用户名: 密码: 验证码:
新型机械搅拌喷气精炼装置的气泡微细化及分散的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在综合颗粒镁脱硫和KR法脱硫技术的基础上,提出了“原位法机械搅拌脱硫”的新思路。即以MgO镁基脱硫剂取代颗粒镁,在铁水中原位生成金属镁蒸汽,靠惰性载气喷吹带入铁水熔池并在机械搅拌的作用下细化和分散镁蒸汽气泡,从而达到提高镁脱硫效率的目的。佐野正道的研究也证明微细化镁蒸汽气泡大小不仅可以提高镁脱硫效率还可以提高镁利用率。显然,要实现“原位法机械搅拌脱硫”的新思路,镁蒸汽气泡的微细化和均匀分散是提高金属镁脱硫效率和镁利用率的最为关键的问题之一。因此,必须开展“基于精炼过程的气泡微细化及其气液传质过程的研究”。
     在综合与分析大量文献的基础上,基于相似原理的水模型实验从图像分析、气液吸收、因次分析、均混时间、气泡利用率、数值模拟等角度系统地研究了气液吸收过程中气泡微细化和气泡分散的影响因素及其相互作用规律。
     首先,采用高速照相、数码摄像、图像处理技术以及IMAGE—PROCESS软件考察了搅拌桨桨型、转动模式、转速、喷嘴结构、喷气方式和喷气流量等因素对气泡细化、气泡分散、气液吸收过程的影响规律。实验和理论分析表明:单向转动模式易形成漩涡,导致气泡在搅拌桨轴并聚;双向和间歇的搅拌模式可以抑制漩涡的形成,促进气泡的微细化;偏心搅拌与中心搅拌相比更利于气泡微细化。在双向和间歇的搅拌模式下,搅拌桨转速和长度的增加有利于气泡微细化;在相同的实验条件下,气泡的直径随着喷嘴直径的增大而增大,随着喷嘴数的增加而减小;当喷嘴的浸入深度增加时,气泡微细化程度明显增强,喷嘴的浸入深度越深,气泡分布得越广泛;打孔桨即使在单向搅拌模式下,也可以削弱切向流,抑制漩涡的形成或者至少可以延长漩涡的形成时间,形成漩涡的时间与无孔桨相比延长了2到3倍,这为双向和间歇转模式选择合适的交互时间提供了实验基础;同时,具有较大翼长和翼幅的多孔搅拌桨可以促进气泡的分散和破碎。
     其次,在水模型实验的基础上,分析了影响气泡尺寸的各种因素,应用因次分析得到了气泡平均直径的准数方程:
     根据得到的准数方程,分别对搅拌桨转速、气体流量、浸入深度、以及液面高度对气泡的平均直径的影响进行了理论分析,得到三种情况下具体的准数方程的表达式:
     第三,通过CO2—NaOH—H2O体系吸收过程,研究了容积传质系数和气体利用率的影响因素及其作用规律。结果表明:容积传质系数随着流量的增大而增大;偏心搅拌时容积传质系数和CO2利用率随转速增大而增大;直吹和侧吹下的机械搅拌有利于气泡在溶池内迅速扩散,能促进气液的充分接触,提高容积传质系数和CO2利用率。
     在实验的基础上,应用因次分析原理关联了容积传质系数与相关数群的准数方程如下:
     (a)中心搅拌双向:
     (b)中心搅拌单向:
     (c)中心搅拌间歇:
     (d)偏心搅拌单向:
     根据气含率、气泡尺寸和容积传质系数AK等参数,计算了相应条件下的质量传质系数K和表面更新率S。
     第四,针对铁水包高径比较小的特点,提出了气泡有效利用率的新概念。通过理论分析及推导,得到了气泡有效利用率与流量、气泡直径、传质系数的关系式。
     当吸收过程为零级反应时:
     当吸收过程为一级反应时:
     其中
     两个公式的计算值与实验值吻合较好,这说明在高径比较小的情况下,吸收速率可按零级反应处理,但吸收速率按一级反应处理时的理论公式比吸收速率按零级反应处理的理论公式吻合程度更好。
     第五,采用电导率法测定了水模型的均混时间。分别考察了搅拌模式、转速、中心与偏心搅拌、喷气流量等因素对均混时间的影响。研究结果表明:双向搅拌模式的均混时间小于间歇搅拌模式的均混时间,单向搅拌模式的均混时间最长;喷嘴直径越大均混时间越长;中心和偏心搅拌模式下转速对均混时间的影响规律相同,即无论喷气与否均混时间均随着搅拌转速的增加而变小,而且,在同一搅拌转速下喷气加机械搅拌模式的均混时间比无喷气机械搅拌的均混时间短。
     最后,应用FULENT和MIXSIM软件模拟了单相流和两相流机械搅拌的流动型态,并与数码图像进行了比较。通过单向流中心搅拌模式和偏心搅拌模式比较发现:中心搅拌模式下在搅拌桨轴附近形成很大的漩涡,偏心时虽然也有漩涡形成,但偏离轴心。两相流偏心搅拌模式下由于漩涡较小且偏离轴心,有利于气体的分散;两相流偏心搅拌模式下,侧吹时溶池内流场紊乱,有利于气泡分散。
This paper presents the new idea about desulfurization with in-situ mechanical stirring method on the basis of desulfurization by single blow grain magnesium and KR method, that is, the inner gases carry the magnesium vapor formed in-site in molten iron by magnesium-based desulfurization, bubble dispersed and disintegrated under the condition of mechanical stirring, thence improve the efficiency of desulfurization by single blow grain magnesium.
     It has been proved by research of Masamichi Sano that the bubble's dispersion and disintegration can not only boost the desulphurization efficiency but also increase the utilization rate of magnesium. Obviously, the bubble's dispersion and disintegration of magnesium vapor is the key problem in boosting the desulphurization efficiency and increasing the utilization rate of magnesium. Thus the research should be explored on bubble's dispersion and disintegration on the base of refining process and gas-liquid mass transfer. On the base of numerous documents and cold water model experimental result basing on principle of similitude. The influencing factors and interaction of bubble dispersion and disintegration have been studied from perspectives of image analysis, gas-liquid mass transfer, dimension analysis., uniform mixing time, bubble effectiveness, and numerical simulation. And the results pave the way for "the new idea about desulfurization with in-situ mechanical stirring method" in aspects of theoretical and experimental scientific basis.
     First, high speed camera, digital photograph and image processing technique are used to research on the influence law of the bubble dispersion and disintegration and gas-liquid absorption by the influence of impeller structure, rotation mode, nozzle structure, injection mode and gas flow rate. According to experimental and theoretical analysis, we can draw a conclusion:Vortex formed easily when centric stirring with unidirectional rotation, which leads to bubbles getting together around impeller shaft, bubble can not be dispersed widely. Forward-interrupt and forward-reverse rotation of the impeller can enhance the bubble disintegration and dispersion than forward rotation, the vortex formation is completely prevented. Eccentric stirring with unidirectional rotation is more effective than centric stirring for bubble disintegration and dispersion in liquid. The bubble disintegration is enhanced with increasing rotation speed and length of the impeller. in the cases of forward-interrupt and forward-reverse rotation mode. Under the same experimental condition, the bubble diameter expands with the enlarging nozzle diameter and decreasing with the number of nozzles.The deeper the nozzle immersion depth is, the wider the bubble dispersion is in the bath. The perforated blade impeller weakens the tangential flow and hence delays the vortex formation even under the forward rotation of the impeller, and also reduces the stirring power consumption. Meanwhile, the time for vortex formation using the perforated impeller can be prolonged 2 to 3 times longer than that using the non-perforated impeller. Therefore, the shift time of direction of the rotation in forward-reverse rotation can be longer using the perforated impeller. The impeller of large blade length and height with many holes can improve the bubble disintegration and dispersion. In the case of the perforated impeller, use of larger blade length and height is permissible.
     Second, on the basis of determining the impeller structure and rotation mode, combined with experimental research, applied dimensional analysis method and related the criterion equation on the various factors to the bubble sizes has been attained and is shown below:
     Furthermore, criterion equation on bubble size with gas flow rate、immersion depth and liquid height could be got separately by analyzing the influence of rotation speed, gas flow rate, immersion depth and the impact of liquid height on the average bubble diameter. The criterion equations as follows::
     (a)Effect of gas flow rate on bubble size:
     (b)Effect of immersion depth on bubble size:
     (c)Effect of liquid surface height on bubble size
     Third, this paper has studied various factors effecting on gas absorption process and volumetric mass transfer coefficient using the system of CO2-NaOH-H2O.The results show that high gas flow rate is beneficial to increase volumetric mass transfer coefficient in the bath, volumetric mass transfer coefficient and absorption efficiency of CO2 increase with the increasing rotation speed under the condition of eccentric stirring.With the gas injection mode of direct-blowing and side-blowing, bubble disperse quickly with mechanical stirring, which results in promoting complete reaction between CO2 and NaOH, and improving the mass transfer coefficient and absorption efficiency of CO2.
     Criterion equation on volumetric mass transfer coefficient and correlation number group have been related according to dimensional analysis principle.
     (a)forward-reverse rotation under centric stirring mode
     (b)forward rotation under centric stirring mode
     (c) forward-interrupt rotation under centric stirring mode
     (d) forward rotation under eccentric stirring mode
     Gas holdup in gas injection stirring has been measured by instantaneous stop technology and pressure difference method. Mass transfer coefficient KL and surface renewal rate S with correlated condition were reckoned according to parameters of gas hold up、bubble size and volumetric mass transfer coefficient.
     Fourth, according to practical situation of Mg-based desulphurization, this paper has defined the formula of bubble effectiveness with low ratio of height to diameter, and derived the theoretical formulas on the bubble utilization rate relating to gas flow rate、bubble diameter and mass transfer coefficient. The calculated value of these formulas are shown to be in good agreement with experimental results, indicating the absorption rate can be treated as zero order reaction in the case of low ratio of height to diameter. But theoretical formula when the absorption rate treated as first order reaction is matched better than that when the absorption rate treated as zero order reaction.
     Theoretical formula when the absorption rate treated as zero order reaction
     Theoretical formula when the absorption rate treated as first order reaction
     Fifth, conductivity method has been used to measure uniform mixing time. Influence of rotation mode, rotation speed, eccentric and centric stirring mode and gas flow rate on uniform mixing time have been researched respectively. The results show the uniform mixing time order are that forward-reverse rotation is better than forward-interrupt rotation and then forward rotation; Within the experiment, compared with low rotation speed, uniform mixing time is shorter at high rotation speed. The larger nozzle diameter is, the longer the uniform mixing time is; influence rules of rotation speed on uniform mixing time are the same in both eccentric stirring mode and centric stirring mode. No matter whether there is gas injection or not, uniform mixing time decreases with rotation speed increasing. Furthermore, uniform mixing time with mechanical stirring and injection gas is shorter than that of only injection gas at the same rotation speed.
     Finally, the flow patterns of single-phase flow and two-phase flow under mechanical stirring were simulated by FULENT and MIXSIM software, and compared with digital images at the same time. The simulation results of single-phase flow under mechanical stirring show that: Compared eccentric stirring with centric stirring, it was clearly that big vortex can be formed near impeller shaft when centric stirring mode, although vortex still exist when eccentric stirring, but the vortex deviated from shaft, and this mode can inhibit bubble accumulation. The simulation results of two-phase flow under mechanical stirring show that:under eccentric stirring mode, because vortex was smaller and deviated from shaft, this mode beneficial to bubble dispersion. The flow field in the bath was very disturbance under side blowing injection mode and two-phase flow eccentric stirring mode. Which has further improved bubble dispersion.
引文
1. 邓崎琳.铁水脱硫预处理技术在武钢的应用[J].炼钢,2002,18(1):9-15.
    2. 刘炳宇.纯镁铁水脱硫技术的应用[J].炼钢,2002,18(4):1-2.
    3. 王涛.铁水镁脱硫的理论和实践[J].包头钢铁学院学报,1999,18(9):316-321
    4. 陈辉.镁在铁水脱硫中的应用[J].炼钢,1999,15(4):9-13
    5. G A Irons. Kinetics of molten iron desulphurization using magnesium vapor[J]. Metallurgical Transactions,1981,12(4):755-767
    6. 刘守平.铁水用金属镁脱硫的热力学分析[J].钢铁钒钛,1998,19(1):16-19
    7. 张廷安,刘燕,赫冀成,等.原位机械搅拌法炉外脱硫[P].发明专利,专利申请号:2008:200100118636.3
    8. 张廷安,豆志河,刘燕,,等.,MgO基脱硫剂及其制备方法[P].发明专利,专利申请号:200710011616.9
    9. 张廷安,刘燕,赫冀成,等.基于自蔓延的MgO基高效脱硫剂及制备方法[P].发明专利,专利申请号:2008100869.0
    10.黄希祜.钢铁冶金原理(修订版)[M].北京:冶金工业出版社,1995,183-211
    11.吴义生,高广才,宫玉秀,等.国内外铁水脱硫预处理技术的发展概况[J].山东冶金,2000,22(4):8-11
    12.丁满堂.攀钢铁水炉外脱硫的发展[J].钢铁,2005,40(2):24-26
    13.刘炳宇.不同铁水脱硫工艺方法的应用效果[J].钢铁,2004,39(6):24-27.
    14.李承祚,闫占辉,吕俊生,等.铁水包喷镁脱硫新工艺[J].首钢科技,2001,(6):1-4
    15.戴云阁.现代转炉炼钢[M].沈阳:东北大学出版社,1998:61-65
    16.王志明.铁水脱硫预处理技术及其在马钢的应用[J].钢铁研究,2004,(2):26-27
    17.殷瑞钰.中国连铸的快速发展[J].钢铁,2004,39(增刊):1-7
    18.赖兆奕.转炉长寿与经济炉龄[A].2003年中国钢铁年会论文集[C].北京:2003.292
    19. Liu Liu. Development of the technique of long cmpaigns combined blown converter [A]. Proceedings of 2nd Korea-China symposium on advanced steel technology [C]. Korea: 2001.76
    20. Liu Liu. Progress in Converter Steelmaking in China[A].9th China-Japan Symposium on Science and Technology of Iron and Steel [C]. China:2001.116
    21.耿文范.铁水炉外脱硫技术的发展概况[J].钢铁,1991,(10):68-72
    22.杨天钧,高征铠,刘述林,等.铁水炉外脱硫的新进展[J].钢铁,1999,(1):65-69
    23.赵志玲.铁水脱硫工艺开发的新进展[J].包钢科技,2001,(4):16-18
    24.万德光,张盖楚.用金属镁对铁水进行炉外脱硫[J].炼铁,1989,(1):40-47
    25.陈辉,喻淑仁.镁在铁水脱硫中的应用[J].炼钢,1999,(4):9-13
    26.白月清.镁基粉剂脱硫剂铁水脱硫技术[J].冶金译丛,1999,(4):51-53
    27.高运明,茅洪祥,倪红卫.镁基脱硫剂与铁水炉外脱硫[J].武汉科技大学学报(自然科学版),2000,(1):7-10
    28.堵亚光,戴守军.铁水应用镁粒脱硫技术简介[J].天津冶金,1999,(4):19-20
    29.潘克强,郭雷.宝钢铁水深脱硫技术的开发应用[J].上海冶金,2000,(2):30-36
    30.张 凯.宝钢铁水包镁脱硫工艺介绍[J].宝钢技术,2000,(2):5-7
    31.袁梦飞.镁基脱硫剂铁水预脱硫综述[J].甘肃冶金,1998,(4),46-51
    32.叶树峰,熊小星.铁水脱硫剂的研究和发展[J].江西冶金,1998,(1):5-8
    33.周国忠译.使用粒化镁铁水脱硫的规律[J].国外钢铁,1994,(10):34-37.
    34.吴仁林.喷射法铁水炉外脱硫的几项相关技术[J].钢铁,1989,(11):12-17
    35.马春生.镁基脱硫剂在铁水预处理中的应用[J].钢铁,2001,36(30):15-17
    36.A Φ 舍甫钦科.制取低硫高纯钢最有效的方法-用镁对铁水进行脱硫[J].炼钢,2000,16(1):63-69
    37.阎凤义,宋满堂,张贵玉,等.镁基粉剂脱硫工艺优化与实践[J].钢铁,2003,38(2):14
    38.孙中强,梁连科,车萌昌.用镁和石灰对铁水脱硫预处理的热力学[J].炼钢,2001,17(5):22
    39.刘守平,文光远,张丙怀.铁水用金属镁脱硫的热力学分析[J].钢铁钒钛,1998,19(1):53-57
    40. L brazzoduro.大型钢水包喷吹镁脱硫时的行为的研究[A].斯堪的纳维亚第三届国际喷射冶金讨论会文集(下)[C].北京:1984.4-14
    41.颜根发,唐希伦,孙维.铁液喷镁脱硫的几个工艺理论问题[J].安徽工业大学学报,2004,21(4):377-383
    42. A F Shevchenko, B V Dvoskin, L V Bykov, et al. Choosing an efficient technology for desulfurizing pig iron outside the furnace[J]. Metallurgy Gomorud Promst.1999,32(5):23-26
    43.刘炳宇,庄汉宇.纯镁铁水脱硫技术的应用[J].炼钢,2002,18(4):1-2
    44.阎凤义,宋满堂,张贵玉,等.镁基粉剂脱硫工艺优化与实践[J].钢铁,2003,38(2):14
    45.孙本良,陈新贵,张崇民,等.钙基、镁基脱硫剂的脱硫极限[J].钢铁研究学报,2003,15(1):3-4
    46.梁连科,车荫昌.铁水预处理工作的发展(之二)—铁水预脱硫处理[J].辽宁冶金,1997,(2):12
    47.阮建波,章奉山.影响铁水喷吹颗粒镁脱硫效果的因素分析[J].武汉科技大学学报(自然科学版),2004,27(3):242-245
    48. F Oeter.钢包冶金原理[M].倪瑞明译.北京:北京钢铁学院,1985.146
    49.杨天钧,高征铠,刘述临,等.铁水炉外脱硫的新进展[J].钢铁,1999,34(1):65-69
    50.王雅贞,李承祚.转炉炼钢问答[M].北京:冶金工业出版社,2003:83-89
    51.李凤喜,喻承欢,子华,等.对KR法与喷吹法两种铁水脱硫工艺的探讨[J].炼钢,2000,(1):47-50
    52.赫冀成,刘燕,佐野正道,王强,张廷安.一种铁水精炼过程中气泡细化及其弥散化方法[P].发明专利,专利申请号:200810010722.x
    53. W G Whitman. The two-film theory of absorption[J]. Chemistry and Metal Engineering, 1923,29(1):147-157
    54. R Higbie. The rate of absorption of a pure gas into a still liquid during short periods of exposure[J].1935,35:36-60
    55. P V Danckwerts. Significance of liquid-film coefficients in gas absorption[J].1951,43(6): 1460-1465
    56. J C Lamont, D S Scott. An eddy cell model of mass transfer into the surface of a turbulent liquid[J]. American Institute of Chemical Engineers Journal.1970,16:513-519.
    57. V G Levich. Physicochemical hydrodynamics[M]. NewYork:Prentice-Hall,1962.82
    58. C O Bennett, J E Myers. Momentum, heat and mass transfer(Third ed)[M]. New York: McGraw-Hill BookCompany,1982.495-498
    59. H L Toor, J M Marchello. Film-penetration model formass and heat transfer[J]. AIChE Journal,1958,4(1):97-101
    60. A C Lochiel, P H Calderbank. Mass transfer in the continuous phase around axisymmetric bodies of revolution[J]. Chemical Engineering Science,1964,19 (7):471-484
    61. J Petera, L R Weatherley. Modelling of mass transfer from falling droplets[J]. Chemical Engineering Science,2001,56(16):4929-4947
    62. P TOM. Oxygen absorption into moving water and tensidesolutions[J].Water Research,2000, 34 (9):2569-2581
    63. A R Khan, G Dimitrios, A K Nicholas, et al. Fluxof gases across the air-water interface studied by reversed-flow gas chromatography[J]. J of Chromatography A,2001,934:31-49
    64. R A Pierotti. The solubility of gases in liquids[J]. J Phys Chem,1963,67:1840-1846
    65. S W Yong, K C Dong, F M Anthony. Density, viscosity, surface tension and carbon dioxide solubility anddiffusivity of methanol, ethanol, aqueous propanol, andaqueous ethylene glycol at 25℃[J]. J Chem Eng Data,1981,26:140-141
    66.马友光,余国琮.气液界面传质机理[J].化工学报,2005,33(04):575
    67.马友光,高瑞昶,冯惠生,余国琮.吸收过程的界面传质机理[J].化学工程,2003,31(01):13
    68.张东翔,谭世语,黄会清.传质体系界面过程研究进展[J].重庆大学学报(自然科学版),2001,(02):37
    69.马友光,杨雄文,冯惠生,等.界面湍动对气液传质的影响[J].化学工程,2004,32(04):1
    70.周超凡,余黎明,曾爱武,等.气液界面Marangoni效应对传质系数的影响[J].高校化学工程学报,2005,(04):433
    71.王勇,张泽廷.气液传质相界面湍动现象的实验及分析[J].北京化工大学学报,2002,(02):11
    72.马友光,余国琮,何明霞.多组分相际传质近界面浓度场的测定[J].化工学报,1994,22(05):636
    73.马友光,余国琮.气液相际传质的理论研究[J].天津大学学报(自然科学与工程技术版),1998,(04):506
    74.沈自求.气-液两相流传递研究[J].大连理工大学学报,1999,(02):228
    75.马友光,白鹏,余国琮.气液传质理论研究进展[J].化学工程,1996,24(6):7
    76.张成芳.气液搅拌反应器的新进展[J],医药工程设计.1984,(1):1-8
    77. J B Joshi, A B Pandit, M M Sharma. Counter-current absorption using wire gauze packings[J]. Chem Eng Sci,1982, (37):813-844..
    78.戴干策.搅拌槽的混和特性—混和时间的数据关联[J].化学世界,1983,(8):238-241
    79. K Van der Molen, H R E Van Maanen. Laser-doppler measurements of the turbulent flow in stirred vessels to establish scaling rules[J]. Chen Eng Sci,1978, (33):1161
    80. J Pereira, K Chandrasekharan, P H Calderbank. A revised model for predicting the performance of a fluidised-bed catalytic reactor[J]. Chemical Engineering Science.1981, (2): 239-242
    81. K Chandrasekharan, P H Calderbank. Further observations on the scale-up of aerated mixing vessels[J]. Chemical Engineering Science.1981, (5):818-823
    82. K Chandrasekharan, P H Calderbank.The evaluation of mass transfer product from unsteady-state gas absorption/desorption[J]. Chemical Engineering Science.1980, (6):1473-1477
    83. S Roy, M T Dhotre, J B Joshi. CFD simulation of flow and axial dispersion in external loop airlift reactor[J]. Chemical Engineering Research & Design,2006, (A8):677
    84. J C Charpentier. General characteristics of multiphase gas-liguid reacters:hydrodynamics and mass transfer[M], New York:Acdemic press,1981.1-138
    85. R Botton. Operating zone and scale up of mechanically gas-liguid reacters[J]. Chem Eng Sci. 1980, (35):82-89
    86. G F Froment, B K Bischoff. Chemical reactor analysis and design[J], New York:wiley, 1979.23
    87. K R Westerterp, L L Van Dievendonck, J A De Kraa. Interfacial areas in agitated gas-liquid contactors[J], Chem Eng Sci,1968, (18):157
    88.丁富新,李飞,袁乃驹.环流反应器的发展和应用[J].石油化工,2004,33(9):801-807
    89. A K Verma, S Rai. Studies on surface to bulk ionic mass transfer in bubble column[J]. Chemical Engineering Journal,2003,94:67-72
    90. S S Ozturk, A Schumpe, W D Deckwer. Organic liquids in a bubble column:Holdups and mass transfer coefficients[J]. AIChEJ,1987,33(9):1473-1480
    91. Y Kang, Y J Cho, K J Woo, et al. Diagnosis of bubble distribution and mass transfer in pressurized bubble columns with viscous liquid medium [J]. Chemical Engineering Science, 1999,54(21):4887-4893
    92. F L Muller, J F Davidson. The effects of surfactants on mass transfer to viscous liquids in bubble columns[J].Chemical Engineering Research & Design,1995,73(A3):291-296
    93. A Benkish, Z Men, R J Inga, et al. Mass transfer characteristics in a large-scale slurry bubble column reactor with organic liquid mixtures[J]. Chemical Engineering Science,2002, 57(16):3307-3324
    94. J C Charpentier. What's new in absorption with chemical reaction?[J]. Trans Institn Chem Engrs 1982, (60):131-156,.
    95. J B Joshi, A B Pandit, M M Sharma. Mechanically agitated gas-liquid reactors[J].Chemical Engineering Science,1982,37(6):813-844
    96. T Sridhar, O E Potte. Gas holdup and bubble diameter in pressurized gas-liguid stirred vessels. Ind Eng Chem Fundls,1980, (19):17-26
    97. P H Calderbank. M B Moo-Young. The continuous phase heat and mass-transfer properties of dispersions[J]. Chem Eng Sci,1961, (16):39
    98. V D Mehta, M M Sharma. Mass transfer in mechanically agitated gas—liquid contactors[J]. Chem Eng Sci,1971, (26):461
    99. L S Fan. Gas-liquid-solid fluidization engineering[M]. Boston:Butterworths,1989.36
    100.陈之航.气液双相流动和传热[M].北京:机械工业出版社,1983.67
    101. S Maustiri, G Hebrard, S S Thakre, et al. A unified correlation for predicting liquid axial dispersion coefficient in bubble columns[J]. Chemical Engineering Science,2001, 56(3):1041-1047
    102. J R Safoniukm, G Hackmanl. Gas holdup in a three-phase fludized bed [J]. AIChE J,2002, 48(7):1581-1587
    103.张同,靳海波,何广湘,等.采用压力传感技术测量鼓泡床中流体力学参数[J].化工学报,2005,55(3):476-480
    104.张同旺,何广湘,靳海波,等.气液鼓泡床中气含率的实验研究[J].石油化工高等学校学报,2002,15(4):1-4
    105. X K Luo, P J Jiang, L S Fan. High-pressure three-phase fluidization-hydrodynamics and heat transfer[J]. AIChE J,1997,43(10):2432-2445
    106. H M Letzel, J C Schouten, R Krishna, et al. Influence of elevated pressure on the stability of bubbly flows [J]. Chemical Engineering Science,1997,52 (21/22):3733-3739
    107.刘明言.多相反应器混沌力学特性研究[D].天津:天津大学,1998.234
    108. R Krishna, D E Swart. Gas holdup in slurry bubble columns:Effect of column diameter and slurry concentrations[J]. AIChE J,1997,43(2):311-316
    109. R Krishna, J M Baten. Mass transfer in bubble columns[J]. Catalysis Today,2003,79/80: 67-75
    110.张同旺,靳海波,何广湘,等.加压大型鼓泡床反应器内大小气泡气含率研究[J].化学工程,2004,32(5):29-33
    111.何广湘,张同旺,靳海波,等.喷管分布器大型浆态鼓泡床反应器气含率的研究[J].石油化工,2003,32(6):495-498
    112. L S Fan, G Yang, D J Lee, et al. Some aspects of high-pressure phenomena of bubbles in liquids and liquid-solid suspensions[J]. Chemical Engineering Science,1999,54(21):4681-4709
    113. A Sanchezm, G M Ceron. Mixing in bubble column and airlift reactors[J]. Chemical Engineering Research & Design,2004,82(A10):1367-1374
    114. H Dhaoadi, S Poncin, J M Hornut, et al. Mass transfer in an external-loop airlift reator: Experiments and modeling[J]. Chemical Engineering Science,1997,52(21/22):3909-3918
    115. F C Rubio, M A Sacchez, M C Cerongarcia,et al. Mixing in bubble columns:A new approach for characterizing dispersion coefficients [J]. Engineering Science,2004,59(20):4369-4376
    116. A B Pandit, J B Joshi. Mixing in mechanically agitated gas-liquid contactors, bubble columns and modified bubble columns[J]. Chemical Engineering Science,1983,38(8):1189-1215
    117. M A Fanhim, N Wakao. Parameter estimation from tracer response measurements[J]. Chemical Engineering Journal,1982,25:1-8
    118. N Hidaka, T Matsumoto, K I Mizuguchi. Axial mixing of liquid in counter-current bubble columns[J]. Journal of Chemical Engineering of Japan,1998,31(6):1016-1019
    119. P M Wikinson, H Haringa, F P Stokman, et al. Liquid mixing in a bubble column under pressure [J]. Chemical Engineering Science,1993,48 (10):1785-1791
    120. G Q Yang, L S Fan. Axial liquid mixing in high-pressure bubble columns[J]. AIChE J,2003, 49(8):1995-2008
    121. E L Garcia-calvo. Prediction of fluid dynamics and liquid mixing in bubble columns[J]. Chemical Engineering Science,1994,49(21):3643-3649
    122.陈甘棠.化学反应工程[M].北京:化学工业出版社,1986.115
    123.陈敏恒,翁元垣.化学反应工程基本原理[M].北京:化学工业出版社,1982.98
    124.肖兴国主编.冶金反应工程学[M].沈阳:东北大学出版社,1989.79
    125.阎建新,黄哗.停留时间分布(RTD)曲线分析方法的探讨[J],东北大学学报,1998,19(S1):82
    126.彭一川等译.冶金中的流体流动现象[M].北京:冶金工业出版社,1985.418
    127. R E Johnstone, M W Thring. Pilot, plants, models and scale-up methods in chemical engineering[M]. New York:McGraw-Hill,1957.56
    128. M W Thring. The science of flames and furnaces[M]. Wiley, New York,1962.37
    129.王常珍.冶金物理化学研究方法(第三版)[M].冶金工业出版社,2002.443
    130. A T Aroonnilas. P-Mechanistic model for prediction of structured pack-ing mass transfer performance in CO2 absorption with chemical reactions[J]. Chemical Engineering Science, 2000,55:3651-3663
    131.李之光编著.相似与模化(理论及应用)[M].北京:国防工业出版社,1982.4
    132. J Szekely, N J Themelis. Rate phenomina in process metallurgy[M]. New York:Wiley, 1971.23
    133. J S MaaleAALE, B O Benadda, M T Terbein,et al. In-terfacial area and volumetric mass transfer coefficient in a bubble reactor at elevated pressures[J]. Chemical Engineering Science,2003,58(11):2365-2376
    134.谭天恩,麦本熙,丁惠华编著.化工原理[M].北京:化学工业出版社,1990.38
    135.郁能文.RH精炼过程中钢液流动特性的水模型[A].第七届冶金反应工程学术会议[C],沈阳:1998.118
    136.陈敏恒,袁渭康著.工业反应过程的开发方法[M].北京:化学工业出版社,1985.9
    137.陈敏恒,丛德滋,方图南.化工原理[M].北京:化学工业出版社,1985.145
    138.张廷安,张显鹏.富硼渣缓冷工艺放大过程的研究(Ⅰ)数学模型[J].东北大学学报,1998,19(S1):263
    139.张廷安,张显鹏.富硼渣缓冷工艺放大过程的研究(Ⅱ)工业放大试验[J].东北大学学报,1998,19(S1):267
    140.张政译.传热与流体流动的数值计算[M].北京:科学出版社,1984.1
    141.魏季和译.冶金中传热传质现象[M].北京:冶金工业出版社,1981.63
    142.鞭嚴等著,费云亮译.冶金实用数学[M].北京:冶金工业出版社,1983.95
    143.朱苗勇,雷洪等.结晶器内气液两相流行为的模拟研究[J].东北大学学报,1998,19(s1):102
    144. W Bujialshi, Z Jaworski, A W Nienow. CFD study of homogenization with dual Rushot turbines-comarision with experimental result Part Ⅱ:The multiple refernce frame[J]. Trans IChME,2002,80:97-104
    145. J Y Luo, A D Gosman, R I Issa, et al. Full flow field computation of mixing in baffled stirred vessels[J]. Trans IChME, Part A,1993,71:342-344
    146.周国忠,施力田,王英琛.搅拌槽内近桨区流动场的数值模拟研究[J].高等化学工程学报,2002,16:17-22
    147. D H Albert. Steady-State modeling and experimental measurement of a baffled impeller stirred tank[J]. AIChE J,1995,41:2177-2186
    148. V V Ranade. An efficient computational model for simulating flow in stirred vessels:a case of Rushton turbine[J]. Chemical Engineering Science,1997,52:4473-4484
    149. V V Ranade, V R Deshpande. Gas-liguid flow in stirred reactor:Trailing vortices and gas accumulation behind impeller blades[J], Chemical Engineering Science,1999,54:2305-2315
    150. G L Lane, M P Schwarz, G M Evans. Predicting gas-liguid flow in a mechanically stirred tank[J]. Applied Mathatical Modeling,2002,26(2):223-235
    151. J O Hinze. Fundamentals of the hydrodynamic mechanism of splitting in dispersion process[J]. AICHE J,1955,1(3):289-295.
    152.张志斌,戴干策,陈敏恒.搅拌槽中气泡大小分布规律的研究[J].化工学报,1989,40(2):183-189
    153.杨瑞,周肇义,蒋述曾.射流搅拌发酵罐自由射流气泡区的气泡直径和气含率研究[J].四川大学学报(工程科学版),2001,33(2):63-66
    154. B Greavesm. The internal structure of gas-liquid distributions in a stirred reactor[C] 6th European Conference on Mixing, Italy:Pavia,1988:313-320
    155. B Greavesm. Measurement of bubble size distribution in turbulent gas-liquid dispersions[J]. Chem Eng Res Des,1984,62:3-12
    156. B Greavesm. Bubble-size distribution in a mechanically agitated gas-liquid contactors[J]. Chem Eng Sci.1992,47(8):2009-2025
    157. B Greavesm. Bubble size in the impeller region of a Rushton turbine[J].Trans Ichem E,1992, 70A:153-160.
    158. M Sano, K Mori. Bubble formation from single nozzle in liguid metals. Tran JIM,1976,17: 464
    159. H van Landehem. Multiphase reactors:Mass transfer and modeling[J]. Chem Eng Sci,1980, 35:1912-1920.
    160. P S Kumar, Hogendoorn J A, Feron P H M, et al. Approximate solution to predict the enhancement factor for the reactive absorption of gas in a liquid flowing through a microporous membranes hollow fiber[J]. J Membr Sci,2003, (213):231-245.
    161. H Kreulen, C A Smolders, G F Versteeg, et al. A specific application:Mass transfer in highly viscous liquids[J]. J Membr Sci,1993, (78):197-216
    162.赵建华,贺国,黄次浩,等.静态混合器内气泡直径研究[J].石油化工设备,2004,3(1): 18-21
    163.顾汉洋,郭烈锦.垂直圆管内湍流泡状流的数值研究[J].化工学报,2004,55(4):563-567.
    164. W WANG, Z MAO. Numerical simulation of gas-liquid flow in a stirred tank with a Rushton impeller[J]. Chinese J Chem Eng.2002,10(4):385-395
    165.徐城杰,白博峰.有限深度液体中气泡破碎的参数影响[J].核动力工程,2006,27(1):86
    166.范镇,高峰,鲁波,等.环流反应器的研究:Ⅱ气泡大小分布与气相停留时间分布的关系[J].化学反应工程与工艺,1985,1(1-2):80-90
    167. B L Tarmy, C A Coulaloglou. Alpha-omega and beyond industrial view of gas/liquid/solid reactor development[J]. Chem Eng Sci,1992,47(13):3231-3246
    168. K Akita, F Yoshida. Bubble size, interfacial area, and liquid phase mass transfer coefficients in bubble column[J]. Ind and Eng CPDD,1974,13(1):84-91
    169.闻建平.下喷自吸环流反应器内局部流动传质及分形特性的研究[D].天津:天津大学,1995.67
    170. J P Zhang, J R Grace, N Epstein, et al. Flow regime identification in gas-liquid flow and three-phase fluidized beds[J]. Chem Eng Sci,1997,52(21):3979-3992
    171.葛卫龙,张晓晖,雷选华.水中气泡尺度计算的图像处理方法[J].激光与红外,2006,36(1):75-77
    172.邵建斌.水中气泡运动图像测量方法研究[D].西安:西安理工大学,2004.41-42
    173. R Biirckhart, W D Deckwer. Bubble size distribution and interfacial areas of electrolyte solutions in bubble columns [J]. Chem Eng Sci,1975,30(3):351-354
    174. R C Botton, D C Charpentier. Influence of column diameter and high gas thorough-puts on the operation of airlift bubble column[J], Chem Eng J,1978,16(2):107-115
    175.纪延俊,何俊华,陈良益.气泡的散射光与气泡尺寸分布[J].激光技术,2004,28(4):34
    176. R T Rodrigues, J Rubio. New basis for measuring the size distribution of bubbles[J]. Minerals Engineering,2003,16(8):757-765.
    177.车得福,林宗虎,陈学俊.气泡在液体中形成的试验研究[J].钢铁研究学报,1994,6(1):9-14
    178. D Wiemann, D Mewes. Calculation of flow fields in two and three-phase bubble columns considering mass transfer[J]. Chemical Engineering Science,2005,60 (22):6085-6093
    179. T Miyahara, M Tanimoto, T Takahashi. Bubble formation from an orifice at high gas injection rates the size of bubbles above an orifice[J], Kagaku Kogaku Ronbunshu,1982, 8(3):304-306
    1. R T Rodrigues, J Rubio. New basis for measuring the size distribution of bubbles[J]. Minerals Engineering,2003,16(8):757-765
    2. U Farook, H B Zhang, M J Edirisinghe. Preparation of microbubble suspensions by co-axial electrohydrodynamic atomization[J]. Medical Engineering & Physics,2007,29(7):749-754
    3. J Rensen, S Luther, J de Vries. Hot-film anemometry in bubbly flow Ⅰ:bubble-probe interaction[J]. International Journal of Multiphase Flow,2005,31(3):285-301
    4. 扬长贺,郭喜旗,徐远跃,等.旋转喷头法铝液除氢效率的剖析与研讨[J].轻合金加工技术,1995(2):5~10
    5. 蒋海燕,孙宝俊,倪红军,等.铝合金熔体净化工艺[J].特种铸造及有色合金,2001(2):48~49
    6. 黑川伸洋.铁水脱硫技术的改进[J].武钢技术,1994,(5):6-13
    7. K Mishima, T Hibiki, H Nishihara. Visualization and measurement of two-phase flow by using neutron radiography[J]. Nuclear Engineering and Design,1997,175(1):25-35
    8. Q Wu, M Ishii, J Uhle. Framework of two-group model for interfacial area transport in vertical two-phase flows[J].Trans ANS,1998, (79):351-352
    9. 纪延俊,何俊华,陈良益.气泡的散射光与气泡尺寸分布[J].激光技术,2004,(28):414-416
    10. R Judith,L Stefan, L Detlef, et al. Hot-film anemometry in bubbly flow I:bubble-probe interaction[J]. Multiphase Flow,2005:285-302
    11. K Mishima, T Hibiki, H Nishihara. Visualization and measurement of two-phase flow by usingneutron radiography[J]. Nuclear Engineering and Design,1997:26(1):25-35
    12. Q Wu, S Kim, M Ishii, et al. One-group interfacial area transport in vertical bubbly flow[J]. Int J Heat Mass Transfer,1998,41 (8/9):1103-1112
    1. Liu Y, Zhang T A, Masamichi Sano, et al. Mechanical Stirring for Gas Injection Refining in Iron and Steel Making[C]. ISIJ. In:CAMP-ISIJ. Jifu(Japan):ISIJ,2007:785-795.
    2. 张廷安,刘燕,赫冀成,等.原位机械搅拌法炉外脱硫方法及装置[P].发明专利,专利申请号:20081001186303.3
    3. 赫冀成,刘燕,佐野正道,等.一种铁水精炼过程中气泡细化及其弥散化方法[P].发明专利,专利申请号:200810010722.x
    1. R Kumar, N R kuloor. The formation of bubble and drops[J]. Cbm Eng Sci,1969,24:731-749
    2. 车得福,林宗虎,陈学俊.气泡在液体中形成的实验研究[J].钢铁研究学报,1994,6(1):9-14
    3. T Miyahara, M Tanimoto, T Takahashi. Bubble formation from an orifice at high gas injection rates the size of bubbles above an orifice[J]. Kagaku Kogaku Ronbunshu,1982,8(3):304-306
    4. M Iguchi. Effect of paralel flow on frequency of bubble formation from single-hole nozzle under micro-gravity conditions[J]. Journal of Chemical Engineering of Japan,1999,32 (6):789-795
    5. A Kapilashrami, A K Lahiri, S Seetharaman. Bubble formation through reaction at liquid-liquid interfaces[J]. Steel Research International,2005,76(9):616-623
    6. S Fukao, J P McClure, I Aetal.1st Vhf radar observation of midlatitude fregion field-aligned irregularities[J]. Geophysical Research Letters,1999,15(g):768
    7. P Snabre, F Magnifotcham. Formation and rise of a bubble streamina viscous liquid[J]. Phys J B, 1998,4:369-377
    8. X Luo, G Yang, D J Lee, et al. Single bubble formation in high pressure liquid-solid suspensions[J], powder technology,1998,100:103-112
    9. Chemical Engineering Science,2001,56 (4):1737-1747
    10. Y Xie, S Orsten, F Oeters. Behaviour of bubbles at gas blowing into liquid wood's metal[J]. ISIJ International,1992,32(1):66-75
    2. 董良.气泡行为对表观传质系数影响的研究[A].第四届冶金过程动力学和反应工程学术会议论文集[C].西安:西安冶金建筑学院,1984.206-210
    3. K Rajamani, E Jury. Gas holdup in bubble column reactors operating in the churn-turbulent flow regime[J].AIChE Journal,1996,42(9):2627-2634
    4. S D Gharat, J B Joshi.Transport phenomena in bubble column reactors I:flow pattern[J].Chemical Engineering Journal,1992,48:141-151
    5. P V Danckwerts. Significance of liquid-film coefficients in gas absorption[J].Industry & Engineerir g Chemistry,1951,43(6):1460-1467
    6. B M拉姆.气体吸收(第2版)[M].刘凤志译,北京:化学工业出版社,1985.17
    7. S Luk, Y H Lee. Mass transfer in eddies close to air-water interface[J]. AICHE Journal,1986,32(9) 1546-1554
    8. J C Lamont, D S Scott. An eddy cell model of mass transfer into the surface the turbulent liquid[J]. AICHE Journal,1970,16(4):513-519
    1. S D Gharat, J B Joshi. Transport phenomena in bubble column reactors I:flow pattern[J]. The chemical engineering journal,1992,48:141-151
    2. S A Patel, J G Daly. Holdup and interfacial area measurements using dynamic gas disengagement[J]. AIChE Journal,1989,35(6):931-942
    3. J G Daly, S A Patel. Measurement of gas holdups and sauter mean bubble diameters in bubble column reactors by dynamic gas disengagement method[J]. Chemical Engineering Science,1992,47(13/14): 3647-3654
    4. 胡浩然,郭丽娟,孙惠芬,等.导流管型鼓泡塔中带泡沫非牛顿型液体的气含率.化工冶金,1997,18(4):354
    5. 胡浩然,周霞芬,郭丽娟.导流管型鼓泡塔的气含率和氧传递系数,化工冶金,1990,11(1):47
    6. 杨海光,范轶,李飞,等.气升式环流反应器在不同体系下的循环液速和局部气含率[J].高校化学工程学报,2003,17(1):37-41
    7. 张国英,罗国华,杨春育,等.气升式反应器用于异丙苯氧化反应的模型与模拟[J].北京石油化工学院学报,2002,10(3):35-38
    8. J B Joshi. Computational flow modeling and design of bubble column reactors. Chemical Engineering Science,2001,56:5893-5933
    9. S B Kumar, D Moslemian, M P Dudukovic. Gas-holdup measurements in bubble columns using computed tomography. American Institute of Chemical Engineering Journal,1997,43 (6):1414-1425
    10. Y X Wu, B C Ong, M H Aldahhan. Predictions of radial gas holdup profiles in bubble column reactors. Chemical Engineering Science,2001,56:1207-1210
    1.王红心,王国胜.气升式反应器流动行为研究(Ⅰ)—平均气含率的影响[J].辽宁化工,2001,30(3):95-97
    2.王焕君,费黎明.相外环流反应器的液相返混特性和气液传质特性[J].化学反应工程与工艺, 1992,s(2):175-154
    3.韦朝海,谢波.缩放型导流筒气升式内环流反应器特性:气液两相牛顿流体[J].华南理工大学学报(自然科学版),2000,28(2):119-123
    4. Mi SANO, K MORI. Size of bubble in energetic gas injection into liquid metal[J]. The Iron and Steel Institute of Japan,1980,20:676-681
    5.胡华,刘芳,刘铮,等.气液反应其中气泡有效利用率(Ⅱ)—实验验证与应用研究[J].化工学报,1998,49(01):60-64
    6.胡华,刘芳,刘铮,等.气液反应其中气泡有效利用率(Ⅰ)—新概念的提出和理论计算式[J]化工学报,1997,48(6):661-666
    7.杨仁春,何立惠,李佳虎,等.酸钾碳酸化回收钾碱的初步研究[J].过程工程学报,2001,1(4):422-426
    8.牛佳,杜红,王佳音.气液反应理论在臭氧接触反应器中的应用[J].哈尔滨建筑大学学报,1997,30(6):63-07
    9.陈滨,李小斌,刘桂华,等.CO2(气)-NaOH(液)气液反应速率[J].广东有色金属学报,2006,16(3):168-172
    10.姜信真.气—液反应器理论及应用基础.北京:烃加工出版社,1989.3
    1. Y Sahai, R I L Guthrie. Hydrodynamics of gas stirred melts[J].Metall Trans,1982,13B: 203-211
    2. 匡世波.钢包炉内流动和混合过程的数值模拟[D].沈阳:东北大学,2003.3
    3. 任三兵.大型钢包吹氩最佳位置的探讨[J].包头钢铁学院学报,2003,22(3):193-197
    4. 张鉴.炉外精炼的理论与实践[M].北京:冶金工业出版社,1993.228
    5. 朱苗勇,萧泽强.钢的精炼过程的数学物理模拟[M].北京冶金工业出版社,1998.141-184
    6. 何平,谢计卫.钢包底吹液面产生液峰高度的水模型研究[J]·钢铁研究,1996,31(4):3-6
    7. K Nakanishi, T Fuji. J Szekely. Possible relationship between energy dissipation aid agitation in steel processing operations [J]. Ironmaking & Steelmaking,1975,2(4):193-197
    8. U P Sinha, M J McNalla. Mixing in ladles by vertical injection of gas and gas-particle jets:a water model study[M]. Metall Trans,1985,16B:850-856
    9. T C Hsiao, T Lehner, B Kellberg. Fluid flow in ladles-experimental results[J]. Scand J Met, 1980,9(3):105-110
    10.张信昭.喷粉冶金基本原理[M].北京:冶金工业出版社,1988.35
    11.周云,董元篪,王海川.CAS-OB中排渣能力与混匀时间实验研究[J].包头钢铁学院学报,2001,20(3):268-271
    1. 陶文铨.数值传热学[M],西安:西安交通大学出版社,1998.23
    2. 张永震.搅拌釜式生物反应器的计算流体力学模拟[D].天津:天津大学化工学院,2005.25-26
    3. 王瑞金,张凯,王刚.Fluent技术基础与应用实例[M].北京:清华大学出版社,2007.180-184

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700