl-KCl-H2O Solutions.Economic Geology,1988,83(1):197-202
    Hammarstrom J M, Zen E. Aluminum in hornblende: An empirical igneous geobarometer.American Mineralogist,1986,71(11-12):1297-1313
    Hanson G N. The application of trace elements to the petrogenesis of igneous rocksof granitic composition. Earth and Planetary Science Letters,1978,38:26-43
    Hayashi K I, Ohmoto H. Solubility of gold in NaCl-and H2S-bearing aqueous solutionsat250-350℃. Geochimica et Cosmochimica Acta,1991,55(8):2111-2126
    Henley R W, Hedenquist J W. Introduction to the geochemistry of active and fossilgeothermal systems. In: Henley R W, Hedenquist J W, Roberts P J, eds. Monograph Serieson Mineral Deposits26. Berlin: Gebrüder Borntr ger,1986.1-22
    Henry D J, Guidotti C V, Thomson J A. The Ti-saturation surface for low-to-mediumpressure metapelitic biotites: Implications for geothermometry and Ti-substitutionmechanisms. American Mineralogist,2005,90:316-328
    Hickey R J.The Buckhorn Mountain (Crown Jewel) Gold Skarn Deposit, Okanogan County,Washington.Economic Geology and the Bulletin of the Society of Economic Geologists,1992,87(1):125-141
    Hoskin P W O, Ireland T R. Rare earth element chemistry of zircon and its use asa provenance indicator. Geology,2000,28:627-630
    Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphicpetrogenesis. Reviews in Mineralogy&Geochemistry,2003,53:27-62
    Jamtveit B, Wogelius R A, Fraser D G. Zonation patterns of skarn garnets: Recordsof hydrothermal system evolution. Geology,1993,21(2):113-116
    Kim E J, Park M E, White N C. Skarn gold mineralization at the Geodo Mine, SouthKorea. Economic Geology,2012,107(3):537-551
    Leake B E, Woolley A R, Arps C E S, et al. Nomenclature of amphiboles: report ofthe subcommittee on amphiboles of the International Mineralogical Association,commission on new minerals and mineral names. American Mineralogist,1997,82(9-10):1019-1037
    Leterrier J, Maury R C, Thonon P, et al. Clinopyroxene composition as a method ofidentification of the magmatic affinities of paleo-volcanic series. Earth andPlanetary Science Letters,1982,59:139-154
    Levresse G, Gonzalez-Partida E. Highly oxidised gold skarn fluids evolution in theMezcala deposit, Guerrero, Mexico. Journal of Geochemical Exploration,2003,78-79(SI):649-652
    Maniar P D, Piccoli P M. Tectonic discrimination of granitoids. Geological Societyof America Bulletin,1989,101(5):635-643
    Markowski A, Vallance J, Chiaradia M, et al. Mineral zoning and gold occurrence inthe Fortuna skarn mine, Nambija district, Ecuador. Mineralium Deposita,2006,41(4):301-321
    Meinert L D. Gold skarn deposits–geology and exploration criteria. In: Keays RR, Ramsay W R H, Groves D J, eds. The Geology of Gold Deposits: The Perspective in1988, Economic Geology Monograph#6. The Economic Geology Publishing Co.,1989.537-552
    Meinert L D. A review of skarns that contain gold. In: Lentz D R, eds. MineralizedIntrusion-related Skarn Systems. Québec City: Mineralogical Association of CanadaShort Course Series, Volume26,1998.359-414
    Meinert L D. Gold in skarns related to epizonal intrusions. Reviews in EconomicGeology,2000,13:347-375
    Meinert L D, Dipple G M, Nicolescu S. World skarn deposits. Economic Geology,2005,100thAnniversary Volume:299-336
    Middlemost E A K. Evolution of La Palma, Canary Archipelago. Contributions toMineralogy and Petrology,1972,36(1):33-48
    Mueller A G. The Nevoria gold skarn deposit in Archean iron-formation, Southern Crossgreenstone belt, western Australia: I. Tectonic setting, petrography, andclassification. Economic Geology and the Bulletin of the Society of EconomicGeologists,1997,92(2):181-209
    Mueller A G, Nemchin A A, Frei R.The Nevoria gold skarn deposit, Southern Crossgreenstone belt, western Australia: II. Pressure-temperature-time path andrelationship to postorogenic granites.Economic Geology and the Bulletin of theSociety of Economic Geologists,2004,99(3):453-478
    Nakano T. Pyroxene geochemistry as an indicator for skarn metallogenesis in Japan.In: Lentz D R, eds. Mineralized Intrusion-related Skarn Systems. Québec City:Mineralogical Association of Canada Short Course Series, Volume26,1998.147-167Nisbet E G, Pearce J A. Clinopyroxene composition in mafic lavas from differenttectonic settings. Contributions to Mineralogy and Petrology,1977,63(2):149-160Pan Y. Scapolite in skarn deposits: petrogenetic and geochemical significance. In:Lentz D R, eds. Mineralized Intrusion-related Skarn Systems. Qu é bec City:Mineralogical Association of Canada Short Course Series, Volume26,1998.169-209Pan Y, Dong P. The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, eastcentral China: intrusion-and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits.Ore Geology Reviews,1999,15(4):177~242
    Pearce J A, Norry M J. Petrogenetic implications of Ti, Zr, Y, and Nb variationsin volcanic rocks. Contributions to Mineralogy and Petrology,1979,69:33-47Peccerillo R, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks fromthe Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology,1976,58(1):63-81
    Plimer I R. Epidote and ore deposits. In: H ck V, Koller F, eds.125Jahre Knappenwand:Proceedings. Wien: Geologische Bundesanstalt,1993.27-32
    Ray G E, Ettlinger A D, Meinert L D. Gold skarns: their distribution, characteristicsand problems in classification. In: Geological Fieldwork1989, Paper1990-1. BritishColumbia: British Columbia Geological Survey,1990,237-246
    Ray G E, Webster I C L, Ettlinger A D. The distribution of skarns in British Columbiaand the chemistry and ages of their related plutonic rocks. Economic Geology,1995,90(4):920-937
    Ray G E, Dawson G L, Webster I C L. The stratigraphy of the Nicola Group in the Hedleydistrict, British Columbia and the chemistry of its intrusions and Au skarns.Canadian Journal of Earth Science,1996,33(8):1105-1126
    Rimstidt J D. Gangue mineral transport and deposition. In: Barnes H L, eds.Geochemistry of Hydrothermal Ore Deposits,3rded. New York: John Wiley&Sons, inc.,1997.487-515
    Rudnick R L, Gao S. Composition of the Continental Crust. In: Holland H D, TurekianKK, eds. Treatise on Geochemistry. Amsterdam: Elsevier,2004.1-64
    Schnetzler C C, Philpotts J A. Partition coefficients of rare earth elements betweenigneous matrix material and rock-forming mineral phenocrysts—II. Geochimica etCosmochimica Acta,1970,34(3):331-340
    Shmulovich K I, Landwehr D, Simon K, et al. Stable isotope fractionation betweenliquid and vapor in water-salt systems up to600℃. Chemical Geology,1999,157:343-354
    Spear FS, Kimball C. RECAMP-a FORTRAN IV program for estimating Fe3+contents inamphiboles. Computers&Geosciences,1984,10(2-3):317-325
    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle compositon and processes. Geological Society, London,Special Publications,1989,42:313-345
    Theodore T G, Orris G J, Hammarstrom J M, et al. Gold Bearing Skarns. U.S. GeologicalSurvey Bulletin1930,1991.1-61
    Vallance J, Fontboté L, Chiaradia M, et al. Magmatic-dominated fluid evolution inthe Jurassic Nambija gold skarn deposits (southeastern Ecuador). MineraliumDeposita,2009,44(4):389-413
    Wang J Z, Li J W, Zhao X F, et al. Re-Os dating of pyrrhotite from the Chaoshan goldskarn, eastern Yangtze craton, eastern China. International Geology Review,2008,50(4):392-406
    Wilson M. Igneous petrogenesis. London: Unwin Hyman,1989.1-466
    Wright J B. A simple alkalinity ratio and its application to questions ofnon-orogenic granite genesis. Geological Magazine,1969,106(4):370-384
    Xu X, Zhang Z, Liu Q, et al. Thermodynamic study of the association and separationof copper and gold in the Shizishan ore field, Tongling, Anhui Province, China. OreGeology Reviews,2011,43(1):347-358
    Yuan F, Li X, Jowitt S M, et al. Anomaly identification in soil geochemistry usingmultifractal interpolation: A case study using the distribution of Cu and Au in soilsfrom the Tongling mining district, Yangtze metallogenic belt, Anhui province, China.Journal of Geochemical Exploration,2012,116-117:28-39
    Zhai D G, Liu J J, Zhang H Y, et al. Origin of oscillatory zoned garnets from theXieertala Fe-Zn skarn deposit, northern China: In situ LA-ICP-MS evidence. Lithos,2014,190-191:279-291
    Zhao Y, Zhang Y, Bi C. Geology of gold-bearing skarn deposits in the middle and lowerYangtze River Valley and adjacent regions. Ore Geology Reviews,1999,14(3-4):227-249
    安徽省地质矿产局三二一地质队.安徽铜陵朝山金矿床勘查地质报告.1995.1-101
    常印佛,刘湘培,吴言昌.长江中下游铜铁成矿带.北京:地质出版社,1991.1-379
    常印佛,董树文,黄德志.论中一下扬子“一盖多底”格局与演化.火山地质与矿产,1996,17(l一2):1-15
    陈玲,马昌前,佘振兵,等.大别山北淮阳构造带柳林辉长岩:新元古代晚期裂解事件的记录.地球科学——中国地质大学学报,2006,31(4):578-584
    邓晋福,吴宗絮.下扬子克拉通岩石圈减薄事件与长江中下游Cu-Fe成矿带.安徽地质,2001,11(2):86-91
    董树文,马立成,刘刚,等.论长江中下游成矿动力学.地质学报,2011,85(5):612-625
    杜杨松.壳幔成矿学初探.矿床地质,1999,18(4):341-346
    杜杨松,李铉具.安徽铜陵岩浆岩中辉长质岩石包体的发现及其地质意义.高校地质学报,2004a,10(3):332-342
    杜杨松,秦新龙,田世洪.安徽铜陵铜官山矿区中生代岩浆-热液过程:来自岩石包体及其寄主岩的证据.岩石学报,2004b,20(2):339-350
    杜杨松,曹毅,袁万明,等.安徽沿江地区中生代碰撞后到造山后岩浆活动和壳幔相互作用—来自火山一侵入杂岩和岩石包体的证据.岩石学报,2007,23(6):1294-1302
    房海波.安徽铜陵狮子山矿田铜矿床和金矿床的成矿流体特征及演化:[硕士学位论文].合肥:合肥工业大学,2009
    傅世昶.铜陵朝山金矿床成矿地质特征和成矿预测.地质找矿论丛,1999,14(2):69-74
    干国樑.矿物-熔体间元素分配系数资料及主要变化规律.岩石矿物学杂质,1993,12(2):144-181
    高庚,徐兆文,杨小男,等.安徽铜陵朝山金矿床地质特征及成因研究.地质找矿论丛,2006a,21(3):162-167
    高庚,徐兆文,杨小男,等.安徽铜陵白芒山辉石闪长岩体的成因:Sr-Nd-Pb-O同位素制约.南京大学学报(自然科学),2006b,42(3):269-279
    胡受奚,叶瑛,方长泉.交代蚀变岩岩石学及其找矿意义.北京:地质出版社,2004.1-264
    胡欢,王汝成,陆建军,等.安徽铜陵狮子山矿田夕卡岩型金矿床的矿物组合、化学成分及成因意义.矿床地质,2001,20(1):86-98
    黄超文.青海赛什塘铜矿磁黄铁矿的标型特征及其成因意义:[硕士学位论文].长沙:中南大学,2011
    姜常义,安三元.论火成岩中钙质角闪石的化学组成特征及其岩石学意义.矿物岩石,1984,5(3):1-9
    李昌年.火成岩微量元素岩石学.武汉:中国地质大学出版社,1992.1-195
    李红阳,阎升好,王金锁,等.热点与成矿——试论冀西北金、银多金属成矿区壳幔成矿机制.有色金属矿产与勘查,1996,5(2):81-88
    李锦轶.中朝地块与扬子地块碰撞的时限与方式一长江中下游地区震旦纪一侏罗纪沉积环境的演变.地质学报,2001,75(1):25-34
    刘家军,何明勤,李志明,等.云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义.矿床地质,2004,23(1):3-6
    刘勇胜,高山,王选策,等.太古宙-元古宙界限基性火山岩Nb/Ta比值变化及其对地球Nb/Ta平衡的指示意义.中国科学D辑地球科学,2004,34(11):1002-1014
    吕庆田,侯增谦,杨竹森,等.长江中下游地区的底侵作用及动力学演化模式:来自地球物理资料的约束.中国科学D辑地球科学,2004,34(9):783-794
    吕庆田,杨竹森,严加永,等.长江中下游成矿带深部成矿潜力、找矿思路与初步尝试——以铜陵矿集区为实例.地质学报,2007,81(7):865-881
    马昌前,杨坤光,唐仲华,等.花岗岩类岩浆动力学——理论方法及鄂东花岗岩类例析.武汉:中国地质大学出版社,1994.1-260
    马桂琴.宁镇地区侵入岩的形成构造环境.江苏地质,1990,14(1):17-20
    毛景文,邵拥军,谢桂青,等.长江中下游成矿带铜陵矿集区铜多金属矿床模型.矿床地质,2009,28(2):109-119
    聂桂平,刘良根,徐兆文,等.安徽朝山金矿床矿石含金性和硫同位素研究.江苏地质,2007,31(3):200-205
    潘兆橹.结晶学及矿物学(下册).北京:地质出版社,1985.1-274
    彭聪,赵一鸣.中国东部含金矽卡岩矿床分布规律与深部地球物理背景研究.物探与化探,1999,23(6):415-420
    秦新龙.安徽铜陵中生代侵入岩及其岩石包体中硫化物-金属氧化物包裹体研究:[博士学位论文].北京:中国地质大学,2007
    邱检生,蒋少涌,张晓琳,等.大别-苏鲁造山带南北两侧晚中生代富钾火山岩的成因:微量元素及Sr-Nd-Pb同位素制约.地球学报,2004,25(2):255-262
    瞿泓滢.安徽铜陵凤凰山矽卡岩型铜矿床成矿过程研究:[博士学位论文].北京:中国地质科学院,2010
    任云生,刘连登,万相宗,等.铜陵地区矽卡岩型独立金矿成矿深度探讨.大地构造与成矿学,2004a,28(4):397-403
    任云生,刘连登,万相宗,等.狮子山矿田矽卡岩型金矿铋矿物与金矿化关系研究.矿物岩石,2004b,24(2):41-45
    任云生,刘连登,陈国华,等.铜陵朝山金矿床矿石特征与金的赋存状态研究.地质与勘探,2007,43(3):60-64
    孙景贵,姚风良.胶东中生代中酸性花岗杂岩与壳幔成矿作用.黄金科学技术,1997,5(1):25-29
    唐永成,吴言昌,储国正,等.安徽沿江地区铜金多金属矿床地质.北京:地质出版社,1998.1-359
    田世洪,丁悌平,杨竹森,等.安徽铜陵朝山金矿床稳定同位素、稀土元素地球化学研究.矿床地质,2004,23(3):365-374
    王建中,李建威,赵新福,等.铜陵地区朝山矽卡岩型金矿床及含矿岩体的成因:40Ar/39Ar年龄、元素地球化学及多元同位素证据.岩石学报,2008,24(8):1875-1888
    王奎仁.地球与宇宙成因矿物学.合肥:安徽教育出版社,1989
    王强,许继峰,赵振华,等.安徽铜陵地区燕山期侵入岩的成因及其对深部动力学过程的制约.中国科学(D辑),2003,33(4):323-334
    王庆飞.铜陵矿集区构造-岩浆-成矿系统模型研究:[博士学位论文].北京:中国地质大学,2005
    王彦斌,刘敦一,曾普胜,等.安徽铜陵地区幔源岩浆底侵作用的的时代——朝山辉石闪长岩锆石SHRIMP定年.地球学报,2004,25(4):423-427
    徐兆文,方长泉,陆现彩,等.与朝山金矿有关岩体地质地球化学特征.地质与勘探,2004,40(3):42-46
    杨小男,徐兆文,高庚,等.安徽铜陵朝山金矿床流体包裹体研究.岩石学报,2008,24(8):1889-1899
    袁士松,葛良胜,路彦明,等.哀牢山成矿带壳幔相互作用与金成矿关系探讨——以元阳大坪金矿床为例.矿床地质,2010,29(2):253-264
    翟裕生,林新多,姚书振.长江中下游地区铁铜(金)成矿规律.北京:地质出版社,1992.1-235
    赵斌,赵劲松,刘海臣.长江中下游地区若干Cu(Au)、Cu一Fe(Au)和Fe矿床中钙质夕卡岩的稀土元素地球化学.地球化学,1999,28(2):113-125
    张智宇.安徽铜山矽卡岩铜矿床特征与成因:[博士学位论文].北京:中国地质大学,2011
    赵磊,吴泰然,罗红玲,等.内蒙古乌拉特中旗温更辉长岩类的岩石学、地球化学特征及其构造意义.北京大学学报(自然科学版),2008,44(2):201-211
    赵一鸣.夕卡岩矿床研究的某些重要新进展.矿床地质,2002,21(2):113-120
    周长勇,葛文春,吴福元,等.大兴安岭北段塔河辉长岩的岩石学特征及其构造意义.吉林大学学报(地球科学版),2005,35(2):143-149
    周涛发,范裕,袁峰.长江中下游成矿带成岩成矿作用研究进展.岩石学报,2008,24(8):1665~1678
    周涛发,张乐骏,袁峰,等.安徽铜陵新桥Cu-Au-S矿床黄铁矿微量元素LA-ICP-MS原位测定及其对矿床成因的制约.地学前缘,2010,17(2):306-319

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700