用户名: 密码: 验证码:
光滑爪蟾(Xenopus laevis)皮肤抗菌肽的筛选及其相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗菌肽(antibacterial peptides)是生物免疫系统产生的一类抵抗外界病原体感染的多肽,广泛存在于昆虫、植物、动物及人体内。它除有非特异性的抗细菌、真菌、病毒等病原体外,还有抗肿瘤细胞的作用。特别是对多重耐药菌和肿瘤细胞有杀伤作用,而不破坏人体的正常细胞,是一类具有巨大发展潜力的新型抗菌药,是目前抗病原微生物药物开发研究中的一个热点。两栖类动物皮肤光滑、裸露,没有鳞片、甲壳和毛发的保护,但能分泌具有良好保护作用的皮肤粘液,皮肤粘液中含有大量分子结构特殊、功能复杂多样的抗菌活性物质,抗菌肽是其中最重要的生物活性物质之一,是两栖动物机体先天防御系统的重要组成部分。
     本研究以光滑爪蟾、中国林蛙,东北林蛙和中华大蟾蜍为实验材料,通过两种诱导方式提取这四种两栖动物的皮肤分泌液,进行了一系列的生物活性测定。结果表明,不同种类的两栖动物皮肤分泌液生物活性并不相同,不同方法诱导所提取的同一类两栖动物的皮肤分泌液的生物活性也有差异。体外抑菌活性检测结果表明,四种两栖动物皮肤分泌物对不同菌株均产生不同程度的抑菌效果,其中以光滑爪蟾的抑菌效果最强,除此之外,光滑爪蟾皮肤分泌物还有抑制和杀伤癌细胞的作用,并具有胰酶抑制剂活性和极其微弱的溶血活性。
     基于上述结果,以光滑爪蟾为实验材料,通过不同方法分离皮肤分泌物中的抗菌肽,并对其结构和功能做进一步研究。通过四步分离纯化:SephadexG-25凝胶过滤层析、制备型反相高压液相层析、离子交换层析和分析型反相高效液相色谱层析,分离纯化出两种抗菌肽:AMP-1和AMP-2,通过氨基酸N端测序和MALDI-TOF/TOF-MS人工De nove手动拼接两种方法相结合的方式对抗菌肽AMP-1和AMP-2的一级结构进行鉴定。网上搜库序列比对后,确定本实验所获得的两种抗菌肽均为首次发现。对两种新发现的抗菌肽进行最小抑菌浓度(MIC)检测、胰蛋白酶抑制活性检测、溶血活性检测和抗肿瘤活性检测。结果显示:AMP-1和AMP-2对革兰氏阳性菌和革兰氏阴性菌都有抗菌活性,AMP-2还对绿脓杆菌也有较弱的抗菌活性,并且AMP-1和AMP-2对多种耐药菌株也具有不同程度的抗菌活性。由于检测抗菌活性的微生物来源不可能与两栖类动物生存环境的微生物谱系相同,还可能由于我们所检测的微生物与特定抗菌肽的天然靶向微生物存在差异,因此导致我们没有检测到抗菌肽对个别菌株的抗菌活性。除抗菌活性外,AMP-1和AMP-2均有较强的胰蛋白酶抑制活性,同时也表现出了极其微弱的溶血活性。抗肿瘤结果显示:AMP-1并没有杀伤癌细胞的作用,而AMP-2却表现出了很好的抗肿瘤的效果,当样品浓度达到146.6μg/ml时,AMP-2可以杀死81.1%人乳腺癌细胞MCF-7。
     为了进一步研究这两种抗菌肽的结构与功能,本实验通过ExPASy网站上的二级结构预测软件Jpred对其进行二级结构的预测,通过三级结构预测软件CPHmodels对其进行空间结构预测。以此为基础,通过替换和缺失AMP-1中赖氨酸对其进行结构改造,又得到九条新的抗菌肽。同时在NCBI中进行搜索,找到与AMP-1和AMP-2序列相似的抗菌肽,并利用多肽固相合成的方法合成16条抗菌肽。将合成的多肽通过高效液相色谱法进行纯化,共得到5条纯度在99%以上,8条纯度在95%以上的抗菌肽。以金黄色葡萄球菌为指示菌,检测13条纯品抗菌肽的抗菌活性,结合预测结果推测抗菌肽AMP-1中每个赖氨酸对抗菌肽的结构以及抗菌活性的作用。由于抗菌肽一般都是含有α-螺旋结构的两亲性分子,疏水性及带电荷数对其生物活性影响非常大。因此,单一的氨基酸突变就可能很大程度上改变抗菌肽的空间结构和生物活性。在对抗菌肽AMP-1进行结构改造的过程中,我们又获得了四条新的具有抗菌活性的抗菌肽。
     为了进一步阐明光滑爪蟾抗菌肽的杀菌机理,将E.coli ATCC25922与S.aureus ATCC25923菌株分别与光滑爪蟾抗菌肽AMP-1和AMP-2共孵育后进行透射电镜观察分析,光滑爪蟾抗菌肽对细菌形态及细菌表面结构的影响。结果显示:处理前两者具有完整的细胞壁和细胞膜,并且其细胞结构完整、表面光滑,能观察到完整的菌毛,细胞表面没有损伤。细胞内的蛋白质和DNA等物质能与染色液中所含有的重金属离子结合而使菌体呈现深黑色。经过抗菌肽AMP-1和AMP-2处理后,E.coli ATCC25922和S.aureus ATCC25923均有部分细胞内容物外泄,细胞出现破损或肿胀,菌体部分或完全破裂,并伴有细胞质稀释的现象,细胞表面存在破损成小孔的地方,细胞膜界限模糊不清,甚至细胞膜完全溶解。由于细胞内容物外渗,细胞质解体,形成空腔,致使被染色的细胞颜色变浅。以上结果表明,抗菌肽AMP-1和AMP-2能够使E.coli ATCC25922、S.aureus ATCC25923菌体细胞壁破裂或者在细胞表面形成孔洞,内容物外泄,最终导致菌体死亡。
     结论:本实验从光滑爪蟾皮肤分泌物中分离纯化出两种新的抗菌肽AMP-1和AMP-2,两种抗菌肽都具有广谱抗菌活性,胰蛋白酶抑制活性,微弱的溶血活性,AMP-2还具有很好的抗肿瘤活性。结构预测后对抗菌肽AMP-1进行结构改造,又获得四种新的具有抗菌活性的抗菌肽AMP-1-2、AMP-1-3、AMP-1-4和AMP-1-5。通过透射电子显微镜观察,抗菌肽AMP-1和AMP-2对细菌的细胞壁都有不同程度的破坏作用。
Antibacterial peptide is a kind of polypeptides that generate by biological immune system to resist to infection caused by heterogeneous pathogens they ubiquitously exist in insects,plants and human bodies. Besides nonspecific resistance to bacterias,fungi and viruses, they still can function anti-tumor-cell.Especially their lethal effect to mutidrug resistant bacteria and tumor cells without destroy the normal cells of human, that is a new pattern of antibacterial with tremendous development potential,and is a hotspot of pharmaprojects that function resistant to pathogenic microorganism. Amphibia animals'skins are smooth and glossy, naked, and no scalinesses, shells or hairs,but they can secrete skin mucilage possessing protective effect. The skin mucilage contain mount of antimicrobial active substances that have special molecular structure and complicated and diverse functions,and antibacterial peptide is one of most important bioactive substances that consist of important parts of connatural defense system of Amphibian and extreme abundance in their skins.
     Using Xenopus laevis daudin,Rana temporaria chensinensis,Rana dybowskii Gurnther as experiment materials,the research extracted skin secretion four species of Amphibians through two induction methods,and measured a series of bioactivities.Among measured bioactivities, skin secretion of differerent species of Amphibians have different bioactivities,while the same Amphibians skin secretion extracted by different induction methods also have different bioactivities. Results of bacteriostatic activity test in vitro showed that skin secretion of four species of amphibians have didderent bacteriostatic effect to different bacteria strains while Xenopus laevis daudin possesses the strongest effect; Addition to this, skin secretion of Xenopus laevis daudin can also resrain, wound and kill tumor cells;they still have trypsogen inhibitors activity and extremely feeble haemolysis activity.
     Therefore,we made Xenopus laevis daudin as experiment materials,screened antibacterial peptides from their skin secretion and studied their structures and functions.Using four steps separation and purification:SephadexG-25 gel filtration chromatography, preparation mode of reverse phase,ion exchange chromatography,analysis mode of reversed-phase high-performance liquid chromatography,we separated and purified two antibacterial peptides:AMP-1 and AMP-2, combining amino acid sequencing and MALDI-TOF/TOF-MS methods identitied primary structures of antibacterial peptides AMP-1 and AMP-2.After comparing with sequences that searched database on Internet, it can be identitied that those two antibacterial peptides are newfound antibacterial peptides.Then conducting those two newfound antibacterial peptides with minimal inhibitory concentraton test(MIC); trypsinase inhibitory activity test; haemolysis activity test; anti-tumor activity test.Results displayed:the two antibacterial peptides both showed antibacterial activity to both Gram-Positive Bacteria Gram-Negtive Bacteria, AMP-2 showed faint antibacterial activity to seudomonas Aeruginosa, AMP-1 and AMP-2 manifested different degree of antibacterial activity to drug resistant strains.Because the origin of Microorganisms that used to test antibacterial activity cannot be identical with Microorganisms pedigree that existed in amphibian habitat, therefore, the possible differences of Microorganisms between we've tested and specific antibacterial peptides targeted may cuased that we hadn't tested antibacterial peptides'antibacterial activity to individual strains, in may also be the cause that antibacterial peptides showed low hyposensitivity to individual strains.Besides antibacterial activity, AMP-1 and AMP-2 both showed comparatively strong trypsinase inhibitory activity,meanwhile both showed extemly feeble haemolysis activity.Anti-tumor results showed that:AMP-1 had lethal effect on tumor cells while AMP-2 showed well anti-tumor effect,when sample concentration reached 146.6μg/ml,it can killed breast cancer cells MCF-7 up to 81.1%.
     In order to futher study structures and functions of the two antibacterial peptides, this study predicted their secondary structures and spatial structures through secondary structure prediction software Jpred and tertiary structure prediction software CPHmodels, reformed AMP-1by replacing and deleting its lysines,and thus gained nine new antibacterial peptides,after searching sequence-similar antibacterial peptides in NCBI, using amine acid solid-phase synthesis methods synthesized fifteen antibacterial peptides,after purifying with high efficiency liquid chromatography,obtaining five antibacterial peptides that purity reached above 99%,and nine above 95% Using Staphylococcus aureus as indicator to test antibacterial activity of fourteen antibacterial peptides, and combined with prediction results to predict the functions of every lysine to structure and antibacterial activity of AMP-1.Because antibacterial peptides generally containsα-helices, hydrophobicity and charge number affect their bioactivity extraordinarily. as far as antibacterial peptide is concerned,the mutation of a single of amine acid is possible to a great extent to change its spatial structure and bioactivity. In the process of reforming antibacterial peptide,we again obtain another four new antibacterial peptides that possessing antibacterial activity.
     In order to further explain the antibacterial activity mechanism of antibacterial peptides originated from Xenopus laevis, After co-incubating E.coli ATCC25922 and S.aureus ATCC25923 with AMP-land AMP-2 respectively, using transmission electron microscope to observe the effect that antibacterial peptides of Xenopus laevis imposed on bacterial morphous andstructure.Before the treatment, E.coli ATCC25922 had intact cell wall and cell membrance,and moreover had complete cellularity,the surface was smooth and glossy,and can be observed intact pili,the cell surface had no injure. In addition, intracellular proteins can combine the heavy metalions that exist in staining solution,and thus make bacteria as Pitch black. E.coli ATCC25922 treated with AMP-land AMP-2 leaked parts of cell entocyte,and cells would be damaged or swelled, thalli would fracture partly or completely acccompanied with cytoplasm being diluent.As a result of permeate of cell entocyte, cytoplasm fractured and formed hollow cave,therefore made the color of stained cells faded.All above indicated that: AMP-land AMP-2 could make cell wall of E.coli ATCC25922 breakage or form the hole,caused cell entocyte leakage and finally led to the death of bacteria.
     Conclusions:the study separated and purified two new antibacterial peptides AMP-land AMP-2,both of them had broad spectrum of antibacterial activity, trypsinase inhibitory activity and feeable haemolysis activity, AMP-2 also possessed well anti-tumor activity.After structure perdiction,reformed the structure of antibacterial peptide AMP-1,and obtained four new antibacterial peptides with antibacterial activity:AMP-1-2,AMP-1-3,AMP-1-4 and AMP-1-5. Observed AMP-land AMP-2could to different extent destroy the cell wall.
引文
[1]Capasso L.5300 yeas ago,the Ice Man used natural laxative and antibiotics.Lancet 1998 352(9143):1846.
    [2]Hoel,D.Williams,D.N.Antibiotics:past,present,and future.Unearthing nature's magic bullets. Postgrad Med 1997 101(1):114-118,121-122.
    [3]Goldsworthy,P.D.;McFarlane,A.C.Howard Florey,Alexander Fleming and the fairy tale of penicillin.Med J Aust 2002 176(4):176-178.
    [4]Hawkey,P.M.The origins and molecular basis of antibiotic resistance.BMJ 1998 317(7159): 657-660.
    [5]Wise,R.Hart,T.Cars,O.Antimicrobial resistance.Is a major threat to public health.BMJ 1998 317(7159):609-610.
    [6]Pillay,D.Zambon,M.Antiviral drug resistance.BMJ 1998 317(7159):660-662.
    [7]Hughes,V.M.;Datta,N.Conjugative plasmids in bacteria of the'pre-antibiotic'era.Nature 1983 302(5910):725-726.
    [8]Davies,J.Origins,acquisition and dissemination of antibiotic resistance determinants.In: Chadwick D,Goode J,editors.Antibiotic resistance:origins,evolution,selection and spread. Chicester(UK):Wiley;1997 15-35.
    [9]Webb,V.Davies,J. Antibiotic preparations contain DNA:a source of drug resistance genes.Antimicrob Agents Chemother 1993 37(11):2379-2384.
    [10]Khardori N.Antibiotics-Past,Present and Future.Med.Clin.N.Am.2006 90,1049-1076.
    [11]Andra J,O.Berninghausen,and M.Leippe.Cecropins,antibacterial peptides from insects and mammals,are potently fungicidal against Candida albicans.Med Microbiol Immunol, 2001,189(3):169-173.
    [12]Friedrich C L,Moyles D, Beveridge T J, et al. Antibacterialaction of structural lydicerse cationic pep tides on Gram-positivebacteria. Antimicrob Agents Chemother,2000,44:2086~ 2092
    [13]Lehrer R I, Barton A, Daher K A, et al. Interaction of humandefensinswith Escherchia coli: mechenism of bactericidal activity. J Clin Invest,1994,94:553~561
    [14]Bulet P, Dimarcq J C, Herru C, et al. A novel inducible antibacterial pep tide of D rosophila carries an O2glycosylared substitition. Biol Chem,1993,14893~14897
    [15]Hancock REW, Lehrer R. Cationic pep tides:a new source of antibiotics. Trends Biotechnol, 1998,16:82~88
    [16]Ociaucich S,Dupont A,Hegy G,et al. Novel inducible antibacterial peptides from a hemipteran insect, the sap-sucking bug Pyrrho-coris apterus[J] Biochem J,1994,300:567-575.
    [17]Baba K,Okada M,Kawano T,et al. Purification of Sarcotoxin III,a new antibacterial protein of Sarcophaga peregrine [J]. J Biochem,1987,102:69-74.
    [18]许玉澄,张双全,戴祝英.家蚕抗菌肽的抗癌作用[J].动物学研究,1998,19(4):263-269.
    [19]Smeianov V,Seott K,Reid G.Activity of cecropin p;and FALL-37 against urogenital microflora[J].Mierobial Infect,2000,2:773-777.
    [20]Giacometti A,Cirionio,DelPrete MS,etal.Combination studies between polycationic peptide and clinically used antibioties against Gram-negtive bacteria[J].Peptides,2000,21:1155-1160.
    [21]Sipos D,Anderson M,Ehrenberg A.The structure of the mammalian antibactericidal peptide cecropin P1 insolution,determined by Proton.NMR[J].Eur J Biochem,1992,209:163-169.
    [22]Anderson M,Gunne H,Agerberth B,etal.NK-lysin,a novel effector peptide of eytotoxic T and NK cells, Structure and cDNA cloning of the Porteine form,induction by interleukin2, antibacterial and antitomouractivity[J].EMBO.J,1995,14:1615-1625.
    [23]汪以真,韩新燕,许梓荣.哺乳动物抗菌肽及其在畜牧生产上的应用前景,中国畜牧杂志,2002,Vol.38 No.4:52-54.
    [24]Lehrer R L,Granz T.Defensins:endogenous antibiotie peptides of animal cells[J].Cell,1991, 64:229-230.
    [25]Diamond G,Zasloff M,Eck H,et al.Tracheal antimicrobial peptide,a novel cysteine-rich peptide from mammalian tracheal nuecosa:peptide isolation and cloning of cDNA,Pro.Natl.Acad Sci.USA,1991,88(10):3952-3956.
    [26]TOMAS GANZ,ROBERT I.LETHRER,Defensins,Pharmaceutical Therapeutics,1995,Vol.66: 191-205.
    [27]Ryan L K,Rhodes J,Bhat M,et al.Expression of beta-defensin genes in bovine alveolar macrophages.Infect Immun,1998,101 (5):1633-1642.
    [28]王永杰.人防御素及其作用研究进展,金陵医院学报,1999,Vol.12 No.1:55-58.
    [29]Agerberth B,Lee JY,etal.Amino acid sequence of PR-39:Isolation from pig intestein of a new member of the family of proline-arginine rich antibacterial peptides[J].EurJ Bioehem,1991, 202:849-854.
    [30]Gudmundsson GH,Chowdhary BP,et al.Strueture of the gene for protein peptide antibiotic PR-39,a cathlin gene family member:comparative mapping of the locus for the human peptide antibiotie FAL-39[J].Proc Natl Acad Sci USA,1995,92:7085-7089.
    [31]洪华珠,彭蓉.新型抗感染生物活性物质—昆虫抗菌肽的研究进展.华中师范大学学报,2003,37(3):395-398.
    [32]Lai R,Zheng YT,Sun J H,Zhang Y.2002b.Antimicrobial peptides from the skin secretion of Chinese red belly toad Bombina maxima[J].Peptides,23:427-435.
    [33]徐强,华跃进,徐步进,等.蛙类皮肤分泌物中的抗菌肽和抗癌肽[J].动物学杂志,2002,37(2):73-76.
    [34]RoaekT,WegenerK L,BowieJ.HTeantibiotic and anticancer active aurein peptides from the Australian bell fogs Litoria aurea and Litoria raniformis[J].Europen a Journal of Bio-chemistry, 2000,267:5330-5341.
    [35]Conlon J M,Kolodziejek J,NowotnyN.Antimicmbila peptides from ranid frogs:taxonomic and pgylogenetic markesr and a potential source of new therapeutic agents[J].Biochim Biophs Acta,204,1696:1-14.
    [36]赖仞,粱建国,张云.两栖类动物皮肤抗菌肽及其应用[J].动物学研究.2004,25(5):465-468.
    [37]Dagan A,Efron L,Gaidukov L,Mor A,Ginsburg H.2002.In vitro antiplasmodium effects of dermaseptin S4 derivatives[J].Antimicrob Agents Chemother.,46:689-694.;
    [38]Eforn L,Dagan A,Gaidukov L,Mor A,Ginsburg H.2002.Directinteraction of dermaseptin S4 Aminoheptanovl derivative with intraerythrocytic malaria parasite leading to increased specific antiparasitic acticity in culture[J].J.Biol.Chem,277:24067-24072.
    [39]Mystkowska ET,Niemierko A,Komar A,Sawicki W.2001.Embryotoxicity of magainin-2-amide and its enhancement by cyclodextrin,albumin,hydrogen peroxide and acidification[J]. Hum.Reprod.,16:1457-1463.
    [40]Olson LⅢ,Soto AM,Knoop FC,Conlon JM.2001.Pseudin22:An antimicrobial peptide with low hemolytic activity from the skin of the paradoxical frog[J].Biochem.Biophys. Res.Commun.,288:1001-1005.)
    [40]Ayaka Saitoa,KenjiroUedaa,Morikazu Imamur et al.Purifieation and cDNA cloning ofa novel antibacterial peptide with a cysteine-stabilized ab motif from the longicorn beetle,Aealolepta luxuriosa[J].Developmental and Comparative Immunology,2004:28:1-7.
    [41]Srisailam S.A.l.Arunkumar,W.Wang,C.Yu,H.M.Chen b.Conformational study ofa custom antibacterial Peptide cecropin BLimplications of the lytic activity[J]Biochimica etBiophysiea Aeta.2000,1479,275-285.
    [42]Gautier M.F.M.E.Aleman,A.Guirao,D.Marion,Tritieum aesti6um puroindolines,two basic cystine-rich seed proteins:cDNA sequence analysis and developmental geneexpression,Plant Mol.Biol.25(1994)43-57.
    [43]洪华珠,彭蓉.新型抗感染生物活性物质一昆虫抗菌肽的研究进展.华中师范大学学报,2003,37(3):395-398.
    [44]Philippe Bulet,Reto Stoekin,Laure Menin,et al.Anti-microbial peptides:forminvert-ebrares to vertebrates[J]. Immunological Reviews 2004,198:169-184.
    [45]Saberwal G,Nagara J R.Cell-Iytic and action of the antibacterial peptides that act byPerturbing the barrier function of membranes[J].Bioche Biophys Acta,1994,1197:109-131.
    [46]Jaynes JM,Burton CA,Barr SB et al.In vitro cyticidal effect of novel lytic peptideson plasmodium falciparum and trypanosoma cruzi[J].FASEB.1989,2(12):2878-83.
    [47]Margitta D.Torsten W.Structural features of helieal antimicrobial peptides;theirpo-tential to modulate activity on model membranes and biological eells[J].Biochemical Biophysica Acta,1999.1462:71-87.
    [48]Laszlo Otvos J R.Antibacterial peptides isolation from insects[J].Peptide Seience,2006: 497-511.
    [49]lehinose M,Asai M,ImaiK,etal.Enhaneement of phagoeytosis by corticostatin I(CSI)in cultured mouse peritoneal maerophages[J].Imrnunopharmacol,1996,35(4):103-109.
    [50]Smith JJ,Travis S M,Greenberg E P,et al.Cystic fibrosis airway epithelia fail to killbaeteria because of abnormal airway surface fluid[J].Cell,1996,85(3):229-236.
    [51]Wilson C L,Ouellette A [J],Satehell D P,et al.Regulation of intestinal a-defensinacti-vation by the metalloproteinase matrilysin innate host defense.Seienee,1999,286(5):11-117.
    [52]Lemaitre B,Nicolas F,Hoffmann J A,et al.The dorsoventral regulatroy gene casseete Spailze/TIl/Cactus controls the potent antifungal response in Drosophila adults[J]. Cell, 1996,86(3):973-980.
    [53]Lindholm D A,Gudmundsson G H,et al.A highly repetitive mariner-like element in thegenome of Hyalophora cecropia[J].Joumal ofBiololgy Chemistry,1991,266(18):11518-11521.
    [54]Kadulayil,pietersen U M,Enstrom Y.Adjacent GATA and kB-like motifs regulste the expression of a Drosophila immune gene[J].Nucleic Aeids Res,1997,25(4):1233-1242.
    [55]Zhao C Q,Wang I,Lehere R I.Widespread expressionβdefensin hBD-1 in human secretory glands and epithelial eells[J].FEBS Lett,1996,39(6):319-325.
    [56]LiuL,Zhao C,Heng H H Q,et al,The human a-defensin-1 and β-defensins are encoded by adjacent gene:two peptide families with differing disulfide topology share a common ancestry[J] Genomics,1997,43(5):316-323.
    [57]Zhao C Q,Nguyen T,Liu L D,et al.Differential expression of caprine-denfensins in digestive and repiratory tissues[J].Infect Immun,1999,67(7):6221-6232.
    [58]王志兴,贾士荣.抗菌肽分泌型载体的构建及转基因马铃薯中蛋白的胞外分泌.农业生物技术学报,1996,4(3):277-286.
    [59]文加才,秦永忠,宋爱刚.阳离子抗菌肽的研究进展[J].国医药抗生素分册,2002,23(6):269-270.
    [60]Yarus S, Rosen J M,Cole AM,etal.Production of active bovine tracheal antimicrobial peptide in milk of transgenic mice.Proc Natl Acad Sci USA,1996,93:14118-14121.
    [61]Reed WA,Elzer PH,Enright FM,et al.Interleukin 2 promoter/enhancer controlled expression of a synthetic cecropin-class lytic peptide in transgenic mice and subsequent resistance to Brucella ahortus.Transgenic Res.1997,6(5):337-347.
    [62]Kokoza V,Ahmed A,Cho WL,et al.Engineering blood meal-activated systemic immunity in the yellow fever mosquito Aedes aegypti.Proc Natl Sci. USA.2000,97(16):9144-9149.
    [63]姜兰,白俊杰,邓国成等.重组抗菌肽的制备及其对水产养殖中常见病原菌的抑菌效果.2002,9(2):152-156.
    [64]陈晓生,温刘发等.饲料中添加抗菌肽对肉鸭生产性能及免疫器官、内脏器官的影响.[J].畜禽业,2005,2:12-13.
    [65]魏泉德.抗菌肽的原核表达及应用前景.国际医学寄生虫杂志2006年7月第33卷第4期:206-210.
    [66]Yount NY,Yeaman MR.Multidimensional signatures in antimicrobial peptides[J]Proc Natl Acad Sci USA,2004,101(19):7363-7368.
    [67]GordonYJ,Romanowski EG McKermott AM. A review of antimierobial peptides and their therapeutic potential as anti-infeetive drugs[J].Curr Eye Res,2005,30(7):505-515.
    [68]GordonYJ,HuangLC,Romanowski EG,et al.Human cathelicidin (LL237),a multifunctional peptide,is expressed by ocular surface epithelia and has potent antibacterial and antiviral activity[J].Curr Eye Res,2005,30(5):385-394.
    [69]Zasloff M.Magainins,a class of antimicrobial peptides from Xenopus skin:isolation, characterization of two active forms,and partial cDNA sequenee of a Preeursor [J]Proc Natl Acad Sci USA,1987,84(15):5449-5553.
    [70]Zasloff M.Antimierobial peptides of multicellular organisms [J].Nature,2002,415(6870): 389-395.
    [71]Paquette DW,SimPson DM,Friden P,etal. Safety and clinical effects of topical histatin gels in humans with experimental gingivitis[J].J Clin Periodontol,2002,29(12):1051-1058.
    [72]Kavanagh K,Dowd S.Histatins:antimicrobial peptides with therapeutic potential[J].Jpharm Pharmaeol,2004,56(3):285-289.
    [73]LevinM.Ouint P A,GoldwtinB,etal.Recombinant bactericidal/permeability-increasing protein (Rbpi21) as adjunctive treatment for children with severe meningococcal sepsis:a randomized trial RbPi21 Meningococcal SePsis Strdy Group [J].Lancet,2000,356 (9234):961.967.
    [74]Bowdish DM,Davidson DJ,Lau YE,et al.Impact of LL-37 on antiinfectiv eimmunity [J].J Leukoc Biol,2005,77(4):451-459.
    [75]Wachinger M,Kleinschmidtet A,Winder D,et al.Antimicrobial peptides melittin and ceeropinin hibit replication of human immunodeficiency virus 1 by suppressing viral gene expression[J].J Gen Virol,1998,79(4):731-741.
    [76]Haneock REW,Lehrer R.Cationic peptides:a new source of antibioties.Trends Biotechnol. 1998,16:82-88.
    [77]PaPo N,Shai Y.Host defense peptides as new weapons in cancer treatment. Cell Mol Life Sci,2005,62:784-790.
    [78]Tomita M,Bellamy W,Takase M.Patent antibacterial peptides generated by pepsindigestion of bovine lacaoferrin[J].JDaiySei,1991,74:4137-4142.
    [79]Bellamy W,Takase W,Yamaudhim K,et al.Identification of the baetericidal domain of lacaoferrin.BioPhys Acta,1992,1121:130-136.
    [80]卫应,杨申,江明华,蜂毒的药理学研究、临床应用及开发现状,中国医院药学杂志,2000,20(11):682-683.
    [81]Henk WG,Todd WT,Enright FM.The morphological effects of two antimicrohial peptides, hecate-land melittin,on Eschrichia coli[J]. Seanning Microse,1995,9(2)501-507.
    [82]Lazarev VN,StiPkovits L,BIRO J,et al.Indrced expression of the antimierebial peptide melittin inhibits experimental infection by Mycoplasma galliseptieum in chiekers[J]Microbes Infect.2004,6(6):536-541.
    [83]Hancoek RE.Cationic peptides:effectors in innate immunity and novel antimicrobials. Lancet InfectDis,2001,1:156-164.
    [84]姚玉淑,秦志辉.抗菌肽的研究现状和应用前景中国基层医药2005年7月第12卷第7期,934-936
    [85]Shahabuddin M.etal[J]Experimental Parasitogy,1998,89(1):103-112.
    [86]Zhang J,Sun X,Zheng X.Construetion of cecropin B and D double gene expression vector and transformation of patchouli(Pogostemon cablin Benth.)[J]. Chin J Tropical Crops(热带作物学报),1997,18(1):50-57.
    [87]布冠好,李宏基,杨国宇,汪国和.抗菌肽的作用特点及应用前景[J].动物医学进展,2005,26(3):26-28.
    [88]Cotter PD,Hill C,Ross RP.Bacteriocins:developing innate immunity for food.Nat Rev Microbiol,2005,3:777-788.
    [89]Paeor S,Giangaspero A,Bacac M,et al. Analysis of the cytotoxicity of synthetic antimierobial peptides on mouse leueocytes implieations for systemie use[J]JAntimierob Chemother 2002,50(3):339-348.
    [90]Hamamoto K,Kida Y,Zhang Y,et al.Antimicrobia laetivity and stability to proteolysis of small linear cationic peptides with D-amino acid substitutions[J].Micro-bio Immunol 2002,46 (11):741-74.
    [91]Fehlbaum P.Rao M.An essential amino acid induces epithelial beta-defensim expression[J]. Proc Natl Acad Sci 2000,97(23):12723-12728.
    [92]Wang TT,Nestel FP,Bourdeau V,et al.Cutting edge:1,25-dihvdrovvitam in D3 is a direct inducer of antimicrobial peptide gene expression[J].J Immunol 2004.173(5):2909-2912.
    [93]尹丽莉.天然免疫分子抗菌肚的研究进展Foreign Medieal Sciences Section of Pharmacy.2006 Feb:33(1).14-17,24.
    [94]Brodsky IE,Ernst RK,Miller SL,Falkow S.mig-14 is a salmonella gene that plays a role in banterial resistance to antimicrobial peptides.[J] J.Becteriol,2002,184(12):32 01-3213.
    [95]Bals R,Lang C,Weinei DJ et al.Rhesus monkey(Macaca mulatta)mucosal anti-mcrobial peptides are close homologues of human molecules. [J].Clin Diagn Lab Immunol, 2001,8:370-375.
    [96]李时珍.本草纲目.中国国际广播出版社,1994:2536-2542.
    [97]Charles L.B.Michael Z.,Peptides from frog skin[J]Annu.Rev.Biochenm,1990,59:395-414.
    [98]Clarke B.T.The natural history of amphibian skin secrection,their normal function and potential medical applications[J].Biol.Rev.1997,72(3):365-379.
    [99]Lazarus L.H.Attila M.,The toad ugly and venomous,wears yet a precious jewel in his skin.[J].Prog Neurobiol,1993(41):473-507.
    [100]Erspamer V.Bioactive Secretions of the Amphibian Integumint:Amphibian Biology. Australia: The Integument Press,1994:178-350.
    [101]Zasloff M.magainins A class of antimicrobial peptides from Xenopusskin:isolation characterization of two active forms and partial cDNA sequence of a precursor[J].Prac Natl Acad Sci,1987,84(15):5449-5455
    [102]Wang Z,Wang GS.APD:The antimicrobial peptide database[J].Nucleic Acids Research, 2004,32:D590-592
    [103]Swendsen C.L.Sphepard D.A study of antimicrobial effects of mountain dusky salamander mucus.Jon Hasfjord:[J]Nat Sci.Seminar Absracts,1998.
    [104]Barra D,Simmaco M,Boman H G.Gene-encoded peptide antibiotics and innate immunity.Do'animalcules'have defence budgets?[J]FEBS Letters,1998,430(1-2):130-134.
    [105]Simmaco M,Mignogna G,Barra D.Antimicrobial peptides from amphibian skin:what do they tell us? Biopolymers,1998,47(6):435-450.
    [106]Simmaco M,Mignogna G,Canofeni S.Temporins,antimicrobial peptides from the European red frog Rana temporaria.[J]Eur JBiochem,1996,242(3):788-792.
    [107]Maloy W L,Kari U P.Structure-activity studies on magainins and other host defense peptides.[J] Biopolymers (Peptide Science),1995,37:105-102.
    [108]Isaacson T,Soto A,Iwamuro S,Knoop F C,Conlon J M.Antimicrobial peptides with atypical structural features from the skin of the Japanese brown frog Rana japonica[J].Peptides, 2002,23:419-425.
    [109]Batista C V F,Scalonib A,Rigdene D J.A novel heterodimeric antimicrobial peptide from the tree-frog Phyllomedusa distincta.[J]FEBS Letters,2001,494 (1-2):85-89.
    [110]刘炯宇,江建平,谢峰.两栖类动物皮肤结构及皮肤抗菌肽.[J]动物学杂志,2004,39(1):112-116.
    [111]Bevines CL.Zasloff M.Peptides from frog skin.[J]Annual Review of Biochenmistry,1990(59): 395-414.
    [112]Andren D,Aschauer H,Kreil G.,Solid phase synthesis of PYLa and isolation of its natural counterpart, PGLa [PYLa2(4-24)],from skin secretion of Xenopus laevis.[J]European J.of Biochem.1985(149):531-535.
    [113]Hans V.,Westerhoff,Davor J.Magainins and the disruption of membranelinked free energy transduction.[J] Proc Natl Acad Sci.USA,1989(86):6597-6601.
    [114]Oren Z,Shai Y.Mode of action of linear amphipathica-helical antimicrobial peptides. [J] Biopolymers (Peptide Science),1998,41(6):451-463.
    [115]Christensen B.Fink J.Channel-forming properties of cecropins and related modelcompounds incorporated into planar lipid membranes[J]Proc.Natl.Acad,1988,85:5072.
    [116]Fink J,Boman A,Boman H G.Design,synthesis and antibacterial activity ofcecropin-like model peptides[J]Int J Pept Protein Res,1989,33(6):412-421.
    [117]Clague M J,Cherry R J.A comparative study of band 3 aggregation in eryth-rocyte membranes by melittin and other cationic agents[J].Biochim Biophys Acta,1989,980(1):93-99.
    [118]Lockery T D,Ourth D D.Formation of pores in Escherichiia coli cell membranes by a cecropin isolated from hemolymph of Heliothis viresens larvae[J].Eyr J Biochem,1996, 236:263-27.
    [119]Matsuzaki K.Why and how are peptide-lipid interactions utilized for self-defense?Magainins and tachyplesins as archetypes.Biochim.Biophys.Acta.1999,1462:1-10.
    [120]Yang L,Weiss T M,Lehrer R I,Huang H W.Crystallization of antimicrobialpores in membranes:magainin and protegrin.Biophys.J.,2000,79:2002-2009.
    [121]Shai Y.Mechanism of the binding,insertion and destabilization of phospholipidbilayer membranes by a-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim.Biophys. Acta.,1999,1462:55-70
    [122]Andreu D,Rivas L.Animal antimicrobial peptides:an overview.Biopolymers (Peptides Science),1998,47(6)415-433.
    [123]SchrEder JM.Epithelial peptide antibiotics.Biochenmical Pharmacology,1999,57(2):121-134.
    [124]Jacob L,Zasloff M.Potential therapeutic application of magainins and other antimicrobial agents of animal origin.In:Baman H G.Antimicrobial peptide,1994:197-223.
    [125]韩香,顾军.固相法在多肽合成领域的应用[J].药学发展,2004,28(1):10-13.
    [126]Merrifield RB.Solid phase synthesis.Seienee.1986(232):341-347.
    [127]冯淑娟,齐传民,郭雪峰.新N35型配位结构的小肽分子合成及其合成方法研究[J].北京师范大学学报(自然科学版),2002,38(4):506.
    [128]Ramage Rjiang L,Kim YD,et al.Comparative atudies of Nsc and FMOC as N(alPha)-protecting groups for SPPS[J].pept Sci,1999,5(4):195-200.
    [129]王仁,杨白东,盛树力.固相多肽合成法原理及其在抗体制备中的应用[J],中华实用医学,2003,5(24):44-46.
    [130]HydeC.Inteenal aggregation during solid phasepeptide synthesis:dimethyl sulfoxide as a powerful dissoeiating solvent.J Chem Soc,ChemCommen.1992:1573.
    [131]Chen ST,P.H.Tseng,H.M.Yu.et al.The Studies of Microwave Effects on the Chemical-Reaetions.J Chin Chem Soc,1997,44(3):169.
    [132]李根,李崇熙等.多肽合成中羧基活化方法的一些新进展[J].有机化学,1989,9(5):396-401.
    [133]黄晓龙.美国FDA关于合成多肽的指导原则[J],中国新药杂志.2001,10(8):626-628.
    [134]Li ML,Liao RW,Qiu JW,et al. Antimicrobial activity of synthetic all-D mastoparan M[J].Int J Antimicrob Agents.2000,13(3):203
    [135]V.K.Sarin,S.B.H.Kent.Qunatitative Monitoring of Solid-Peptide synthesis by the Ninhydrin Reaction. AnalBioehem.1981 (117):147
    [136]W.S.Hnaeoek.J.E.Battersby.ANew Mieor-Test for the Detection of Incomplete Coupling Reactions in Solid-Phase Peptide Synthesis Using 2,4,6-Triniort-benzene sulphonic Acid.Anal Biochem.1975(71):260
    [137]Krchnak.Non-invasive continuous monitoring of solid phase peptide Synthesis by acid-base indieator, Coll Czech Chem Cornm.1988(53):2542]
    [138]V.K.Sarin,S.B.H.Kent.Qunatitative Monitoring of Solid-Peptide synthesis by the Ninhydrin Reaction. AnalBioehem.1981 (117):147
    [139]Euddaro.M.Cilli.Guiat.N.Jubilut.,Suely CF Ribeiro,et al.Importnace of the Solvation Degree of Peptide-Resin Beads for Amine Groups Determination by the Picric Acid Mehtod.J Braz Chem Soc.2000,11(5):474]
    [140]Marcel Patek,Sylvia Bildstein.Monitoring the Solid Phase Synthesis Using Ion-Selective Electrode.1998(39):753]
    [141]K.Esko.A Mehod for Determining Fere Amino Groups in Polymers with Particular Reference to the Merrifield Synthesis.Acta Chem Scand.1968,22:3342
    [142]邹永水,钱肖贞.固相上氨基酸与多肽氨基的测定.生物化学与生物物理进展,1978,(4):12
    [143]R.Gedye,F.Smiht,K.Westaway.et al.The uses of microwave ovens for rapid organic synthesis. Tetrahedron Lett.1986,27(3):279
    [144]S.T.Chen,P.H.Tseng,H.M.Yu.et al.The Studies of MieorwaveEeffets on the Chemical-Reactions. J Chin Chem Soe.1997,44(3):169
    [145]膝勇,膝尚辉.哺乳动物抗茵肽及其应用前景的研究.饲料广角。2003(9):26-28
    [146]Charles L.B.Michael Z.,Peptides from frog skin[J]Annu.Rev.Biochenm.1990
    [147]Clarke B.T.The natural history of amphibian skin secrection,their normal function and potential medical applications[J].Biol.Rev.1997,72(3):365-379。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700